Уравнение выражает первое начало термодинамики. Первый закон термодинамики и его применение в физике

Такие физические процессы, как теплота и работа, можно объяснить простой передачи энергии от одного тела к другому. В случае с работой речь идет о механической энергии, теплота же предполагает энергию термическую. Передача энергии ведется по законам термодинамики. Главные положения этого раздела физики известны как «начала».

Первое начало термодинамики регулирует и ограничивает процесс передачи энергии в той или иной системе.

Виды энергетических систем

В физическом мире существует два типа энергетических систем. Замкнутая, или закрытая система имеет постоянную массу. В открытой, или незамкнутой системе масса может уменьшаться и увеличиваться в зависимости от процессов, протекающих в этой системе. Большинство наблюдаемых систем являются незамкнутыми.

Исследования в таких системах затруднено множеством случайных факторов, влияющих на достоверность результатов. Поэтому физики изучают явления в замкнутых системах, экстраполируя результаты на открытые, с учетом необходимых поправок.

Энергия изолированной системы

Любая замкнутая система, в которой отсутствует обмен энергией с окружающей средой, является изолированной. Равновесное состояние такой системы определяется показаниями таких величин:

  • P- давление в системе;
  • V - объем изолированной системы
  • T- температура;
  • n - число молей газа в системе;

как видно, количество тепла и выполненная работа не входят в этот перечень. Закрытая изолированная система не совершает теплообмен и не производит работу. Ее полная энергия остается неизменной.

Изменение энергии системы

При совершении работы или возникновении процесса теплообмена состояние системы изменяется, и изолированной она уже считаться не будет.

Формулировка первого начала термодинамики

Прежде всего первое начало термодинамики было выведено для изолированных систем. Позднее было доказано, что закон универсален, и его можно применять к незамкнутым системам, если правильно учитывать изменение внутренней энергии, происходящее из-за колебания количества вещества в системе. Если рассматриваемая система переходит из состояния А в состояние Б, то работа, совершенная системой W , и количество теплоты Q будут различаться. Различные процессы дают неодинаковые показания этих переменных даже в случае, если в конечном итоге система придет в первоначальное состояние. Но при этом разница W - Q будет всегда одна и та же. Иными словами, если после какого-либо воздействия система пришла в первоначальное состояние, то независимо от типа процессов, учувствовавших в преобразовании такой системы, соблюдается правило W - Q = const .

В некоторых случаях удобнее использовать дифференциальную формулу выражения первого закона. Он выглядит так:dU=dW-dQ

здесь dU - бесконечно малое изменение внутренней энергии

dW - величина, характеризующая бесконечно малую работу системы

dQ - бесконечно малое количество теплоты, переданное данной системе.

Энтальпия

Для более широкого применения первого закона термодинамики вводится понятие энтальпии.

Так называется общее количество полной энергии вещества и произведения объема и давления. Физическое выражение энтальпии можно представить такой формулой:

Абсолютное значение энтальпии представляет собой сумму энтальпий всех частей, из которых состоит система.


В количественном выражении эта величина не может быть определена. Физики оперируют лишь разностью энтальпий конечного и начального состояния системы. Ведь при любых расчетах изменения состояния системы выбирают определенный уровень, при котором потенциальная энергия равна нулю. Точно также поступают и при расчете энтальпии. Если применить понятие энтальпии, то первое начало термодинамики для изопроцессов будет выглядеть таким образом:dU=dW-dH

Энтальпия любой системы зависит от внутреннего строения веществ, которые составляют эту систему. Эти показатели, в свою очередь, зависят от строения вещества, его температуры, количества и давления. Для сложных веществ можно вычислить стандартную энтальпию образования, которая равна тому количеству теплоты, которое понадобится для образования моля вещества из простых составляющих. Как правило, величина стандартной энтальпии отрицательная, так как при синтезе сложных веществ в большинстве случаев выделяется теплота.

Первый закон термодинамики в адиабатических процессах

Применение первого начала термодинамики для изопроцессов можно рассмотреть графически. К примеру, рассмотрим адиабатический процесс, в котором количество теплоты в течение всего времени остается неизменным, то есть Q = const . Такой изопроцесс протекает в теплоизолированных системах, или за столь короткое время, что система не успевает совершить теплообмен с внешней средой. Медленное расширение газа на диаграмме "объем-давление" описывается такой кривой:

По графику можно обосновать применение первого начала термодинамики к изопроцессам. Поскольку изменения количества теплоты в адиабатическом процессе не происходит, изменение внутренней энергии равно количеству произведенной работы. dU = - dW

Отсюда следует, что внутренняя энергия системы убывает, и температура ее падает.

Примеры адиабатических процессов

Верно и обратное утверждение: понижение давления при отсутствии теплообмена резко повышает температуру системы. Приблизительно так расширяется газ в двигателях внутреннего сгорания. В двигателях Дизеля горючий газ сжимается в 15 раз. Кратковременное повышение температуры позволяет горючей смеси самостоятельно воспламениться.

Можно рассмотреть еще один пример адиабатического процесса - свободное расширение газов. Для этого рассмотрим такую установку, состоящую из двух емкостей:

В первой емкости имеется газ, во второй он отсутствует. Поворачивая кран, мы добьемся того, что газ заполнит весь отведенный ему объем. При достаточной изолированности системы температура газа останется неизменной. Поскольку газ не выполнял никакой работы, переменная dW = const . Выяснилось, что при прочих равных условиях температура газа при расширении понижается. Расширение газа происходит неравномерно, поэтому на диаграмме "давление-объем" этот процесс представлен быть не может.

Первое начало термодинамики является универсальным законом, применяющимся во всех обозримых процессах Вселенной. Глубокое понимание причин тех или иных превращений энергии позволяет понимать существующие физические явления и открывать новые законы.

Простая формулировка первого закона термодинамики может звучать примерно так: изменение внутренней энергии той или иной системы возможно исключительно при внешнем воздействии. То есть другими словами, чтобы в системе произошли какие-то изменения необходимо приложить определенные усилия извне. В народной мудрости своеобразным выражением первого закона термодинамики могут служить пословицы – «под лежачий камень вода не течет», «без труда не вытащишь рыбку из пруда» и прочая. То есть на примере пословицы про рыбку и труд, можно представить, что рыбка и есть наша условно закрытая система, в ней не произойдет никаких изменений (рыбка сама себя не вытащит из пруда) без нашего внешнего воздействия и участия (труда).

Интересный факт: именно первый закон термодинамики устанавливает, почему потерпели неудачу все многочисленные попытки ученых, исследователей, изобретателей изобрести «вечный двигатель», ведь его существование является абсолютно невозможным согласно этому самому закону, почему, смотрите абзац выше.

В начале нашей статьи было максимального простое определение первого закона термодинамики, в действительности в академической науке существует целых четыре формулировки сути данного закона:

  • Энергия ни откуда не появляется и ни куда не пропадает, она лишь переходит из одного вида в другой (закон сохранения энергии).
  • Количество теплоты, полученной системой, идет на совершение ее работы против внешних сил и изменение внутренней энергии.
  • Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе, и не зависит от способа, которым осуществляется этот переход.
  • Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Формула первого закона термодинамики

Формулу первого закона термодинамики можно записать таким образом:

Количество теплоты Q, передаваемое системе равно суме изменения ее внутренней энергии ΔU и работы A.

Процессы первого закона термодинамики

Также первый закон термодинамики имеет свои нюансы в зависимости от проходящих термодинамических процессов, которые могут быть изохронными и изобарными, и ниже мы детально опишем о каждом из них.

Первый закон термодинамики для изохорного процесса

Изохорным процессом в термодинамике называют процесс, происходящий при постоянном объеме. То есть, если будь-то в газе или жидкости нагреть вещество в сосуде, произойдет изохорный процесс, так как объем вещества останется неизменным. Это условие имеет влияние и на первый закон термодинамики, проходящий при изохорном процессе.

В изохорном процессе объем V является константой, следовательно, газ работы не совершает A = 0

Из этого выходит следующая формула:

Q = ΔU = U (T2) – U (T1).

Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

Первый закон термодинамики для изобарного процесса

Аналогично изобарным процессом называется термодинамический процесс, происходящий в системе при постоянном давлении и массе газа. Следовательно, в изобарном процессе (p = const) работа, совершаемая газом, выражается следующим уравнением первого закона термодинамики:

A = p (V2 – V1) = p ΔV.

Изобарный первый закон термодинамики дает:

Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

Применение первого закона термодинамики

Первый закон термодинамике имеет практическое применение к различным процессам в физике, например, позволяет вычислить идеальные параметры газа при разнообразных тепловых и механических процессах. Помимо сугубо практичного применение можно этому закону найти применение и философское ведь что ни говорите, но первый закон термодинамики является выражением одного из самых общих законов природы – закона сохранения энергии. Еще Еклезиаст писал, что ничто ни откуда не появляется и никуда не уходит, все пребывает вечно, постоянно трансформируясь, в этом и кроется вся суть первого закона термодинамики.

Первый закон термодинамики, видео

И в завершение нашей статьи вашему вниманию образовательное видео о первом законе термодинамике и внутренней энергии.

(как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты , переданного системе:

ΔU = A + Q ,

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

Из (ΔU = A + Q ) следует закон сохранения внутренней энергии . Если систему изолировать от вне-шних воздействий, то A = 0 и Q = 0 , а следовательно, и ΔU = 0 .

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q ) записывается в виде:

где A" — работа, совершаемая системой (A" = -A ).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Действительно, если к телу не поступает теплота (Q - 0 ), то работа A" , согласно уравнению , совершается только за счет убыли внутренней энергии А" = -ΔU . После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа , так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде-ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам.

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам .

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохо рой .

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе-ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется (ΔV= 0 ), и, согласно первому началу термоди-намики ,

ΔU = Q ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV =0 ) газом не совершается.

Если газ нагревается, то Q > 0 и ΔU > 0 , его внутренняя энергия увеличивается. При охлаждении газа Q < 0 и ΔU < 0 , внутренняя энергия уменьшается.

Изотермический процесс.

Изотермический процесс графически изображается изотермой .

Изотермический процесс — это термодинамический процесс, про-исходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется, см. формулу , (Т = const ), то все переданное газу количество теплоты идет на совершение работы:

При получении газом теплоты (Q > 0 ) он совершает положительную работу (A" > 0 ). Если газ отдает тепло окружающей среде Q < 0 и A" < 0 . В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермичес-ком процессе определяется площадью под кривой p(V) .

Изобарный процесс.

Изобарный процесс на термодинамической диаграмме изображается изобарой .

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением р .

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе, согласно формуле , передаваемое газу количество теплоты идет на изменение его внутренней энергии ΔU и на совершение им работы A" при постоянном давлении:

Q = ΔU + A".

Работа идеального газа определяется по графику зависимости p(V) для изобарного процесса (A" = pΔV ).

Для идеального газа при изобарном процессе объем пропорционален температуре , в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс.

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой (Q = 0) .

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия U может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики (ΔU = А + Q ), в адиабатной системе

ΔU = A ,

где A — работа внешних сил.

При адиабатном расширении газа А < 0 . Следовательно,

,

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что дав-ление газа уменьшается более резко, чем при изотермическом процессе. На рисунке ниже адиабата 1-2, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема V 1 , до V 2 .

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Уравнение теплового баланса.

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутрен-ней энергии какого-либо тела системы ΔU 1 не может приводить к изменению внутренней энергии всей системы. Следовательно,

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: ΔU i = Q i . Учитывая , получим:

Это уравнение называется уравнением теплового баланса . Здесь Q i - количество теплоты , по-лученное или отданное i -ым телом. Любое из количеств теплоты Q i может означать теплоту, выделяемую или поглощаемому при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энер-гии при теплообмене .

В качестве основной задачи термодинамики ставят изучение свойств тел, характеризуя их состояния при помощи макроскопических параметров, при этом за основу берут общие законы, которые называют началами термодинамики. В термодинамике не пытаются выяснить микроскопические механизмы исследуемых явлений. В основе термодинамики лежат три основных закона (три начала). Первое начала термодинамики - это применение закона сохранения энергии для процессов, рассматриваемых в термодинамике. Закон сохранения энергии для теплоты (как одной из форм энергии) (), внутренней энергии () и работы (A), совершаемой термодинамической системой можно интегральном виде записать как:

что означает: Количество теплоты, подводимое к термодинамической системе, идет на совершение данной системой работы и изменение ее внутренней энергии. Условлено считать, что если теплота к системе подводится, то она больше нуля ( title="Rendered by QuickLaTeX.com" height="17" width="65" style="vertical-align: -4px;">) и если работу выполняет сама термодинамическая система, то она положительна ( title="Rendered by QuickLaTeX.com" height="12" width="48" style="vertical-align: 0px;">).

Первое начало термодинамики в дифференциальном виде

Часто первое начало термодинамики используют в дифференциальном виде:

где - бесконечно малое количество теплоты, подводимое к системе; - элементарная работа системы; - малое изменение внутренней энергии системы. При рассмотрении в качестве термодинамической системы идеального газа, работу, выполняемую им, связывают с изменением объема (), поэтому выражение первого начала термодинамики представляют как:

Как и в механике, закон сохранения энергии не указывает на направление процесса, происходящего в термодинамической системе. Первое начало показывает только как, изменяются параметры, если процесс в системе происходит. В механике движение описывают при помощи уравнений движения. В термодинамике направление, в котором развивается процесс, определяют при помощи второго начала.

И так, первое начало термодинамики - это выражение закона сохранения энергии для процессов, в которых участвует теплота. Работа — это передача энергии связанная с изменением макропараметров системы. Передача теплоты реализуется при помощи перехода энергии движения молекул. Изменение при этом макропараметров - это следствие изменения энергетических условий на молекулярном уровне.

Запишем первое начало термодинамики в дифференциальном виде для изопроцессов, в качестве термодинамической системы рассматривая идеальный газ. Для изобарного процесса первое начало термодинамики не изменяет своего вида (3). Для изотермического процесса первое начало примет вид:

В изотермическом процессе все тело. которое получает система идет на совершение данной системой работы.

Для изохорного процесса мы получим:

Все тепло, которое получает газ идет на изменение его внутренней энергии.

Адиабатный процесс происходит без обмена в окружающей средой теплом, следовательно:

В адиабатном процессе система совершает работу за счет уменьшения внутренней энергии.

Примеры решения задач

ПРИМЕР 1

Задание Теплота подводится к одноатомному идеальному газу в изобарном процессе. Определите, какая часть количества теплоты расходуется при этом на увеличение внутренней энергии газа, а какая часть идет на совершение системой работы?
Решение В соответствии и первым началом термодинамики для изобарного процесса запишем:

где работа, которую совершает идеальный газ в изобарном процессе, равна:

А изменение внутренней энергии идеального газа в любом процессе, где изменяется температура равно:

где i - число степеней свободы молекулы газа (так как у нас газ одноатомный, то ); - число молей вещества; — изменение температуры, которое происходит в заданном процессе. Так как мы имеем дело с идеальным газом, то его поведение можно описывать при помощи уравнения Менделеева - Клапейрона:

Так как процесс происходит изобарный, то для двух состояний этого газа в процессе имеем:

Из левой части выражения (1.6) вычтем левую часть (1.5), аналогично поступим с правыми частями, имеем:

Первое начало термодинамики можно переписать как:

Ответ На работу идет 0,4 части количества теплоты, на увеличение внутренней энергии идет 0,6 части подведенного тепла.

ПРИМЕР 2

Задание С идеальным газом проводят циклический процесс, который изображен на рис.1. Какое количество теплоты больше в данном процессе, подведенное () или отведенное ()?

Молекулярная физика и термодинамика

В разделе молекулярная физика и термодинамика рассматривают явления, сущность которых определяется хаотическим движением огромного числа молекул, из которых состоят тела разной природы. Изучая эти явления, применяют два основных метода. Один из них - термодинамический, он исходит из основных опытных законов, получивших название начал (законов, принципов) термодинамики. При таком подходе не учитывается внутренее строение вещества.

Другой метод - молекулярно-кинетический {cmamucтический) - основан на представлении о молекулярном строении вещества. Учитывая, что число молекул в любом теле очень велико, можно, используя теорию вероятностей, установить определенные закономерности.

Медикам данные вопросы важны для понимания энергетики организма, теплообмена биологических систем с окружающей средой, выяснения физических процессов, происходящих в биологических мембранах, и др.

Состояние термодинамической системы характеризуется фи­зическими величинами, называемыми параметрами системы (объем, давление, температура, плотность и т. д.).

Если параметры системы при взаимодействии ее с окружающи­ми телами не изменяются с течением времени, то состояние систе­мы называют стационарным. Примерами таких состояний в те­чение небольшого отрезка времени являются, состояние внутрен­ней части работающего домашнего холодильника, состояние тела человека, состояние воздуха в отапливаемом помещении и т. д.

В разных частях системы, находящейся в стационарном со­стоянии, значения параметров обычно различаются: температура в разных участках тела человека, концентрация диффундирую­щих молекул в разных частях биологической мембраны и т. п. В системе, таким образом, поддерживаются постоянные градиен­ты некоторых параметров, с постоянной скоростью могут проте­кать химические реакции.

Ясно, что в стационарном состоя­нии могут находиться такие системы, которые либо обменивают­ся и энергией, и веществом с окружающими системами (откры­тые системы), либо обмениваются только энергией (закрытые системы).

Термодинамическая система, которая не обменивается сокружающими телами ни энергией, ни веществом, называет­ся изолированной. Изолированная система со временем прихо­дит в состояние термодинамического равновесия. В этом состоя­нии, как и в стационарном, параметры системы сохраняются не­изменными во времени. Существенно, что в равновесном состоянии параметры, не зависящие от массы или числа частиц (давление, температура и др.), одинаковы в разных частях этой системы.

Естественно, что любая реальная термодинамическая система не будет изолированной хотя бы потому, что ее невозможно окру­жить оболочкой, не проводящей теплоту. Изолированную систе­му можно рассматривать как удобную термодинамическую мо­дель.



Мерой передачи энергии в процессе теплообмена является ко­личество теплоты, а мерой передачи энергии в процессе соверше­ния работы является работа.

Закон сохранения энергии для тепловых процессов формули­руется какпервое начало термодинамики. Количество тепло­ты, переданное системе, идет на изменение внутренней энер­гии системы и совершение системой работы:

Под внутренней энергией системы понимают сумму кинети­ческой и потенциальной энергий частиц, из которых состоит сис­тема.

Внутренняя энергия U является функцией состояния системы и для данного состояния имеет вполне определенное значение; есть разность двух значений внутренней энергии, соответствую­щих конечному и начальному состояниям системы:

Количество теплоты Q, как и работа, является функцией про­цесса, а не состояния. И количество теплоты, и работу нельзя вы­разить в виде разности двух значений какого-либо параметра в конечном и начальном состояниях. В связи с этим Q и A записаны без знака приращения.

Первое начало термодинамики

Здесь Q - количество теплоты, переданное системе; - изменение внутренней энергии системы; А - работа, совер­шаемая системой.

Работа, совершаемая газом при изменении объема от V 1 до V 2 ,

Где р - давление.

Для адиабатного процесса (Q = 0)

Здесь п - число молей идеального газа, С V - молярная тепло­емкость газа при постоянном объеме, Т 1 и Т 2 - начальная и конечная температуры.

Обмен веществ в живых организмах также подчиняется первому закону термодинамики. Определение энергетического обмена между живыми организмами и окружающей средой осуществляется с помощью калориметрии, которая подразде­ляется на прямую и непрямую. Более распространенной явля­ется непрямая калориметрия. В этом случае о суммарном тепловом эффекте реакций, протекших в организме, судят по ка­лорическому коэффициенту кислорода. Он показывает, какое количество теплоты выделяется при полном окислении данно­го вещества до углекислого газа и воды на каждый литр погло­щенного организмом кислорода. Установлено, что этот коэф­фициент для углеводов равен 20,9, для жиров - 19,7 и для белков - 20,3 кДж. Однако в живом организме идет также синтез веществ, которые затем могут окисляться. Чтобы учесть общее количество теплоты, освобождаемое живым ор­ганизмом за определенный промежуток времени, надо учи­тывать дыхательный коэффициент, равный отношению объ­емов углекислого газа к потребленному за то же время кис­лороду. Дыхательный коэффициент для углеводов равен 1, для белков - 0,8 и для жиров он составляет 0,7. Существует связь между дыхательным и калорическим коэффициентами (см. приложение 17). Это позволяет устанавливать расход энергии организма, зная количество поглощенного кислорода и выделенного углекислого газа.

Второе начало термодинамики. Энтропия

Первое начало термодинамики, являющееся, по существу, вы­ражением закона сохранения энергии, не указывает направления возможного протекания процессов. Так, например, по первому началу термодинамики, при теплообмене одинаково возможным был бы как самопроизвольный переход теплоты от тела более на­гретого к телу менее нагретому, так и, наоборот, от тела менее на­гретого к телу более нагретому. Из повседневного опыта, однако, хорошо известно, что второй процесс в природе нереален; так, на­пример, не может самопроизвольно нагреться вода в чайнике вследствие охлаждения воздуха в комнате.

Второе начало термодинамики, так же как и первое, является обобщением данных опыта.

Существует несколько формулировок второго закона термоди­намики: теплота самопроизвольно не может переходить от тела с меньшей температурой к телу с большей температу­рой (формулировка Клаузиуса), или невозможен вечный двига­тель второго рода (формулировка Томсона), т. е. невозможен такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вслед­ствие охлаждения тела.

Все реальные процессы необратимы. Для возвращения системы в начальное состояние во всех случаях необходимо совершение работы внешними телами.

Физическую характеристику, не зависящую от процесса или перемещения, обычно выражают как разность двух значений не­которой функции, соответствующих конечному и начальному со­стояниям процесса или положениям системы


Аналогично, сумму приведенных количеств теплоты для обра­тимого процесса можно представить как разность двух значений некоторой функции состояния системы, которую называют энт­ропией:

где S 2 и Sj - энтропия соответственно в конечном 2 и начальном 1 состояниях. Итак, энтропия есть функция состояния систе­мы, разность значений которой для двух состояний равна сумме приведенных количеств теплоты при обратимом переходе систе­мы из одного состояния в другое.

Количество теплоты для обратимого процесса

Изменение энтропии при нагревании или охлаждении ве­щества от температуры T1 до температуры T 2

где С р - молярная теплоемкость при постоянном давлении.

Первый закон термодинамики как закон сохранения энергии настолько очевиден, что его применения к биологическим систе­мам здесь не рассматриваются. Более существенно рассмотреть некоторые вопросы, связанные со вторым началом термодинамики и энтропией при­менительно к биологическим системам.

Биологические объекты являются открытыми термодина­мическими системами. Они обмениваются с окружающей сре­дой энергией и веществом.

Вообще говоря, живой организм - развивающаяся система, которая не находится в стационарном состоянии. Однако обычно в каком-либо не слишком большом интервале времени принима­ют состояние биологической системы за стационарное.

Рассмотрим в этом предположении некоторые вопросы. Для организма - стационарной системы - можно записать dS = 0, S = const, dS i > 0, dS e < 0. Это означает, что большая энтропия должна быть в продуктах выделения, а не в продуктах питания. Энтропия системы организм - окружающая среда возрастает как у изолированной системы, однако энтропия организма при этом сохраняется постоянной. Энтропия есть мера неупорядоченности системы, поэтому можно заключить, что упорядоченность организма сохраняется ценой уменьшения упорядоченности окружающей среды.

Неупорядоченность состояния системы количественно харак­теризуется термодинамической вероятностью W Tep .

Термодинамической вероятностью называют число спосо­бов размещения частиц или число микросостояний, реали­зующих данное макросостояние.

Состояние системы, определяемое числом частиц в первой и второй ячейках, назовем макросостоянием; состояние системы, определяемое тем, какие конкретно частицы находятся в каждой из ячеек, - микросостоянием

Заметим, что если газу предоставить возможность расширять­ся, его молекулы будут стремиться равномерно занять весь воз­можный объем, при этом процессе энтропия увеличивается. Об­ратный процесс - стремление молекул занять лишь часть объема, например половину комнаты, - не наблюдается, этому соответст­вовало бы состояние со значительно меньшей термодинамической вероятностью и меньшей энтропией.

Отсюда можно сделать вывод о связи энтропии с термодинами­ческой вероятностью. Больцман установил, что энтропия линейно связана с логарифмом термодинамической вероятности:

где k - постоянная Больцмана.

Второе начало термодинамики - статистический закон,

в отличие, например, от первого начала термодинамики или вто­рого закона Ньютона.

Утверждение второго начала о невозможности некоторых процес­сов, по существу, является утверждением о чрезвычайно малой веро­ятности их, практически - невероятности, т. е. невозможности.

В космических масштабах наблюдаются существенные откло­нения от второго начала термодинамики, а ко всей Вселенной, так же, как и к системам, состоящим из малого числа молекул, оно неприменимо.

В заключение еще раз отметим, что если первый закон термо­динамики содержит энергетический баланс процесса, то вто­рой закон показывает его возможное направление. Аналогич­но тому, как второй закон термодинамики существенно дополня­ет первый закон, так и энтропия дополняет понятие энергии.

При некоторых патологических состояниях энтропия биологи­ческой системы может возрастать (dS > 0), это связано с отсутст­вием стационарности, увеличением неупорядоченности; так, на­пример, при раковых заболеваниях происходит хаотическое, не­упорядоченное разрастание клеток.

Скорость изменения энтропии для стационарного состоя­ния в живом организме

Здесь - скорость изменения энтропии, связанной с необратимыми процессами в биологической системе; - ско­рость изменения энтропии вследствие взаимодействия систе­мы с окружающей средой.

Отсюда видно, что при обычном состоянии организма ско­рость изменения энтропии за счет внутренних процессов равна скорости изменения отрицательной энтропии за счет обмена ве­ществом и энергией с окружающей средой.

Поскольку, согласно принципу Пригожина, производная dS i /dt > 0, причем минимальна.

Отсюда можно сделать вывод, что скорость изменения энт­ропии окружающей среды при сохранении стационарного состоя­ния организма также минимальна.

Основа функционирования живых систем (клетки, органы, ор­ганизм) - это поддержание стационарного состояния при усло­вии протекания диффузионных процессов, биохимических реак­ций, осмотических явлений и т. п.

При изменении внешних условий процессы в организме разви­ваются так, что его состояние не будет прежним стационарным состоянием.

Можно указать некоторый термодинамический критерий при­способления организмов и биологических структур к изменениям внешних условий (адаптации). Если внешние условия изменяются (возрастает или уменьшается температура, изменяется влажность, состав окружающего воздуха и т. д.), но при этом организм (клет­ки) способен поддерживать стационарное состояние, то организм адаптируется (приспосабливается) к этим изменениям и существу­ет. Если организм при изменении внешних условий не способен со­хранить стационарное состояние, выходит из этого состояния, то это приводит к его гибели. Организм в этом случае не смог адапти­роваться, т. е. не смог сравнительно быстро оказаться в стационар­ном состоянии, соответствующем изменившимся условиям.