Уравнение оси параболы. Парабола — свойства и график квадратичной функции

Лекции по алгебре и геометрии. Семестр 1.

Лекция 17. Парабола.

Глава 17. Парабола.

п.1. Основные определения.

Определение. Параболой называется ГМТ плоскости равноудаленных от одной фиксированной точки плоскости, называемой фокусом, и одной фиксированной прямой, называемой директрисой.

Определение. Расстояние от произвольной точки М плоскости до фокуса параболы называется фокальным радиусом точки М.

Обозначения: F– фокус параболы,r– фокальный радиус точки М,d– расстояние от точки М до директрисыD.

По определению параболы, точка М является точкой параболы тогда и только тогда, когда
.

По определению параболы, его фокус и директриса есть фиксированные объекты, поэтому расстояние от фокуса до директрисы есть величина постоянная для данной параболы.

Определение. Расстояние от фокуса параболы до ее директрисы называется фокальным параметром параболы.

Обозначение:
.

Введем на данной плоскости систему координат, которую мы будем называть канонической для параболы.

Определение. Ось, проведенная через фокус параболы перпендикулярно директрисе называется фокальной осью параболы.

Построим каноническую для параболы ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, направление на которой выбираем от директрисы к фокусу.

Ось ординат проводим через середину отрезка FNперпендикулярно фокальной оси. Тогда фокус имеет координаты
.

п.2. Каноническое уравнение параболы.

Теорема. В канонической для параболы системе координат уравнение параболы имеет вид:

. (1)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на параболе удовлетворяют уравнению (1). На втором этапе мы докажем, что любое решение уравнения (1) дает координаты точки, лежащей на параболе. Отсюда будет следовать, что уравнению (1) удовлетворяют координаты тех и только тех точек координатной плоскости, которые лежат на параболе.

Отсюда и из определения уравнения кривой будет следовать, что уравнение (1) является уравнением параболы.

1) Пусть точка М(х, у) является точкой параболы, т.е.

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальный радиус данной точки М:

.

Из рисунка 2 мы видим, что точка параболы не может иметь отрицательной абсциссы, т.к. в этом случае
. Поэтому
и
. Отсюда получаем равенство

.

Возведем обе части равенства в квадрат:

и после сокращения получаем:

.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (1) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда подставляем равенство (1) в выражение для фокального радиуса точки М:

, откуда, по определению параболы, следует, что точка М(х, у) лежит на параболе.

Здесь мы воспользовались тем, что из равенства (1) следует, что
и, следовательно,
.

Теорема доказана.

Определение. Уравнение (1) называется каноническим уравнением параболы.

Определение. Начало канонической для параболы системы координат называется вершиной параболы.

п.3. Свойства параболы.

Теорема. (Свойства параболы.)

1. В канонической для параболы системе координат, в полосе

нет точек параболы.

2. В канонической для параболы системе координат вершина параболы О(0; 0) лежит на параболе.

3. Парабола является кривой, симметричной относительно фокальной оси.

Доказательство. 1, 2) Сразу же следует из канонического уравнения параболы.

3) Пусть М(х, у) – произвольная точка параболы. Тогда ее координаты удовлетворяют уравнению (1). Но тогда координаты точки
также удовлетворяют уравнению (1), и, следовательно, эта точка также является точкой параболы, откуда и следует утверждение теоремы.

Теорема доказана.

п.4. Построение параболы.

В силу симметрии достаточно построить параболу в первой четверти, где она является графиком функции

,

а затем отобразить полученный график симметрично относительно оси абсцисс.

Строим график этой функции, учитывая, что данная функция является возрастающей на промежутке
.

п.5. Фокальный параметр гиперболы.

Теорема. Фокальный параметр параболы равен длине перпендикуляра к ее оси симметрии, восстановленного в фокусе параболы до пересечения с параболой.

Доказательство. Так как точка
является точкой пересечения параболы
с перпендикуляром
(см. рис.3), то ее координаты удовлетворяют уравнению параболы:

.

Отсюда находим
, откуда и следует утверждение теоремы.

Теорема доказана.

п.6. Единое определение эллипса, гиперболы и параболы.

Используя доказанные свойства эллипса и гиперболы, и определение параболы можно дать единое для всех трех кривых определение.

Определение. ГМТ плоскости, для которых отношение расстояния до одной фиксированной точки плоскости, называемой фокусом, к расстоянию до одной фиксированной прямой, называемой директрисой, есть величина постоянная, называется:

а) эллипсом, если эта постоянная величина меньше 1;

б) гиперболой, если эта постоянная величина больше 1;

в) параболой, если эта постоянная величина равна 1.

Эта постоянная величина, о которой идет речь в определении, называется эксцентриситетом и обозначается , расстояние от данной точки до фокуса есть ее фокальный радиусr, расстояние от данной точки до директрисы обозначается черезd.

Из определения следует, что те точки плоскости, для которых отношение есть величина постоянная образуют эллипс, гиперболу или параболу, взависимости от величины этого отношения.

Если
, то мы получаем эллипс, если
, то мы получаем гиперболу, если
, то мы получаем параболу.

п.7. Касательная к параболе.

Теорема. Пусть
– произвольная точка параболы

.

Тогда уравнение касательной к этой параболе

в точке
имеет вид:

. (2)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой четверти. Тогда уравнение параболы имеет вид:

и ее можно рассматривать как график функции
.

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
.

Найдем производную функции
и ее значение в точке касания:

,
.

Здесь мы воспользовались тем, что точка касания
является точкой параболы и поэтому ее координаты удовлетворяют уравнению параболы, т.е.

.

Подставляем найденное значение производной в уравнение касательной:

,

откуда получаем:

.

Так как точка
принадлежит параболе, то ее координаты удовлетворяют ее уравнению, т.е.
, откуда получаем

или
.

Отсюда следует

.

Теорема доказана.

п.8. Зеркальное свойство параболы.

Теорема. Касательная к параболе образует равные углы с ее осью симметрии и с фокальным радиусом точки касания.

Доказательство. Пусть
– точка касания,– ее фокальный радиус. Обозначим черезNточку пересечения касательной с осью абсцисс. Ордината точкиNравна нулю и точкаNлежит на касательной, следовательно, ее координаты удовлетворяют уравнению касательной. Подставляя координаты точкиNв уравнение касательной, получаем:

,

откуда абсцисса точки Nравна
.

Рассмотрим треугольник
. Докажем, что он равнобедренный.

Действительно,
. Здесь мы воспользовались равенством, полученным при выводе канонического уравнения параболы:

.

В равнобедренном треугольнике углы при основании равны. Отсюда

, ч.т.д.

Теорема доказана.

Замечание. Доказанную теорему можно сформулировать в виде зеркального свойства параболы.

Луч света, выпущенный из фокуса параболы, после отражения от зеркала параболы, идет параллельно оси симметрии параболы.

Действительно, так как угол падения луча на касательную равен углу отражения от нее, то угол между касательной и отраженным лучом равен углу между касательной и осью абсцисс, откуда следует, что отраженный луч параллелен оси абсцисс.

Замечание. Это свойство параболы получило широкое применение в технике. Если параболу вращать вокруг ее оси симметрии, то получим поверхность, которая называется параболоидом вращения. Если выполнить отражающую поверхность в форме параболоида вращения и в фокусе поместить источник света, то отраженные лучи идут параллельно оси симметрии параболоида. Так устроены прожектора и автомобильные фары. Если же в фокусе поместить устройство принимающее электромагнитные колебания (волны), то они отражаясь от поверхности параболоида попадают в это принимающее устройство. По такому принципу работают спутниковые тарелки.

Существует легенда, что в древности один полководец выстроил своих воинов вдоль берега, придав их строю форму параболы. Солнечный свет, отражаясь от начищенных до блеска щитов воинов собирался в пучок (в фокусе построенной параболы). Таким образом были сожжены корабли неприятеля. Некоторые источники приписывают это Архимеду. Так или иначе, но арабы называли параболоид вращения "зажигательным зеркалом".

Кстати, слово "focus" латинское и в переводе означает огонь, очаг. С помощью "зажигательного зеркала" можно в солнечный день разжечь костер и вскипятить воду. Так что становится понятным происхождение этого термина.

Слово "фокус" означает также некоторый трюк или хитрый прием. Раньше цирк назывался балаганом. Так еще балаганные артисты использовали зеркальное свойство эллипса и зажигая свет в одном фокусе эллипса они разжигали что-нибудь лекговоспламеняющее, помещенное в другом его фокусе. Это зрелище также стали называть фокусом. (Читайте замечательную книжку Виленкина Н.Я. "За страницами учебника математики")

п.9. Полярное уравнение эллипса, гиперболы и параболы.

Пусть на плоскости дана точка F, которую мы назовем фокусом и прямаяD, которую мы назовем директрисой. Проведем через фокус прямую перпендикулярную директрисе (фокальная ось) и введем полярную систему координат. Полюс поместим в фокус, а в качестве полярного луча возьмем ту часть прямой, которая не пересекает директрису (см. рис.5).

Пусть точка М лежит на эллипсе, гиперболе или параболе. В дальнейшем будем называть зллипс гиперболу или параболу просто кривой.

Теорема. Пусть
– полярные координаты точки кривой (эллипса, гиперболы или параболы). Тогда

, (3)

где р – фокальный параметр кривой, – эксцентриситет кривой (для параболы полагаем
).

Доказательство. Пусть Q– проекция точки М на фокальную ось кривой, В – на директрису кривой. Пусть полярный уголточки М является тупым, как на рисунке 5. Тогда

,

где по построению,
– расстояние от точки М до директрисы,и

. (4)

С другой стороны, по единому определению эллипса, гиперболы и параболы отношение

(5)

равно эксцентриситету соответствующей кривой для любой точки М на данной кривой. Пусть точка
– точка пересечения кривой с перпендикуляром к фокальной оси, воостановленного в фокусеFи А – ее проекция на директрису. Тогда

, откуда
. Но
, откуда

и, подставляя в равенство (4), получаем

или, учитывая равенство (5),

откуда и следует доказываемое равенство (3).

Заметим, что равенство (4) остается верным и в случае, когда полярный угол точки М является острым, т.к. в этом случае точкаQнаходится правее фокусаFи

Теорема доказана.

Определение. Уравнение (3) называется полярным уравнением эллипса, гиперболы и параболы.

Определение: Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а фиксированная прямая – директрисой параболы.

Для вывода уравнения построим:

Согласно определению:

Так как у 2 >=0 то парабола лежит в правой полуплоскости. При х возрастающем от 0 до бесконечности
. Парабола симметрична относительно Ох. Точка пересечения параболы со своей осью симметрии называется вершиной параболы.

45. Кривые второго порядка и их классификация. Основная теорема о квп.

Существует 8 типов КВП:

1.эллипсы

2.гиперболы

3.параболы

Кривые 1,2,3 – канонические сечения. Если пересечь конус плоскостью параллельной оси конуса то получим гиперболу. Если плоскостью параллельной образующей то параболу. Все плоскости не проходят через вершину конуса. Если любой другой плоскостью то эллипс.

4.пара параллельных прямых y 2 +a 2 =0, a0

5.пара пересекающихся прямых y 2 -k 2 x 2 =0

6.одна прямая y 2 =0

7.одна точка x 2 + y 2 =0

8.пустое множество - пустая кривая (кр. без точек) x 2 + y 2 +1=0 или x 2 + 1=0

Теорема(основная теорема о КВП): Уравнение вида

a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0

может представлять только кривую одного из указанных восьми типов.

Идея доказательства состоит в том чтобы прейти к такой системе координат в которой уравнение КВП примет наиболее простой вид, когда тип кривой, которую оно представляет становится очевидным. Теорема доказывается с помощью поворота системы координат на такой угол при котором член с произведением координат исчезает. И с помощью параллельного переноса системы координат при котором исчезает или член с переменной х или член с переменной у.

Переход к новой системе координат: 1. Параллельный перенос

2. Поворот

45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.

ПВП - множество точек прямоугольные координаты которых удовлетворяют уравнению 2 степени: (1)

Предполагается, что хотя бы один из коэффициентов при квадратах или при произведениях отличен от 0. Уравнение инвариантно относительно выбора системы координат.

Теорема Любая плоскость пересекает ПВП по КВП за исключением особого случая, когда в сечении – вся плоскость.(ПВП может быть плоскостью или парой плоскостей).

Существует 15 типов ПВП. Перечислим их указав уравнения, которыми они задаются в подходящих системах координат. Эти уравнения называются каноническими(простейшими). Строят геометрические образы соответствующие каноническим уравнениям методом параллельных сечений: Пересекают поверхность координатными плоскостями и плоскостями параллельными им. В результате получают сечения и кривые, которые дают представление о форме поверхности.

1. Эллипсоид.

Если a=b=c то получаем сферу.

2. Гиперболоиды.

1). Однополостный гиперболоид:

Cечение однополостного гиперболоида координатными плоскостями: XOZ:
- гипербола.

YOZ:
- гипербола.

Плоскостью XOY:
- эллипс.

2). Двуполостной гиперболоид.

Начало координат – точка симметрии.

Координатные плоскости – плоскости симметрии.

Плоскость z = h пересекает гиперболоид по эллипсу
, т.е. плоскость z = h начинает пересекать гиперболоид при | h |  c . Сечение гиперболоида плоскостями x = 0 и y = 0 - это гиперболы.

Числа a,b,c в уравнениях (2),(3),(4) называются полуосями эллипсоидов и гиперболоидов.

3. Параболоиды.

1). Эллиптический параболоид:

Сечение плоскостью z = h есть
, где
. Из уравнения видно, что z  0 – это бесконечная чаша.

Пересечение плоскостями y = h и x = h
- это парабола и вообще

2). Гиперболический параболоид:

Очевидно, плоскости XOZ и YOZ – плоскости симметрии, ось z – ось параболоида. Пересечение параболоида с плоскостью z = h – гиперболы:
,
. Плоскость z =0 пересекает гиперболический параболоид по двум осям
которые являются ассимптотами.

4. Конус и цилиндры второго порядка.

1). Конус – это поверхность
. Конус оюразован прямыми линиями, проходящими через начало координат 0 (0, 0, 0). Сечение конуса – это эллипсы с полуосями
.

2). Цилиндры второго порядка.

Это эллиптический цилиндр
.

Какую бы прямую мы не взяли пересекающую эллипсы и параллельную оси Oz то она удовлетворяет этому уравнению. Перемещая эту прямую вокруг эллипса получим поверхность.

Гиперболический цилиндр:

На плоскости ХОУ это гипербола. Перемещаем прямую пересекающую гиперболу параллельно Oz вдоль гиперболы.

Параболический цилиндр:

На плоскости ХОУ это парабола.

Цилиндрические поверхности образуются прямой(образующей) перемещающейся параллельно самой себе вдоль некоторой прямой(направляющей).

10. Пара пересекающихся плоскостей

11.Пара параллельных плоскостей

12.
- прямой

13.Прямая – «цилиндр», построенный на одной точке

14.Одна точка

15.Пустое множество

Основная теорема о ПВП: Каждая ПВП принадлежит к одному из 15 типов рассмотренных выше. Других ПВП нет.

Поверхности вращения. Пусть задана ПДСК Oxyz и в плоскости Oyz линия е определяемая уравнением F(y,z)=0 (1). Составим уравнение поверхности полученной вращением этой линии вокруг оси Oz. Возьмем на линии е точку М(y,z). При вращении плоскости Oyz вокруг Oz точка М опишет окружность. Пусть N(X,Y,Z) – произвольная точка этой окружности. Ясно что z=Z.

.

Подставив найденные значения z и y в уравнение (1) получим верное равенство:
т.е. координаты точкиN удовлетворяют уравнению
. Таким образом любая точка поверхности вращения удовлетворяет уравнению (2). Не сложно доказать что если точкаN(x 1 ,y 1 ,z 1) удовлетворяет уравнению (2) то она принадлежит рассматриваемой поверхности. Теперь можно сказать что уравнение (2) есть искомое уравнение поверхности вращения.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Определение 1

Парабола - это кривая, образованная геометрическим множеством точек, находящихся на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на прямой $d$.

То есть отношение расстояний от произвольной точки на параболе до фокуса и от этой же точки до директрисы всегда равно единице, это отношение называется эксцентриситетом.

Термин “эксцентриситет” также используется для гипербол и эллипсов.

Основные термины из канонического уравнения параболы

Точка $F$ называется фокусом параболы, а прямая $d$ - её директрисой.

Осью симметрии параболы называется прямая, проходящая через вершину параболы $O$ и её фокус $F$, так, что она образует прямой угол с директрисой $d$.

Вершиной параболы называется точка, расстояние от которой до директрисы минимальное. Эта точка делит расстояние от фокуса до директрисы пополам.

Что из себя представляет каноническое уравнение параболы

Определение 2

Каноническое уравнение параболы довольно простое, его несложно запомнить и оно имеет следующий вид:

$y^2 = 2px$, где число $p$ должно быть больше нуля.

Число $p$ из уравнения носит название "фокальный параметр".

Данное уравнение параболы, вернее именно эта наиболее часто применяемая в высшей математике формула, применимо в том случае, когда ось параболы совпадает с осью $OX$, то есть парабола располагается как будто на боку.

Парабола, описанная уравнением $x^2 = 2py$ - это парабола, ось которой совпадает с осью $OY$, к таким параболам мы привыкли в школе.

А парабола, которая имеет минус перед второй частью уравнения ($y^2 = - 2px$), развёрнута на 180° по отношению к каноничной параболе.

Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы выглядит точно также как для всех таких кривых и подходит для всех случаев, а не только когда парабола параллельна $OX$.

При этом дискриминант, вычисляющийся по формуле $B^2 – 4AC$ равен нулю, а само уравнение выглядит так: $Ax^2 + B \cdot x \cdot y + C\cdot y^2 + D\cdot x + E\cdot y + F = 0$

Вывод с помощью графика канонического уравнения для параболы

Рисунок 1. График и вывод канонического уравнения параболы

Из определения, приведённого выше в данной статье, составим уравнение для параболы с верхушкой, расположенной на пересечении координатных осей.

Используя имеющийся график, определим по нему $x$ и $y$ точки $F$ из определения параболической кривой, данного выше, $x = \frac{p}{2}$ и $y = 0$.

Для начала составим уравнение для прямой $d$ и запишем его: $x = - \frac{p}{2}$.

Для произвольной точки M, лежащей на нашей кривой, согласно определению, справедливо следующее соотношение:

$FM$ = $ММ_d$ (1), где $М_d$ - точка пересечения перпендикуляра, опущенного из точки $M$ c директрисой $d$.

Икс и игрек для этой точки равны $\frac{p}{2}$ $y$ соответственно.

Запишем уравнение (1) в координатной форме:

$\sqrt{(x - \frac{p}{2})^2 + y^2 }= x + \frac{p}{2}$

Теперь для того чтобы избавиться от корня необходимо возвести обе части уравнения в квадрат:

$(x - \frac{p}{2})^2 + y^2 = x^2 +px^2 + \frac{p^2}{4}$

После упрощения получаем каноническое уравнение параболы: $y^2 = px$.

Парабола, описываемая с помощью квадратичной функции

Уравнение, описывающее параболу с верхушкой, расположенной где угодно на графике и необязательно совпадающей с пересечением осей координат, выглядит так:

$y = ax^2 + bx + c$.

Чтобы вычислить $x$ и $y$ для вершины такой параболы, необходимо воспользоваться следующими формулами:

$x_A = - \frac{b}{2a}$

$y_A = - \frac{D}{4a}$, где $D = b^2 – 4ac$.

Пример 1

Пример составления классического уравнения параболы

Задача. Зная расположение фокусной точки, составить каноническое уравнение параболы. Координаты точки фокуса $F$ $(4; 0)$.

Так как мы рассматриваем параболу, график которой задан каноническим уравнением, то её вершина $O$ находится на пересечении осей икс и игрек, следовательно расстояние от фокуса до вершины равно $\frac{1}{2}$ фокального параметра $\frac{p}{2} = 4$. Путём нехитрых вычислений получим, что сам фокальный параметр $p = 8$.

После подстановки значения $p$ в каноническую форму уравнения, наше уравнение примет вид $y^2 = 16x$.

Как составить уравнение параболы по имеющемуся графику

Пример 2

Рисунок 2. Каноническое уравнение для параболы график и пример для решения

Для начала необходимо выбрать точку $М$, принадлежащую графику нашей функции, и, опустив из неё перпендикуляры на оси $OX$ и $OY$, записать её икс и игрек, в нашем случае точка $M$ это $(2;2)$.

Теперь нужно подставить полученные для этой точки $x$ и $y$ в каноническое уравнение параболы $y^2 = px$, получаем:

$2^2 = 2 \cdot 2p$

Сократив, получаем следующее уравнение параболы $y^2 = 2 \cdot x$.

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.