Уравнение Менделеева — Клапейрона. Уравнение Клапейрона – Менделеева

Уравнение Менделеева-Клапейрона - уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем V m и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

pV = RT , где R - универсальная газовая постоянная,

R = 8,31 Дж/(моль. К)

Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT . или pV = N А kT ,

где N А - число Авогадро, k - постоянная Больцмана.

Вывод уравнения:


С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров - давление, объем или температура - остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.


Изотермический процесс - процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется . Это закон Бойля - Мариотта.

Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой - термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P 1 V 1 =P 2 V 2 =const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.


Изобарный процесс - процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется . Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.


Изохорный процесс - процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.


Законы Бойля - Мариотта, Гей-Люссака и Шарля являются частными случаями объединенного газового закона: Отношение произведения давления газа и объема к температуре для данной массы газа - величина постоянная: PV/T=const.

Итак, из закона pV = (М/m) . RT выводятся следующие законы:

T = const => PV = const - закон Бойля - Мариотта.

p = const => V/T = const - закон Гей - Люссака .

V= const => p/T = const - закон Шарля

Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление - это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.


Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро N A = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна N A ?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = n RT и заметим, что число молей гелия n = N/N A . Отсюда:

N A = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

PV 7,95 . 10 -4 . 3 . 10 -2

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

Между параметрами состояния идеального газа существует связь, называемая уравнением состояния. Французский инженер Б. Клапейрон (1799–1864) обобщил экспериментальные газовые законы и установил связь между параметрами (уравнение Клапейрона ):

Русский ученый Д.И. Менделеев (1834–1907) объединил уравнение Клапейрона с законом Авогадро. Согласно закону Авогадро , при одинаковых и моль любого газа занимает одинаковый молярный объем , поэтому Менделеев сделал вывод, что постоянная в правой части равенства будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается и называется универсальной газовой постоянной .

Числовое значение можно определить, подставив в формулу значения параметров при НУ . Согласно расчетам, .

Перейдем к произвольной массе газа . При тех же условиях она будет занимать объем . Тогда

Это уравнение является уравнением состояния идеального газа (уравнением Клапейрона – Менделеева ).

Введем постоянную , называемую постоянной Больцмана . Тогда

где концентрация молекул. Следовательно, из 7.4.2 следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул, а плотность обратно пропорциональна температуре.

В системе СИ давление измеряется в Паскалях . Кроме того, для измерения давления используется ряд величин:

Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмидта: .

Пример 7.4.1. В баллоне объемом находится гелий под давлением и при температуре . После того, как из баллона было взято гелия, температура в баллоне понизилась до . Определить давление газа, оставшегося в баллоне.

Решение:

Для начального состояния уравнение Менделеева Клапейрона имеет вид:. Поскольку объем гелия в конечном состоянии будет таким же (ограничен объемом сосуда), то для конечного состояния . Из этих уравнений найдем массы: и .

Учитывая, что , получим .

Выразим искомое давление:

Ответ: .

Пример 7.4.2. Найти молярную массу воздуха, считая, что он состоит (по массе) из одной части кислорода и трех частей азота.

Решение:

Свойствами идеального газа могут обладать не только химически однородные газы, но и газовые смеси. Чтобы применить уравнение состояния для газовой смеси, ей необходимо приписать некоторую, хотя и лишенную химического смысла, молярную массу . Величину выбирают такой, чтобы она удовлетворяла уравнению состояния идеального газа, записанному для смеси: . Откуда давление смеси.

Запишем уравнение Клапейрона – Менделеева для каждой из компонент смеси: и . Выразим парциальные давления газов, входящих в смесь: и . По закону Дальтона давление смеси газов равно сумме



их парциальных давлений: . Следовательно, .

Учитывая, что масса смеси , получим .

Искомая молярная масса смеси равна

Ответ: .

Пример 7.4.3. Плотность смеси азота и водорода при температуре и давлении равна . Найти концентрацию молекул азота и водорода в смеси.

Решение:

Запишем уравнение состояния идеального газа для смеси газов: . Учтем, что молярная масса смеси (см. пример 7.4.2), поскольку и , то .

Подставим значения молярной массы смеси в уравнение Клапейрона – Менделеева.

Тогда или (1), где – плотность смеси .

С другой стороны, давление смеси газов равно (2). Решая совместно (1) и (2), найдем (м -3) и (м -3).

Ответ: , .

7.5. Основное уравнение молекулярно-кинетической теории идеальных газов

Применим статистический метод для расчета давления газа на стенки сосуда, в котором он находится. Давление газа на любую стенку равно отношению силы, с которой молекулы газа действуют на эту стенку, к площади ее поверхности:

Пусть газ находится в сосуде кубической формы с ребром (рис. 7.5.1, а). Рассмотрим стенку, перпендикулярную оси Ox (рис. 7.5.1, б). Найдем силу, с которой на нее будет действовать одна молекула газа. Обозначим массу одной молекулы, скорость молекулы. Молекулы газа могут менять направление скорости только при ударе о стенки (считаем, что взаимные столкновения к этому не приводят). Изменение импульса молекулы при ударе равно . С другой стороны, изменение импульса молекулы равно импульсу силы, действующей на нее со стороны стенки. Обозначим силу, действующую на стенку сосуда со стороны молекулы . Тогда по третьему закону Ньютона сила, с которой стенка будет действовать на молекулу, равна . Следовательно, , где .

Давление, производимое газом на эту стенку:

где объем сосуда.

Так как давление газа на все стенки сосуда одинаково (закон Паскаля), то

С учетом того, что , (суммарная кинетическая энергия молекул газа),

Это уравнение называется основным уравнением МКТ : произведение давления идеального газа на его объем равно двум третьим величины кинетической энергии поступательного движения всех его молекул.

Глава 8. Статистические распределения

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р ,объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением: Рис.7.4.

F (p , V , T )=0,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление р 1 и находится при температуре T 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами р 2 , V 2 , Т 2 (рис.7.4).

Переход из состояния 1 в состояние 2осуществляется в виде двух процессов: 1) изотермического (изотерма 1 – 1 /), 2) изохорного (изохора 1 / 2).

В соответствии с законами Бойля- Мариотта (7.1) и Гей-Люссака (7.5) запишем:

р 1 V 1 =p / 1 V 2 , (7.6)

. (7.7)

Исключив из уравнений (7.6) и (7.7) p / 1 получим:

Так как состояния 1 и 2были выбраны произвольно, то для данной массы газа величина pV/T остается постоянной, т. е.

pV/T = В = const. (7.8)

Выражение (7.8) является уравнением Клапейрона , в котором В - газовая постоянная, различная для разных газов.

Д. И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (7.8) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых p и Τ моли всех газов занимают одинаковый молярный объем V m ,поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной . Уравнению

pV m = RT (7.9)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа , называемым также уравнением Клапейрона - Менделеева .

Числовое значение молярной газовой постоянной определим из формулы (7.9), полагая, что моль газа находится при нормальных условиях (р 0 = 1,013×10 5 Па, T 0 =273,15 К, V m =22,41×10 -3 м 3 /моль): R =8,31 Дж/(моль К).

От уравнения (7.9) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных p и T один моль газа занимает молярный объем V m , то масса т газа займет объем V= (m/М ) V m ,где Μ молярная масса (масса одного моля вещества). Единица молярной массы – килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы т газа



pV = RT = vRT ,(7.10)

где: v=m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана

k=R/N A = 1,38∙10 -23 Дж/К.

Исходя из этого, уравнение состояния (2.4) запишем в виде

p= RT/V m = kN A T/V m = nkT ,

где N A /V m =n - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

p=nkT (7.11)

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1м 3 газа при нормальных условиях, называется числом Лошмидта:

N l = р 0 / ( 0)= 2,68∙10 25 м -3 .

Известно, что разреженные газы подчинены законам Бойля и Ге-Люссака. Закон Бойля гласит, что при изотермическом сжатии газа давление изменяется обратно пропорционально объему. Следовательно, при

Согласно закону Ге-Люссака нагревание газа на при постоянном давлении влечет за собой его расширение на того объема, который он занимает при и при том же неизменном давлении.

Следовательно, если есть объем, занимаемый газом при 0° С и при давлении есть объем, занимаемый этим газом при

и при том же давлении то

Будем изображать состояние газа точкой на диаграмме (координаты какой-либо точки в этой диаграмме указывают численные значения давления и объема или 1 моля газа; на рис. 184 нанесены линии, для каждой из которых это изотермы газа).

Представим себе, что газ был взят в некотором выбранном произвольно состоянии С, при котором его температура есть давление р и занятый им объем

Рис. 184 Изотермы газа по закону Бойля.

Рис. 185 Диаграмма поясняющая вывод уравнения Клапейрона из законов Бойля и Ге-Люссака.

Охладим его до не изменяя давления (рис. 185). На основании закона Ге-Люссака можно написать, что

Теперь, поддерживая температуру будем сжимать газ или, если требуется, предоставим ему возможность расширяться до тех пор, пока его давление не сделается равным одной физической атмосфере. Это давление обозначим через а объем, который в результате окажется занятым газом (при через (точка на рис. 185). На основании закона Бойля

Умножая почленно первое равенство на второе и сокращая на получим:

Это уравнение впервые было выведено Б. П. Клапейроном, выдающимся французским инженером, работавшим в России профессором Института путей сообщения с 1820 по 1830 г. Постоянную величину 27516 нбывают газовой постоянной.

По закону, открытому в 1811 г. итальянским ученым Авогадро, все газы независимо от их химической природы при одинаковом давлении занимают одинаковый объем, если они взяты в количествах, пропорциональных их молекулярному весу. Пользуясь в качестве единицы массы молем (или, что то же, грамм-молекулой, грамм-молем), закон Авогадро можно сформулировать так: при определенной температуре и определенном давлении моль любого газа будет занимать один и тот же объем. Так, например, при и при давлении -моль любого газа занимает

Законы Бойля, Ге-Люссака и Авогадро, найденные экспериментально, позже были выведены теоретически из молекулярно-кинетических представлений (Крёнигом в 1856 г., Клаузиусом в 1857 г. и Максвеллом в 1860 г.). С молекулярно-кинетической точки зрения закон Авогадро (который, подобно другим газовым законам, является точным для идеальных газов и приближенным для реальных) означает, что в равных объемах двух газов содержится одинаковое число молекул, если эти газы находятся при одинаковой температуре и одинаковом давлении.

Пусть есть масса (в граммах) атома кислорода, масса молекулы какого-либо вещества, молекулярный вес этого вещества: Очевидно, что число молекул, содержащихся в моле какого-либо вещества, равно:

т. е. моль любого вещества содержит одно и то же число молекул. Это число равно оно называется числом Авогадро.

Д. И. Менделеев в 1874 г. указал, что благодаря закону Авогадро уравнение Клапейрона, синтезирующее законы Бойля и Ге-Люссака, приобретает наибольшую общность, когда оно отнесено не к обычной весовой единице (грамм или килограмм), а к молю газов. Действительно, поскольку моль любого газа при занимает объем, равный численное значение газовой постоянной для всех газов, взятых в количестве 1 грамм-молекулы, должно быть одинаково независимо от их химической природы.

Газовую постоянную для 1 моля газа обычно обозначают буквой и называют универсальной газовой постоянной:

Если в объеме у (а значит, и содержится не 1 моль газа, а молей, то, очевидно,

Численное значение универсальной газовой постоянной зависит от того, в каких единицах измерены стоящие в левой части уравнения Клапейрона величины Например, если давление измерять в и объем в то отсюда

В табл. 3 (стр. 316) даны значения газовой постоянной, выраженной в различных часто применяемых единицах.

Когда газовая постоянная входит в формулу, все члены которой выражены в калорических единицах энергии, то и газовая постоянная должна быть выражена в калориях; приближенно, точнее

Вычисление универсальной газовой постоянной основано, как мы видели, на законе Авогадро, согласно которому все газы независимо от их химической природы занимают при объем

В действительности объем занимаемый 1 молем газа при нормальных условиях, для большинства газов не вполне точно равен (например, для кислорода и азота он немного меньше, для водорода - немного больше). Если это учесть при вычислении то обнаружится некоторое расхождение в численном значении для различных по химической природе газов. Так, для кислорода вместо получается для азота . Это несовпадение находится в связи с тем, что все вообще газы при обычной плотности не вполне точно следуют законам Бойля и Ге-Люссака.

В технических расчетах вместо измерения массы газа в молях обычно измеряют массу газа в килограммах. Пусть объем содержит газа. Коэффициент в уравнении Клапейрона означает число молей, содержащихся в объеме т. е. в данном случае

Численные значения газовой постоянной выраженной в различных единицах будут в 1000 раз больше числовых значений той же плотности, выраженной в

Поскольку все реальные газы в той или иной мере (и притом неодинаково) отступают от закона Авогадро и в противоречии с этим законом имеют не вполне тождественные объемы для 1 моля при нормальных условиях, то при более точных расчетах пользуются характеристическими газовыми постоянными, полученными не из универсальной газовой постоянной, а вычисленными непосредственно из плотностей газов при нормальных условиях по формуле

где объем газа при Для газов, которые даже при небольших степенях сжатия показывают заметное отклонение от уравнения Клапейрона, вычисление характеристической постоянной проводят методом графической экстраполяции.

В таблице даны значения характеристических газовых постоянных В для случая, когда давление в уравнении Клапейрона выражено в килограммах на а объем выражен в куб. метрах.

(см. скан)

Уравнение Клапейрона является приближенно справедливым не только для химически однородных газов, но также и для смеси газов.

Оно выведено на основе объединенного закона Бойля-Мариотта и Гей-Люссака с применением закона Авогадро. Для одной грамм-молекулы любого вещества, находящегося в идеальном газовом состоянии, уравнение Менделеева-Клапейрона имеет выражение:

Или PV = RT (11) .

В том случае, если имеется не один, а n молей газа выражение принимает вид:

где R- универсальная газовая постоянная, не зависящая от природы газа.

Так как число грамм-молей газа , где m- масса газа, а М- его молекулярная масса, то выражение (12) принимает вид:

Числовое значение R зависит от единицы измерения дав­ления и объема. Величина ее выражается в единицах энергия/моль´град. Для нахождения числовых значений R используем уравнение (11), применив его для 1 моля идеального газа, находящегося в нормальных условиях,

Подставив в уравнение (11) числовые значения Р=1 атм, T= 273° и V = 22,4 л, получаем

В международной системе единиц СИ давление выра­жается в ньютонах на м 2 (н/м 2), а объем в м 3 . Тогда .

Пользуясь уравнением Менделеева-Клапейрона можно производить следующие расчеты: а) нахождение физи­ческих параметров состояния газа по его молекулярной массе и другим данным, б) нахождение молекулярной мас­сы газа по данным о его физическом состоянии (см. при­мер 22).

Пример 11. Сколько весит азот, находящийся в газгольдере диаметром 3,6 м и высотой 25 м при темпе­ратуре 25ºС и давлении 747 мм рт. ст.?

IIример 12. В колбе емкостью 500 мл при 25ºС находится 0,615 г оксида азота (II). Каково давление газа в атмосферах, в н/м 2 ?

Пример 13. Масса колбы емкостью 750 см 3 , на­полненной кислородом при 27°С, равна 83,35 г. Масса пустой колбы 82,11 г. Определить давление кислорода и мм рт.ст. на стенки колбы.

Закон Дальтона

Сформулирован этот закон так: общее давление смесей газов, не реагирующих друг с другом, равно сумме пар­циальных давлении составных частей (компонентов).

P = p 1 + p 2 + p 3 + ….. + p n (14)

где Р - общее давление смеси газов; p 1 , p 2 , p 3 , …., p n – парциальные давления компонентов смеси.

Парциальным давлением называется давление, оказы­ваемое каждым компонентом газовой смеси, если предста­вить этот компонент занимающим объем, равный объему смеси при той же температуре. Иными словами, парциаль­ным давлением называется та часть общего давления га­зовой смеси, которая обусловлена данным газом.

Из закона Дальтона следует, что при наличии смеси газов п в уравнении (12) представляет собой сумму числа молей всех компонентов, образующих данную смесь, а Р- общее давление смеси, занимающей при температу­ре Т объем V.

Зависимость между парциальными давлениями и общим выражается уравнениями:

где n 1 , n 2 , n 3 - число молей компонента 1, 2, 3, соответ­ственно, в смеси газов.

Отношения называются мольными долями данного компонента.

Если мольную долю обозначить через N, то парциальное давление любого i-го компонента смеси (где i = 1,2,3,...) будет равно:

Таким образом, парциальное давление каждого компо­нента смеси равно произведению его мольной доли па общее давление газовой смеси.

Помимо парциального давления у газовых смесей раз­личают парциальный объем каждого из газов v 1 , v 2 , v 3 и т. д.

Парциальным называют объем, который занимал бы отдельный идеальный газ, входящий в состав идеальной смеси газов, если бы при том же количестве, он имел давление и температуру смеси.

Сумма парциальных объемов всех компонентов газовой смеси равна общему объему смеси

V = v 1 , + v 2 + v 3 + ... + v n (16) .

Отношение и т. д. называется объемной долей первого, второго и т.д. компонентов газовой смеси. Для идеальных газов мольная доля равна объемной доле. Следовательно, парциальное давление каждого ком­понента смеси равно также произведению его объемной доли на общее давление смеси.

; ; p i = r i ´P (17).

Парциальное давление обычно находят из величины общего давления с учетом состава газовой смеси. Состав газовой смеси выражают в весовых процентах, объемных процентах и в мольных процентах.

Объемным процентом называется объемная доля, уве­личенная в 100 раз (число единиц объема данного газа, содержащегося в 100 единицах объема смеси)

Мольным процентом q называется мольная доля, уве­личенная в 100 раз.

Весовой процент данного газа - число единиц массы его, содержащихся в 100 единицах массы газовой смеси.

где m 1 , m 2 – массы отдельных компонентой газовой смеси; m – общая масса смеси.

Для перехода от объемных процентов к весовым, что бывает необходимым в практических расчетах, пользуют­ся формулой:

где r i (%) - объемное процентное содержание i-гo компонен­та газовой смеси; M i -молекулярная масса этого газа; М ср - средняя молекулярная масса смеси газов, которую вычисляют по формуле

М ср = М 1 ´r 1 + M 2 ´r 2 + M 3 ´r 3 + ….. + M i ´r i (19)

где М 1 , M 2 , M 3 , M i - молекулярные мaccы отдельных газов.

Если состав газовой смеси выражен количеством масс отдельных компонентов, то среднюю молекулярную массу смеси можно выразить по формуле

где G 1 , G 2 , G 3 , G i – доли масс газов в смеси: ; ; и т.д.

Пример 14. 5 л азота под давлением 2 атм, 2 л кислорода под давлением 2,5 атм и 3 л углекислою газа под давлением 5 атм перемешаны, причем объем, пре­доставленный смеси, равен 15 л. Вычислить, под каким давлением находятся смесь и парциальные давления каж­дого газа.

Азот, занимавший объем 5 л при давлении Р 1 = 2 атм, после смешения с другими газами распространился в объе­ме V 2 = 15 л. Парциальное давление азота р N 2 = Р 2 нахо­дим из закона Бойля-Мариотта (P 1 V 1 = P 2 V 2). Откуда

Парциальное давления кислорода и углекислого газа на­ходим аналогичным способом:

Общее давление смеси равно .

Пример 15. Смесь, состоящая из 2 молей водоро­да, некоторого количества молей кислорода и 1 моля азота при 20°С и давлении 4 атм, занимает объем 40 литров. Вычислить число молей кислорода в смеси и парциальные давления каждого из газов.

Из уравнения (12) Менделеева-Клапейрона находим общее число молей всех газов, составляющих смесь

Число молей кислорода в смеси равно

Парциальные давления каждого из газов вычисляем по уравнениям (15а):

Пример 17. Состав паров бензольных углеводоро­дов над поглотительным маслом в бензольных скрубберах, выраженный в единицах массы, характеризуется такими величинами: бензола C 6 H 6 - 73%, толуола С 6 Н 5 СН 3 - 21%, ксилола С 6 Н 4 (СН 3) 2 - 4%, триметилбензола С 6 Н 3 (СН 3) 3 - 2%. Вычислить содержание каждой составной части по объе­му и парциальные давления паров каждого вещества, если общее давление смеси равно 200 мм рт. ст.

Для вычисления содержания каждой составной части смеси паров по объему используем формулу (18)

Следовательно, необходимо знать М ср, которую можно вычислить из формулы (20):

Парциальные давления каждого компонента в смеси вычисляем, используя уравнение (17)

p бензола = 0,7678´200 = 153,56 мм рт.ст. ; p толуола = 0,1875´200 = 37,50 мм рт.ст. ;

p ксилола = 0,0310´200 = 6,20 мм рт.ст. ; p триметилбензола = 0,0137´200 = 2,74 мм рт.ст.


Похожая информация.