Уравнения и системы уравнений первой степени. Правила преобразования системы уравнений в матрицу

I. Обыкновенные дифференциальные уравнения

1.1. Основные понятия и определения

Дифференциальным уравнением называется уравнение, связывающее между собой независимую переменную x , искомую функцию y и её производные или дифференциалы.

Символически дифференциальное уравнение записывается так:

F(x,y,y")=0, F(x,y,y")=0, F(x,y,y",y",.., y (n))=0

Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного независимого переменного.

Решением дифференциального уравнения называется такая функция , которая обращает это уравнение в тождество.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение

Примеры.

1. Рассмотрим дифференциальное уравнение первого порядка

Решением этого уравнения является функция y = 5 ln x. Действительно, , подставляя y" в уравнение, получим – тождество.

А это и значит, что функция y = 5 ln x– есть решение этого дифференциального уравнения.

2. Рассмотрим дифференциальное уравнение второго порядка y" - 5y" +6y = 0 . Функция – решение этого уравнения.

Действительно, .

Подставляя эти выражения в уравнение, получим: , – тождество.

А это и значит, что функция – есть решение этого дифференциального уравнения.

Интегрированием дифференциальных уравнений называется процесс нахождения решений дифференциальных уравнений.

Общим решением дифференциального уравнения называется функция вида ,в которую входит столько независимых произвольных постоянных, каков порядок уравнения.

Частным решением дифференциального уравнения называется решение, полученное из общего решения при различных числовых значениях произвольных постоянных. Значения произвольных постоянных находится при определённых начальных значениях аргумента и функции.

График частного решения дифференциального уравнения называется интегральной кривой .

Примеры

1.Найти частное решение дифференциального уравнения первого порядка

xdx + ydy = 0 , если y = 4 при x = 3.

Решение. Интегрируя обе части уравнения, получим

Замечание. Произвольную постоянную С, полученную в результате интегрирования, можно представлять в любой форме, удобной для дальнейших преобразований. В данном случае, с учётом канонического уравнения окружности произвольную постоянную С удобно представить в виде .

- общее решение дифференциального уравнения.

Частное решение уравнения, удовлетворяющее начальным условиям y = 4 при x = 3 находится из общего подстановкой начальных условий в общее решение: 3 2 + 4 2 = C 2 ; C=5.

Подставляя С=5 в общее решение, получим x 2 +y 2 = 5 2 .

Это есть частное решение дифференциального уравнения, полученное из общего решения при заданных начальных условиях.

2. Найти общее решение дифференциального уравнения

Решением этого уравнения является всякая функция вида , где С – произвольная постоянная. Действительно, подставляя в уравнения , получим: , .

Следовательно, данное дифференциальное уравнение имеет бесконечное множество решений, так как при различных значениях постоянной С равенство определяет различные решения уравнения .

Например, непосредственной подстановкой можно убедиться, что функции являются решениями уравнения .

Задача, в которой требуется найти частное решение уравнения y" = f(x,y) удовлетворяющее начальному условию y(x 0) = y 0 , называется задачей Коши.

Решение уравнения y" = f(x,y) , удовлетворяющее начальному условию, y(x 0) = y 0 , называется решением задачи Коши.

Решение задачи Коши имеет простой геометрический смысл. Действительно, согласно данным определениям, решить задачу Коши y" = f(x,y) при условии y(x 0) = y 0 , означает найти интегральную кривую уравнения y" = f(x,y) которая проходит через заданную точку M 0 (x 0 ,y 0 ).

II. Дифференциальные уравнения первого порядка

2.1. Основные понятия

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,y") = 0.

В дифференциальное уравнение первого порядка входит первая производная и не входят производные более высокого порядка.

Уравнение y" = f(x,y) называется уравнением первого порядка, разрешённым относительно производной.

Общим решением дифференциального уравнения первого порядка называется функция вида , которая содержит одну произвольную постоянную.

Пример. Рассмотрим дифференциальное уравнение первого порядка .

Решением этого уравнения является функция .

Действительно, заменив в данном уравнении, его значением, получим

то есть 3x=3x

Следовательно, функция является общим решением уравнения при любом постоянном С.

Найти частное решение данного уравнения, удовлетворяющее начальному условию y(1)=1 Подставляя начальные условия x = 1, y =1 в общее решение уравнения , получим откуда C = 0 .

Таким образом, частное решение получим из общего подставив в это уравнение, полученное значение C = 0 – частное решение.

2.2. Дифференциальные уравнения с разделяющимися переменными

Дифференциальным уравнением с разделяющимися переменными называется уравнение вида: y"=f(x)g(y) или через дифференциалы , где f(x) и g(y) – заданные функции.

Для тех y , для которых , уравнение y"=f(x)g(y) равносильно уравнению, в котором переменная y присутствует лишь в левой части, а переменная x- лишь в правой части. Говорят, «в уравнении y"=f(x)g(y разделим переменные».

Уравнение вида называется уравнением с разделёнными переменными.

Проинтегрировав обе части уравнения по x , получим G(y) = F(x) + C – общее решение уравнения, где G(y) и F(x) – некоторые первообразные соответственно функций и f(x) , C произвольная постоянная.

Алгоритм решения дифференциального уравнения первого порядка с разделяющимися переменными

Пример 1

Решить уравнение y" = xy

Решение. Производную функции y" заменим на

разделим переменные

проинтегрируем обе части равенства:

Пример 2

2yy" = 1- 3x 2 , если y 0 = 3 при x 0 = 1

Это-уравнение с разделенными переменными. Представим его в дифференциалах. Для этого перепишем данное уравнение в виде Отсюда

Интегрируя обе части последнего равенства, найдем

Подставив начальные значения x 0 = 1, y 0 = 3 найдем С 9=1-1+C , т.е. С = 9.

Следовательно, искомый частный интеграл будет или

Пример 3

Составить уравнение кривой, проходящей через точку M(2;-3) и имеющей касательную с угловым коэффициентом

Решение. Согласно условию

Это уравнение с разделяющимися переменными. Разделив переменные, получим:

Проинтегрировав обе части уравнения, получим:

Используя начальные условия, x = 2 и y = - 3 найдем C :

Следовательно, искомое уравнение имеет вид

2.3. Линейные дифференциальные уравнения первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида y" = f(x)y + g(x)

где f(x) и g(x) - некоторые заданные функции.

Если g(x)=0 то линейное дифференциальное уравнение называется однородным и имеет вид: y" = f(x)y

Если то уравнение y" = f(x)y + g(x) называется неоднородным.

Общее решение линейного однородного дифференциального уравнения y" = f(x)y задается формулой: где С – произвольная постоянная.

В частности, если С =0, то решением является y = 0 Если линейное однородное уравнение имеет вид y" = ky где k - некоторая постоянная, то его общее решение имеет вид: .

Общее решение линейного неоднородного дифференциального уравнения y" = f(x)y + g(x) задается формулой ,

т.е. равно сумме общего решения соответствующего линейного однородного уравнения и частного решения данного уравнения.

Для линейного неоднородного уравнения вида y" = kx + b ,

где k и b - некоторые числа и частным решением будет являться постоянная функция . Поэтому общее решение имеет вид .

Пример . Решить уравнение y" + 2y +3 = 0

Решение. Представим уравнение в виде y" = -2y - 3 где k = -2, b= -3 Общее решение задается формулой .

Следовательно, где С – произвольная постоянная.

2.4. Решение линейных дифференциальных уравнений первого порядка методом Бернулли

Нахождение общего решения линейного дифференциального уравнения первого порядка y" = f(x)y + g(x) сводится к решению двух дифференциальных уравнений с разделенными переменными с помощью подстановки y=uv , где u и v - неизвестные функции от x . Этот метод решения называется методом Бернулли.

Алгоритм решения линейного дифференциального уравнения первого порядка

y" = f(x)y + g(x)

1. Ввести подстановку y=uv .

2. Продифференцировать это равенство y" = u"v + uv"

3. Подставить y и y" в данное уравнение: u"v + uv" = f(x)uv + g(x) или u"v + uv" + f(x)uv = g(x) .

4. Сгруппировать члены уравнения так, чтобы u вынести за скобки:

5. Из скобки, приравняв ее к нулю, найти функцию

Это уравнение с разделяющимися переменными:

Разделим переменные и получим:

Откуда . .

6. Подставить полученное значение v в уравнение (из п.4):

и найти функцию Это уравнение с разделяющимися переменными:

7. Записать общее решение в виде: , т.е. .

Пример 1

Найти частное решение уравнения y" = -2y +3 = 0 если y =1 при x = 0

Решение. Решим его с помощью подстановки y=uv, .y" = u"v + uv"

Подставляя y и y" в данное уравнение, получим

Сгруппировав второе и третье слагаемое левой части уравнения, вынесем общий множитель u за скобки

Выражение в скобках приравниваем к нулю и, решив полученное уравнение, найдем функцию v = v(x)

Получили уравнение с разделенными переменными. Проинтегрируем обе части этого уравнения: Найдем функцию v :

Подставим полученное значение v в уравнение Получим:

Это уравнение с разделенными переменными. Проинтегрируем обе части уравнения: Найдем функцию u = u(x,c) Найдем общее решение: Найдем частное решение уравнения, удовлетворяющее начальным условиям y = 1 при x = 0 :

III. Дифференциальные уравнения высших порядков

3.1. Основные понятия и определения

Дифференциальным уравнением второго порядка называется уравнение, содержащее производные не выше второго порядка. В общем случае дифференциальное уравнение второго порядка записывается в виде: F(x,y,y",y") = 0

Общим решением дифференциального уравнения второго порядка называется функция вида , в которую входят две произвольные постоянные C 1 и C 2 .

Частным решением дифференциального уравнения второго порядка называется решение, полученное из общего при некоторых значениях произвольных постоянных C 1 и C 2 .

3.2. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида y" + py" +qy = 0 , где p и q - постоянные величины.

Алгоритм решения однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

1. Записать дифференциальное уравнение в виде: y" + py" +qy = 0 .

2. Составить его характеристическое уравнение, обозначив y" через r 2 , y" через r , y через 1:r 2 + pr +q = 0

1. Метод подстановки : из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.


Задача. Решить систему уравнений:


Решение. Из первого уравнения системы выражаем у через х и подставляем во второе уравнение системы. Получим систему равносильную исходной.


После приведения подобных членов система примет вид:


Из второго уравнения находим: . Подставив это значение в уравнение у = 2 - 2х , получим у = 3. Следовательно, решением данной системы является пара чисел .


2. Метод алгебраического сложения : путем сложения двух уравнений получить уравнение с одной переменной.


Задача. Решить систему уравнение:



Решение. Умножив обе части второго уравнения на 2, получим систему равносильную исходной. Сложив два уравнения этой системы, придем к системе


После приведения подобных членов данная система примет вид: Из второго уравнения находим . Подставив это значение в уравнение 3х + 4у = 5, получим , откуда . Следовательно, решением данной системы является пара чисел .


3. Метод введения новых переменных : ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.


Задача. Решить систему уравнений:



Решение. Запишем данную систему иначе:


Пусть х + у = u, ху = v. Тогда получим систему


Решим ее методом подстановки. Из первого уравнения системы выразим u через v и подставим во второе уравнение системы. Получим систему т.е.


Из второго уравнение системы находим v 1 = 2, v 2 = 3.


Подставив эти значения в уравнение u = 5 - v , получим u 1 = 3,
u 2 = 2. Тогда имеем две системы


Решая первую систему, получим две пары чисел (1; 2), (2; 1). Вторая система решений не имеет.


Упражнения для самостоятельной работы


1. Решить системы уравнений методом подстановки.


Чтобы решить систему линейных уравнений с двумя переменными методом сложения, надо:

1) умножить левую и правую части одного или обоих уравнений на некоторое число так, чтобы коэффициенты при одной из переменных в уравнениях стали противоположными числами;

2) сложить почленно полученные уравнения и найти значение одной из переменных;

3) подставить найденное значение одной переменной в одно из данных уравнений и найти значение второй переменной.

Если в данной системе коэффициенты при одной переменной являются противоположными числами, то решение системы начнём сразу с пункта 2).

Примеры. Решить систему линейных уравнений с двумя переменными методом сложения.

Так как коэффициенты при у являются противоположными числами (-1 и 1), то решение начинаем с пункта 2). Складываем уравнения почленно и получим уравнение 8х = 24. Вторым уравнением системы можно записать любое уравнение исходной системы.

Найдём х и подставим его значение во 2-ое уравнение.

Решаем 2–ое уравнение: 9-у = 14, отсюда у = -5.

Сделаем проверку . Подставим значения х = 3 и у = -5 в первоначальную систему уравнений.

Примечание . Проверку можно сделать устно и не записывать, если наличие проверки не оговорено в условии.

Ответ: (3; -5).

Если мы умножим 1-ое уравнение на (-2), то коэффициенты при переменной х станут противоположными числами:

Сложим эти равенства почленно.

Мы получим равносильную систему уравнений, в которой 1-ое уравнение есть сумма двух уравнений прежней системы, а 2-м уравнением системы мы запишем 1-ое уравнение исходной системы (обычно записывают уравнение с меньшими коэффициентами ):

Находим у из 1-го уравнения и полученное значение подставляем во 2-ое.

Решаем последнее уравнение системы и получаем х = -2.

Ответ: (-2; 1).

Сделаем коэффициенты при переменной у противоположными числами. Для этого все члены 1-го уравнения умножим на 5, а все члены 2-го уравнения на 2.

Подставим значение х=4 во 2-ое уравнение.

3 · 4 — 5у = 27. Упростим: 12 — 5у = 27, отсюда -5у = 15, а у = -3.

Ответ: (4; -3).

Для решения системы линейных уравнений с двумя переменными методом подстановки поступаем следующим образом:

1) выражаем одну переменную через другую в одном из уравнений системы (х через у или у через х);

2) подставляем полученное выражение в другое уравнение системы и получаем линейное уравнение с одной переменной;

3) решаем полученное линейное уравнение с одной переменной и находим значение этой переменной;

4) найденное значение переменной подставляем в выражение (1) для другой переменной и находим значение этой переменной.

Примеры. Решить методом подстановки систему линейных уравнений.

Выразим х через у из 1-го уравнения. Получим: х=7+у. Подставим выражение (7+у) вместо х во 2-ое уравнение системы.

Мы получили уравнение: 3· (7+у)+2у=16. Это уравнение с одной переменной у . Решаем его. Раскроем скобки: 21+3у+2у=16. Собираем слагаемые с переменной у в левой части, а свободные слагаемые — в правой. При переносе слагаемого из одной части равенства в другую меняем знак слагаемого на противоположный .

Получаем: 3у+2у=16-21. Приводим подобные слагаемые в каждой части равенства. 5у=-5. Делим обе части равенства на коэффициент при переменной . у=-5:5; у=-1. Подставляем это значение у в выражение х=7+у и находим х . Получаем: х=7-1; х=6. Пара значений переменных х=6 и у=-1 является решением данной системы.

Записывают: (6; -1). Ответ: (6; -1). Эти рассуждения удобно записывать так, как показано ниже, т.е. системы уравнений — слева друг под другом. Справа — выкладки, необходимые пояснения, проверка решения и пр.

Страница 1 из 1 1

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.