Уравнения и неравенства с 1 переменной. Неравенства с одной переменной

Теперь можно разбираться, как решаются линейные неравенства a·x+b<0 (они могут быть записаны и с помощью любого другого знака неравенства).

Основной способ их решения заключается в использовании равносильных преобразований, позволяющих прийти при a≠0 к элементарным неравенствам вида x

, ≥), p - некоторое число, которые и являются искомым решением, а при a=0 – к числовым неравенствам вида a

, ≥), из которых делается вывод о решении исходного неравенства. Его мы и разберем в первую очередь.

Также не помешает взглянуть на решение линейных неравенств с одной переменной и с других позиций. Поэтому, мы еще покажем, как можно решить линейное неравенство графически и методом интервалов.

Используя равносильные преобразования

Пусть нам нужно решить линейное неравенство a·x+b<0 (≤, >, ≥). Покажем, как это сделать, используя равносильные преобразования неравенства .

Подходы при этом различаются в зависимости от равенства или неравенства нулю коэффициента a при переменной x . Рассмотрим их по очереди. Причем при рассмотрении будем придерживаться схемы из трех пунктов: сначала будем давать суть процесса, дальше – алгоритм решения линейного неравенства, наконец, приводить решения характерных примеров.

Начнем с алгоритма решения линейного неравенства a·x+b<0 (≤, >, ≥) при a≠0 .

  • Во-первых, число b переносится в правую часть неравенства с противоположным знаком. Это позволяет перейти к равносильному неравенству a·x<−b (≤, >, ≥).
  • Во-вторых, проводится деление обеих частей полученного неравенства на отличное от нуля число a . При этом, если a – положительное число, то знак неравенства сохраняется, а если a - отрицательное число, то знак неравенства изменяется на противоположный. В результате получается элементарное неравенство, равносильное исходному линейному неравенству, оно и является ответом.

Остается разобраться с применением озвученного алгоритма на примерах. Рассмотрим, как с его помощью решаются линейные неравенства при a≠0 .

Пример.

Решите неравенство 3·x+12≤0 .

Решение.

Для данного линейного неравенства имеем a=3 и b=12 . Очевидно, коэффициент a при переменной x отличен от нуля. Воспользуемся соответствующим алгоритмом решения, приведенным выше.

Во-первых, переносим слагаемое 12 в правую часть неравенства, не забывая изменить его знак, то есть, в правой части окажется −12 . В результате приходим к равносильному неравенству 3·x≤−12 .

И, во-вторых, делим обе части полученного неравенства на 3 , так как 3 – число положительное, то знак неравенства не изменяем. Имеем (3·x):3≤(−12):3 , что то же самое x≤−4 .

Полученное элементарное неравенство x≤−4 равносильно исходному линейному неравенству и является его искомым решением.

Итак, решением линейного неравенства 3·x+12≤0 является любое действительное число, меньшее или равное минус четырем. Ответ можно записать и в виде числового промежутка , отвечающего неравенству x≤−4 , то есть, как (−∞, −4] .

Приобретя сноровку в работе с линейными неравенствами, их решения можно будет записывать кратко без пояснений. При этом сначала записывают исходное линейное неравенство, а ниже – равносильные ему неравенства, получающиеся на каждом шаге решения:
3·x+12≤0 ;
3·x≤−12 ;
x≤−4 .

Ответ:

x≤−4 или (−∞, −4] .

Пример.

Укажите все решения линейного неравенства −2,7·z>0 .

Решение.

Здесь коэффициент a при переменной z равен −2,7 . А коэффициент b отсутствует в явном виде, то есть, он равен нулю. Поэтому, первый шаг алгоритма решения линейного неравенства с одной переменной выполнять не нужно, так как перенос нуля из левой части в правую не изменит вид исходного неравенства.

Остается разделить обе части неравенства на −2,7 , не забыв изменить знак неравенства на противоположный, так как −2,7 – отрицательное число. Имеем (−2,7·z):(−2,7)<0:(−2,7) , и дальше z<0 .

А теперь кратко:
−2,7·z>0 ;
z<0 .

Ответ:

z<0 или (−∞, 0) .

Пример.

Решите неравенство .

Решение.

Нам нужно решить линейное неравенство с коэффициентом a при переменной x , равным −5 , и с коэффициентом b , которому отвечает дробь −15/22 . Действуем по известной схеме: сначала переносим −15/22 в правую часть с противоположным знаком, после чего выполняем деление обеих частей неравенства на отрицательное число −5 , изменяя при этом знак неравенства:

В последнем переходе в правой части используется , затем выполняется .

Ответ:

Теперь переходим к случаю, когда a=0 . Принцип решения линейного неравенства a·x+b<0 (знак, естественно, может быть и другим) при a=0 , то есть, неравенства 0·x+b<0 , заключается в рассмотрении числового неравенства b<0 и выяснении, верное оно или нет.

На чем это основано? Очень просто: на определении решения неравенства . Каким образом? Да вот каким: какое бы значение переменной x мы не подставили в исходное линейное неравенство, мы получим числовое неравенство вида b<0 (так как при подстановке любого значения t вместо переменной x мы имеем 0·t+b<0 , откуда b<0 ). Если оно верное, то это означает, что любое число является решением исходного неравенства. Если же числовое неравенство b<0 оказывается неверным, то это говорит о том, что исходное линейное неравенство не имеет решений, так как не существует ни одного значения переменной, которое обращало бы его в верное числовое равенство.

Сформулируем приведенные рассуждения в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥) :

  • Рассматриваем числовое неравенство b<0 (≤, >, ≥) и
    • если оно верное, то решением исходного неравенства является любое число;
    • если же оно неверное, то исходное линейное неравенство не имеет решений.

А теперь разберемся с этим на примерах.

Пример.

Решите неравенство 0·x+7>0 .

Решение.

Для любого значения переменной x линейное неравенство 0·x+7>0 обратится в числовое неравенство 7>0 . Последнее неравенство верное, следовательно, любое число является решением исходного неравенства.

Ответ:

решением является любое число или (−∞, +∞) .

Пример.

Имеет ли решения линейное неравенство 0·x−12,7≥0 .

Решение.

Если подставить вместо переменной x любое число, то исходное неравенство обратиться в числовое неравенство −12,7≥0 , которое неверное. А это значит, что ни одно число не является решением линейного неравенства 0·x−12,7≥0 .

Ответ:

нет, не имеет.

В заключение этого пункта разберем решения двух линейных неравенств, оба коэффициента которых равны нулю.

Пример.

Какое из линейных неравенств 0·x+0>0 и 0·x+0≥0 не имеет решений, а какое – имеет бесконечно много решений?

Решение.

Если вместо переменной x подставить любое число, то первое неравенство примет вид 0>0 , а второе – 0≥0 . Первое из них неверное, а второе – верное. Следовательно, линейное неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений, а именно, его решением является любое число.

Ответ:

неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений.

Методом интервалов

Вообще, метод интервалов изучается в школьном курсе алгебры позже, чем проходится тема решение линейных неравенств с одной переменной. Но метод интервалов позволяет решать самые разные неравенства, в том числе и линейные. Поэтому, остановимся на нем.

Сразу заметим, что метод интервалов целесообразно применять для решения линейных неравенств с отличным от нуля коэффициентом при переменной x . В противном случае вывод о решении неравенства быстрее и удобнее сделать способом, разобранным в конце предыдущего пункта.

Метод интервалов подразумевает

  • введение функции, отвечающей левой части неравенства, в нашем случае – линейной функции y=a·x+b ,
  • нахождение ее нулей, которые разбивают область определения на промежутки,
  • определение знаков, которые имеют значения функции на этих промежутках, на основе которых делается вывод о решении линейного неравенства.

Соберем эти моменты в алгоритм , раскрывающий как решать линейные неравенства a·x+b<0 (≤, >, ≥) при a≠0 методом интервалов:

  • Находятся нули функции y=a·x+b , для чего решается a·x+b=0 . Как известно, при a≠0 оно имеет единственный корень, который обозначим x 0 .
  • Строится , и на ней изображается точка с координатой x 0 . Причем, если решается строгое неравенство (со знаком < или >), то эту точку делают выколотой (с пустым центром), а если нестрогое (со знаком ≤ или ≥), то ставят обычную точку. Эта точка разбивает координатную прямую на два промежутка (−∞, x 0) и (x 0 , +∞) .
  • Определяются знаки функции y=a·x+b на этих промежутках. Для этого вычисляется значение этой функции в любой точке промежутка (−∞, x 0) , и знак этого значения и будет искомым знаком на промежутке (−∞, x 0) . Аналогично, знак на промежутке (x 0 , +∞) совпадает со знаком значения функции y=a·x+b в любой точке этого промежутка. Но можно обойтись без этих вычислений, а выводы о знаках сделать по значению коэффициента a : если a>0 , то на промежутках (−∞, x 0) и (x 0 , +∞) будут знаки − и + соответственно, а если a>0 , то + и −.
  • Если решается неравенство со знаками > или ≥, то ставится штриховка над промежутком со знаком плюс, а если решаются неравенства со знаками < или ≤, то – со знаком минус. В результате получается , которое и является искомым решением линейного неравенства.

Рассмотрим пример решения линейного неравенства методом интервалов.

Пример.

Решите неравенство −3·x+12>0 .

Решение.

Коль скоро мы разбираем метод интервалов, то им и воспользуемся. Согласно алгоритму, сначала находим корень уравнения −3·x+12=0 , −3·x=−12 , x=4 . Дальше изображаем координатную прямую и отмечаем на ней точку с координатой 4 , причем эту точку делаем выколотой, так как решаем строгое неравенство:

Теперь определяем знаки на промежутках. Для определения знака на промежутке (−∞, 4) можно вычислить значение функции y=−3·x+12 , например, при x=3 . Имеем −3·3+12=3>0 , значит, на этом промежутке знак +. Для определения знака на другом промежутке (4, +∞) можно вычислить значение функции y=−3·x+12 , к примеру, в точке x=5 . Имеем −3·5+12=−3<0 , значит, на этом промежутке знак −. Эти же выводы можно было сделать на основании значения коэффициента при x : так как он равен −3 , то есть, он отрицательный, то на промежутке (−∞, 4) будет знак +, а на промежутке (4, +∞) знак −. Проставляем определенные знаки над соответствующими промежутками:

Так как мы решаем неравенство со знаком >, то изображаем штриховку над промежутком со знаком +, чертеж принимает вид

По полученному изображению делаем вывод, что искомым решением является (−∞, 4) или в другой записи x<4 .

Ответ:

(−∞, 4) или x<4 .

Графическим способом

Полезно иметь представление о геометрической интерпретации решения линейных неравенств с одной переменной. Чтобы его получить, давайте рассмотрим четыре линейных неравенства с одной и той же левой частью: 0,5·x−1<0 , 0,5·x−1≤0 , 0,5·x−1>0 и 0,5·x−1≥0 , их решениями являются соответственно x<2 , x≤2 , x>2 и x≥2 , а также изобразим график линейной функции y=0,5·x−1 .

Несложно заметить, что

  • решение неравенства 0,5·x−1<0 представляет собой промежуток, на котором график функции y=0,5·x−1 располагается ниже оси абсцисс (эта часть графика изображена синим цветом),
  • решение неравенства 0,5·x−1≤0 представляет собой промежуток, на котором график функции y=0,5·x−1 находится ниже оси Ox или совпадает с ней (другими словами, не выше оси абсцисс),
  • аналогично решение неравенства 0,5·x−1>0 есть промежуток, на котором график функции выше оси Ox (эта часть графика изображена красным цветом),
  • и решение неравенства 0,5·x−1≥0 является промежутком, на котором график функции выше или совпадает с осью абсцисс.

Графический способ решения неравенств , в частности линейных, и подразумевает нахождение промежутков, на которых график функции, соответствующей левой части неравенства, располагается выше, ниже, не ниже или не выше графика функции, соответствующей правой части неравенства. В нашем случае линейного неравенства функция, отвечающая левой части, есть y=a·x+b , а правой части – y=0 , совпадающая с осью Ox .

Учитывая приведенную информацию, несложно сформулировать алгоритм решения линейных неравенств графическим способом :

  • Строится график функции y=a·x+b (можно схематически) и
    • при решении неравенства a·x+b<0 определяется промежуток, на котором график ниже оси Ox ,
    • при решении неравенства a·x+b≤0 определяется промежуток, на котором график ниже или совпадает с осью Ox ,
    • при решении неравенства a·x+b>0 определяется промежуток, на котором график выше оси Ox ,
    • при решении неравенства a·x+b≥0 определяется промежуток, на котором график выше или совпадает с осью Ox .

Пример.

Решите неравенство графически.

Решение.

Построим эскиз графика линейной функции . Это прямая, которая убывает, так как коэффициент при x – отрицательный. Еще нам понадобится координата точки его пересечения с осью абсцисс, она является корнем уравнения , который равен . Для наших нужд можно даже не изображать ось Oy . Так наш схематический чертеж будет иметь такой вид

Так как мы решаем неравенство со знаком >, то нас интересует промежуток, на котором график функции выше оси Ox . Для наглядности выделим эту часть графика красным цветом, а чтобы легко определить соответствующий этой части промежуток, подсветим красным цветом часть координатной плоскости, в которой расположена выделенная часть графика, так, как на рисунке ниже:

Интересующий нас промежуток представляет собой часть оси Ox , оказавшуюся подсвеченной красным цветом. Очевидно, это открытый числовой луч . Это и есть искомое решение. Заметим, что если бы мы решали неравенство не со знаком >, а со знаком нестрогого неравенства ≥, то в ответ пришлось бы добавить , так как в этой точке график функции совпадает с осью Ox .y=0·x+7 , что то же самое y=7 , задает на координатной плоскости прямую, параллельную оси Ox и лежащую выше нее. Следовательно, неравенство 0·x+7<=0 не имеет решений, так как нет промежутков, на которых график функции y=0·x+7 ниже оси абсцисс.

А графиком функции y=0·x+0 , что то же самое y=0 , является прямая, совпадающая с осью Ox . Следовательно, решением неравенства 0·x+0≥0 является множество всех действительных чисел.

Ответ:

второе неравенство, его решением является любое действительное число.

Неравенства, сводящиеся к линейным

Огромное количество неравенств с помощью равносильных преобразований можно заменить равносильным линейным неравенством, другими словами, свести к линейному неравенству. Такие неравенства называют неравенствами, сводящимися к линейным .

В школе почти одновременно с решением линейных неравенств рассматривают и несложные неравенства, сводящиеся к линейным. Они представляют собой частные случаи целых неравенств , а именно в их левой и правой части находятся целые выражения, которые представляют собой или линейные двучлены , или преобразуются к ним путем и . Для наглядности приведем несколько примеров таких неравенств: 5−2·x>0 , 7·(x−1)+3≤4·x−2+x , .

Неравенства, которые подобны по виду указанным выше, всегда можно свести к линейным. Это можно сделать путем раскрытия скобок, приведения подобных слагаемых, перестановки слагаемых местами и переноса слагаемых из одной части неравенства в другую с противоположным знаком.

Например, чтобы свести неравенство 5−2·x>0 к линейному, достаточно переставить слагаемые в его левой части местами, имеем −2·x+5>0 . Для сведения второго неравенства 7·(x−1)+3≤4·x−2+x к линейному нужно немного больше действий: в левой части раскрываем скобки 7·x−7+3≤4·x−2+x , после этого приводим подобные слагаемые в обеих частях 7·x−4≤5·x−2 , дальше переносим слагаемые из правой части в левую 7·x−4−5·x+2≤0 , наконец, приводим подобные слагаемые в левой части 2·x−2≤0 . Подобным образом и третье неравенство можно свести к линейному неравенству.

Из-за того, что подобные неравенства всегда можно свести к линейным, некоторые авторы даже называют их тоже линейными. Но все же будем их считать сводящимися к линейным.

Теперь становится понятно, почему подобные неравенства рассматривают вместе с линейными неравенствами. Да и принцип их решения абсолютно такой же: выполняя равносильные преобразования, их можно привести к элементарным неравенствам, представляющим собой искомые решения.

Чтобы решить неравенство подобного вида можно его предварительно свести к линейному, после чего решить это линейное неравенство. Но рациональнее и удобнее поступать так:

  • после раскрытия скобок собрать все слагаемые с переменной в левой части неравенства, а все числа – в правой,
  • после чего привести подобные слагаемые,
  • а дальше – выполнить деление обеих частей полученного неравенства на коэффициент при x (если он, конечно, отличен от нуля). Это даст ответ.

Пример.

Решите неравенство 5·(x+3)+x≤6·(x−3)+1 .

Решение.

Сначала раскроем скобки, в результате придем к неравенству 5·x+15+x≤6·x−18+1 . Теперь приведем подобные слагаемые: 6·x+15≤6·x−17 . Дальше переносим слагаемые с левую часть, получаем 6·x+15−6·x+17≤0 , и снова приводим подобные слагаемые (что приводит нас к линейному неравенству 0·x+32≤0 ) и имеем 32≤0 . Так мы пришли к неверному числовому неравенству, откуда делаем вывод, что исходное неравенство не имеет решений.

Ответ:

нет решений.

В заключение отметим, что существует и масса других неравенств, сводящихся к линейным неравенствам, или к неравенствам рассмотренного выше вида. Например, решение показательного неравенства 5 2·x−1 ≥1 сводится к решению линейного неравенства 2·x−1≥0 . Но об этом будем говорить, разбирая решения неравенств соответствующего вида.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

УРОК: «РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ»

Предмет: Алгебра
Тема: Решение неравенств с одной переменной

Цели урока:

Образовательные:

организовать деятельность учащихся по восприятию, осмыслению и первичному закреплению таких понятий как решение неравенств с одной переменной, равносильное неравенство, решить неравенство; проверить умение учащихся применять полученные знания и навыки на прошлых уроках для решения поставленных задач на данном уроке.

Воспитательные:

развивать интерес к математике путем использования в практике ИКТ; воспитывать познавательные потребности учащихся; формировать такие личные качества как ответственность, настойчивость в достижении цели, самостоятельность.

Ход урока

I. Организационный момент

II. Проверка домашнего задания (Актуализация опорных знаний)

1. Используя координатную прямую, найдите пересечение промежутков: а) (1;8) и (5;10); б) (-4;4) и [-6;6]; в) (5;+∞) и [-∞;4]

Ответ: а) (1;5); б) (-4;4); в) пересечений нет

2. Запишите промежутки, изображенные на рисунке:

2)

3)

Ответ: 1) (2; 6); б) (-1;7]; в) .

Пример3 , решим неравенство 3(х-1)<-4+3х.

Раскроем скобки в левой части неравенства: 3х-3<-4+3х.

Перенесем с противоположными знаками слагаемое 3х из правой части в левую, а слагаемое -3 из левой части в правую и приведем подобные члены: 3х-3х<-4+3,

Как видим, данное числовое неравенство не является верным ни при каких значениях х. Значит, наше неравенство с одной переменной не имеет решения.

Тренажер

Решите неравенство и отметьте его решение:

f) 7x-2,4<0,4;

h) 6b-1<12-7b;

i) 16x-44>x+1;

k) 5(x-1)+7≤1-3(x+2);

l) 6y-(y+8)-3(2-y)>2.

Ответ: a) (-8; +∞); b) [-1,5; +∞); c) (5; +∞); d) (-∞; 3); e) (-∞; -0,25); f) (-∞; 0,4); g) [-5; +∞); h) (-∞; 1); i) (3; +∞); j) ; l) (2; +∞).

IV. Выводы

Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство. Решить неравенство – значит найти все его решения или доказать, что решений нет. Неравенства, имеющие одни и те же решения, называются равносильными. Неравенства, не имеющие решений, также считаются равносильными. Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный. В остальных случаях он остается прежний.

V. Итоговое тестирование

1) Решением неравенства с одной переменной называется…

а) значение переменной, которое обращает его в верное неравенство;

б) значение переменной, которое обращает его в верное числовое

неравенство;

в) переменная, которая обращает его в верное числовое неравенство.

2) Какие из чисел являются решением неравенства 8+5у>21+6у:

а) 2 и 5 б) -1 и 8 в) -12 и 1 г) -15 и -30 ?

3) Укажите множество решений неравенства 4(х+1)>20:

а) (- ∞; 4); б) (4; +∞); в)

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение

.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то

.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

во второе уравнение системы, получим ,

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,

при а¹-2 система имеет решение

.

Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

2х-2у-2z=-12

3х-3у-3z=-18

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

х+у+z=6

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


Если в школьном курсе математики и алгебры отдельно выделить тему «неравенства», то основную часть времени постигаются азы работы с неравенствами , которые содержат в своей записи переменную. В данной статье мы разберем, что такое неравенства с переменными, скажем, что называют их решением, а также разберемся, как записываются решения неравенств. Для пояснения будем приводить примеры и необходимые комментарии.

Навигация по странице.

Что такое неравенства с переменными?

Например, если неравенство не имеет решений, то так и пишут «нет решений» или используют знак пустого множества ∅.

Когда общим решением неравенства является одно число, то его и так и записывают, к примеру, 0 , −7,2 или 7/9 , а иногда еще заключают в фигурные скобки.

Если решение неравенства представляется несколькими числами и их количество невелико, то их просто перечисляют через запятую (или через точку с запятой), или записывают через запятую в фигурных скобках. Например, если общее решение неравенства с одной переменной составляют три числа −5 , 1,5 и 47 , то записывают −5 , 1,5 , 47 или {−5, 1,5, 47} .

А для записи решений неравенств, имеющих бесконечное множество решений используют как принятые обозначения множеств натуральных, целых, рациональных, действительных чисел вида N , Z , Q и R , обозначения числовых промежутков и множеств отдельных чисел, простейшие неравенства, так и описание множества через характеристическое свойство, и все не названные способы. Но на практике наиболее часто пользуются простейшими неравенствами и числовыми промежутками. Например, если решением неравенства является число 1 , полуинтервал (3, 7] и луч , ∪ ; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.