Уравнение плоскости через вектор нормали и точку. Уравнение плоскости

Раздел 5. Аналитическая геометрия.

1. Различные уравнения плоскости в пространстве

2. Частные случаи общего уравнения плоскости

3. Взаимное расположение двух плоскостей

4. Расстояние от точки до плоскости

5. Различные уравнения прямой в пространстве

6. Взаимное расположение двух прямых в пространстве

7. Взаимное расположение прямой и плоскости в пространстве

8. Различные уравнения прямой линии на плоскости

9. Геометрическая задача линейного программирования

Различные уравнения плоскости в пространстве.

В предыдущих параграфах говорилось о том, что каждой точке пространства ставится в соответствие упорядоченный набор чисел – её координаты. Естественно предположить, что если точки, обнаруживая некоторую закономерность, «выстраиваются» в виде некоторой линии или поверхности, то и их координаты также будут демонстрировать эту закономерность, удовлетворяя, как правило, некоторому уравнению, которое и называется уравнением этой линии, или поверхности.

Рассмотрим сначала пространство R 3 – реальное трёхмерное пространство (в котором мы живём). Простейшей поверхностью в пространстве является плоскость. Плоскость может быть задана различными способами, этим способам соответствуют различные формы уравнений этой плоскости. В частности, плоскость вполне

Определена, если известна какая-нибудь

M
точка М 0 , лежащая на этой плоскости

(она называется опорной ), и какой-нибудь

вектор, от которого требуется лишь одно

Рис.1 – он должен быть перпендикулярен

плоскости. Такой вектор называется вектором нормали и обычно обозначается (см. рис. 1).

Составить уравнение плоскости – значит охарактеризовать некоторым уравнением все точки плоскости. Для этого берём из этого бесчисленного множества точек любую (так сказать, представителя этого множества) и составляем для неё (т.е. для её координат) на основе замеченной закономерности уравнение. Поскольку точка была любой, то это уравнение будет справедливым и для всех точек плоскости.



Возьмём произвольную точку М (см. рис.1). Теперь образуем вектор . Ясно, что . Воспользуемся условием перпендикулярности двух векторов – их скалярное произведение равно нулю:

(1)

Уравнение (1) называют векторным уравнением плоскости. Это уравнение справедливо в любой системе координат.

Рассмотрим теперь уравнение (1) в декартовой системе координат. Пусть точка М 0 имеет координаты , координаты вектора принято обозначать: . Т.к. точка М – произвольная, её координаты: , следовательно, . Тогда формула (1) примет вид

его будем называть уравнением плоскости с опорной точкой и вектором нормали. Раскроем скобки в уравнении (2):

Обозначив, получим

Уравнение (3) называется общим уравнением плоскости. Отсюда видно, что всякое уравнение первой степени представляет собой плоскость.

Хорошо известно, что три точки однозначно определяют плоскость.

М 1
М
М 2 Пусть точки М 1 , М 2 , М 3 образуют

некоторую плоскость (т.е. не лежат

М 3 на одной прямой). Составим

уравнение этой плоскости

Рис. 2 (см. рис.2). Для этого возьмём

произвольную точку М, лежащую в плоскости и рассмотрим три вектора Поскольку М принадлежит плоскости, векторы эти компланарны, а условием компланарности трёх векторов является равенство нулю их смешанного произведения:

Уравнение (4) – ещё одно векторное уравнение плоскости, справедливое для любой системы координат. В декартовой системе координат пусть , ; тогда

И уравнение (4) выглядит следующим образом:

X – x 1 y – y 1 z – z 1

x 2 – x 1 y 2 – y 1 z 2 – z 1 = 0 (5)

x 3 – x 1 y 3 – y 1 z 3 – z 1

Уравнение (5) называют уравнением плоскости, проходящей через три точки.

Пример 1 . Написать уравнение плоскости, проходящей через точку М 0 (1,2,-3) перпендикулярно вектору

Решение . Воспользовавшись уравнением (2), получим уравнение плоскости

Заметим, что в уравнении могут отсутствовать некоторые переменные.

Пример 2 . Написать уравнение плоскости, проходящей через начало координат перпендикулярно вектору

Решение. Воспользуемся уравнением (2): Заметим, что в уравнении отсутствует свободный член (точнее, свободный член равен нулю).

Пример 3 . Написать уравнение плоскости, проходящей через три точки А(1,1,3), В(0,2,3), С(1,5,7).

Решение. Воспользуемся уравнением (5):

Вычислим определитель разложением по первой строке:

5.2. Частные случаи общего уравнения плоскости.

Возьмём общее уравнение плоскости и рассмотрим несколько его частных случаев.

1) D = 0, т.е. уравнение плоскости имеет вид

(6)

Ясно, что этому уравнению всегда удовлетворяет точка О(0,0,0) – начало координат. Итак, если в уравнении плоскости свободный член равен нулю, то плоскость проходит через начало координат.

2) С = 0, т.е. уравнение плоскости имеет вид

(7)

Это означает, что вектор нормали имеет следующие координаты Нетрудно увидеть, что - вектор нормали перпендикулярен базисному вектору , т.е. оси oz, т.к. их скалярное произведение равно нулю: Теперь понятно,

что плоскость параллельна оси oz (рис.3).


Аналогично, если В = 0, то плоскость параллельна оси ОУ; если А = 0, то плоскость параллельна оси ОХ.

Итак, если в уравнении плоскости равен нулю коэффициент при некотором неизвестном, то плоскость параллельна одноименной оси координат.

3)Пусть равны нулю два параметра – свободный член и один коэффициент, например, С = = 0. Уравнение плоскости имеет вид

(8)

Из предыдущего ясно, что С =0 означает, что плоскость параллельна оси oz, а = 0 означает, что плоскость проходит через начало координат. Объединяя оба замечания, получаем, что плоскость проходит через ось oz.

Общий вывод: если в уравнении равны нулю свободный член и коэффициент при каком-нибудь неизвестном, то плоскость проходит через соответствующую ось координат.

4) Пусть равны нулю два коэффициента при неизвестных, например А = В =0, т.е. уравнение плоскости имеет вид

. (9)

Учитываем предыдущие рассуждения: если А = 0, то плоскость параллельна оси ОХ; если В = 0, то плоскость параллельна оси ОУ, следовательно, если

А = В = 0, то плоскость параллельна осям ОХ и ОУ, т.е. перпендикулярна оси

Z ОZ и отсекает на этой оси отрезок,

D/С равный – D/С (см. рис.4).

Отсюда следует:

х = 0 – уравнение координатной плоскости yoz,

у = 0 – уравнение координатной плоскости хоz,

z = 0 – уравнение координатной плоскости уоz.

5.3. Взаимное расположение двух плоскостей.

Взаимное расположение двух плоскостей определяется с помощью угла между ними (см. рис.5. Вообще говоря, можно увидеть два угла,

которые плоскости образуют

между собой – угол и

Дополнительный угол .

Один из них – острый, другой

тупой (в случае перпендикулярности

Плоскостей оба угла совпадают).

Под углом между двумя плоскостями понимается всегда острый угол . Этот угол вычисляется с помощью угла между векторами нормалей (через скалярное произведение векторов нормалей):

(10)

На рис. 6 угол . Однако, в качестве вектора нормали к плоскости можно взять вектор . Тогда формула (10) даст косинус угла . Косинусы углов и будут отличаться лишь знаком. Поэтому, если мы хотим получить острый угол, то в формуле (10) скалярное произведение надо взять по абсолютной величине (по модулю):

(11)

Формулу (11) легко переписать в координатной форме. Пусть плоскости задаются уравнениями и . Таким образом, имеем два вектора нормалей: и По формуле (11) получим:

(12)

Теперь нетрудно получить два крайних случая: перпендикулярность и параллельность плоскостей. Если плоскости перпендикулярны, то

условие перпендикулярности плоскостей. Если плоскости параллельны, то векторы нормалей коллинеарны: , т.е. их координаты пропорциональны:

(14)

условие параллельности плоскостей.

Пример 4 . Даны три плоскости

Найти углы между этими плоскостями.

Решение . Имеем три вектора нормалей Нетрудно заметить, что , т.е. плоскости параллельны. Найдём угол между плоскостями

5.4. Расстояние от точки до плоскости.

Пусть требуется найти расстояние от

точки до плоскости.

Уравнение плоскости возьмём в виде

Уравнения с опорной точкой

И вектором нормали , т.е.

Как известно, расстояние равно длине перпендикуляра (рис. 5). Для наглядности начало вектора поместим в точку . Построим прямоугольник и увидим, что - проекции вектора на вектор нормали (см. рис. 5).

Вспоминаем определение скалярного произведения векторов:

(15)

Вновь замечаем, что на рис. 5 векторы образуют острый угол и потому является положительным числом. Если в качестве вектора нормали взять противоположный вектор (см. рис.5), то формула (15) даст отрицательное число, но расстояние есть число положительное, поэтому для расстояния d от точки до плоскости надо применять формулу

Распишем формулу (16) в координатной форме:

Скобку мы ранее обозначали буквой D. Поэтому получаем формулу

, - (17)

для нахождения расстояния от точки до плоскости заданной общим уравнением, надо в общее уравнение плоскости подставить координаты точки , поделить на длину вектора нормали и взять по модулю.

Пример 5 . Найти расстояние от точки до плоскости .

Решение . Воспользуемся формулой (17):

5.5. Различные уравнения прямой в пространстве.

Прямую линию в пространстве можно

Задать с помощью опорной точки , (т.е.

М точка лежит на прямой) и вектора , от

рис. 6 которого требуется одно – он должен

быть параллелен прямой. Такой вектор называется направляющим вектором прямой (см. рис. 6).

Для составления уравнения возьмём произвольную точку М, принадлежащую прямой, - получим вектор . Векторы и . – коллинеарны (параллельны), следовательно имеет место соотношение

где - некоторое число. Уравнение (18) называется векторным уравнением прямой. Оно будет справедливо в любом пространстве и не зависит от выбора системы координат.

Обозначим соответствующие координаты:

Тогда уравнение (18) имеет вид: или

Это обычно записывают в следующих формах:

(19)

Уравнения (19) называются параметрическими уравнениями прямой в пространстве ( - параметр).

Если из этих уравнений исключить параметр , то получим:

(20)

это так называемые канонические уравнения прямой в пространстве. От канонических легко перейти к параметрическим уравнениям прямой – достаточно все уравнения (20) приравнять параметру .

Важный для практики случай, когда прямая задаётся двумя точками , легко сводится к формуле (20), - стоит лишь заметить, что в качестве направляющего вектора можно взять вектор , а опорной точкой можно считать любую из них. Пусть тогда и опорной точкой возьмём , тогда из формулы (20) имеем:

(21)

Это уравнение называется уравнением прямой, проходящей через две точки.

5.6. Взаимное расположение двух прямых в пространстве.

Две прямые в пространстве могут

пересекаться, быть параллельными и

Скрещивающимися.

Пусть даны канонические уравнения двух прямых т.е. с опорными точками и направляющими векторами = .

Если т.е. , то прямые параллельны и даже могут совпадать. Подставим координаты опорной точки в уравнение прямой (или наоборот). Если точка лежит на прямой , то прямые совпадают, в противном случае – параллельны.

Пусть теперь т.е. векторы не параллельны (не коллинеарны). Тогда прямые могут пересекаться или скрещиваться. Как различить эти случаи? Делается это с помощью вектора (см. рис. 7). Ясно, что если прямые пересекаются, то векторы находятся в одной плоскости (точнее, они параллельны одной плоскости – компланарны). Условием компланарности векторов является равенство нулю их смешанного произведения:

(22)

Итак, если и выполняется (22), то прямые пересекаются; в случае не выполнения равенства (22) прямые скрещиваются.

Заметим, что во всех рассмотренных случаях взаимного расположения прямых можно вычислять угол между прямыми. Угол между прямыми определяется с помощью скалярного произведения их направляющих векторов:

(23)

Числитель взят по модулю для того, чтобы (как и для плоскостей) угол получался острым (в крайнем случае прямым).

Пример 6 . Выяснить взаимное расположение трёх прямых:

Решение . По данным уравнениям определяем опорные точки и направляющие векторы:

Легко заметить, что следовательно, прямые или параллельны или совпадают. Подставим координаты точки в уравнение - получили неверные равенства, следовательно, параллельны.

Возьмём и проверим условие (22):

, следовательно, скрещиваются.

Теперь проверим условие (22) для

следовательно, пересекаются.

5.7. Взаимное расположение прямой и плоскости в пространстве.

Прямая и плоскость в пространстве могут пересекаться и тогда возникают вопросы нахождения угла между прямой и плоскостью и координатах точки их пересечения. Прямая и плоскость могут быть параллельными, в частном случае, прямая лежит в плоскости. Рассмотрим все эти случаи.

Угол между прямой и плоскостью (см. рис. 8) определяется с

Помощью вектора нормали

Плоскости и направляющего вектора

Прямой: и направляющего вектора прямой что на плоскости (в двумерном направляющий вектор прямой, М (х, у) – произвольная точка прямой.Если в уравнении (32) раскрыть скобки и обозначить

уравнение прямой с опорной точкой и вектором нормали.

(36)

где общее уравнение прямой на плоскости.

Угол между двумя прямыми можно вычислять привычным для нас способом – с помощью скалярного произведения направляющих векторов прямых или их векторов нормали. Если две прямые заданы каноническими уравнениями

И т.е. направляющие векторы прямых, то (см. рис.10)

(37)

1. Можно доказать утверждение, что если в пространстве задана прямоугольная система координат ОХУZ, то всякое уравнение первой степени с тремя неизвестными х,у,z необходимо и достаточно определяет относительно этой системы некоторую плоскость Р . Уравнение это называется общим уравнением плоскости и имеет следующий вид:

Ах + Ву + Сz + D= 0 (17)

(сравните с общим уравнением (15) прямой на плоскости, которое следует из этого при z = 0) и определяет плоскость Р , перпендикулярную вектору (А,В,С).

Вектор - нормальный вектор плоскости Р .

Уравнению (17) эквивалентны следующие уравнения.

2. Уравнение плоскости, проходящей через заданную точку М(х 0 , у 0 , z 0 ):

А(х - х 0) + В(у -у 0) + С(z -z 0) = 0.

3. Уравнение плоскости в отрезках

,

где ; ; .

4. Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой, записывается в виде определителя

,

где (х 1 , y 1 , z 1), (х 2 , y 2 , z 2), (х 3 , y 3 , z 3) - координаты заданных точек.

Угол между двумя плоскостями определяется как угол между их нормальными векторами n 1 и n 2 . Отсюда условие параллельности плоскостей

Р 1 и Р 2:

и условие перпендикулярности двух плоскостей:

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0 .

Пример 29 . Через точку К (1, -3, 2) провести плоскость, параллельную векторам

а = (1, 2, -3) и b = (2,-1,-1) .

Решение. Пусть М (х , у , z ) – произвольная точка искомой плоскости. Вектор

КМ = (х - 1, у + 3, z - 2) лежит в этой плоскости, а векторы а и b ей параллельны. Следовательно, векторы КМ , а и b – компланарны. Тогда их смешанное произведение равно нулю:

.

Отсюда -(х –1) - (у + 3) – 5(z – 2) = 0 или х+ 7у + 5z + 10 = 0. Это и есть искомое уравнение плоскости.

Различные виды уравнения прямой в пространстве

Прямую линию в пространстве можно задавать в виде:

1) линии пересечения двух не совпадающих и не параллельных плоскостей Р 1 и Р 2:

;

2) уравнения прямой, проходящей через данную точку М (х 0 , у 0 , z 0) в направлении, задаваемом вектором L = (m, n, p ):

,

которое называется каноническим уравнением прямой в пространстве;

3) уравнения прямой, проходящей через две заданные точки М (х 1 , у 1 , z 1)

и M (x 2 , y 2 , z 2):

;

4) параметрических уравнений:

.

Пример 30 . Привести к каноническому и параметрическому видам уравнение прямой

.

Решение. Прямая задана как линия пересечения двух плоскостей. Нормальные векторы этих плоскостей n 1 = (3,1,-2) и n 2 = (4,-7,-1) перпендикулярны к искомой прямой, поэтому их векторное произведение [n 1 , n 2 ] = L параллельно ей и вектор [n 1 , n 2 ] (или любой ему коллинеарный) можно принять за направляющий вектор L искомой прямой.


[n 1 , n 2 ] =
.

Примем за L = 3i + j + 5k . Остается найти какую-либо точку на заданной прямой. Положим для этого, например, z = 0. Получим

.

Решив эту систему, находим х = 1, у = - 2. Таким образом, точка К (1, -2, 0) принадлежит заданной прямой, а её каноническое уравнение имеет вид

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Вектор a называется направляющим вектором прямой .

Параметрические получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 + mt , y = y 1 + nt , z = z 1 + р t . (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3
× 3+D = 0 Þ D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) и n 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v) × 1 + (-u + v) × 0 + (5u + 2v) × 1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u ¹ 0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v) × 1 + (v - u) × (-2) + (5u +2v) × 3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.