Уравнение логарифм в квадрате как решать. Замечание по поводу области определения

Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: log a b=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) "b" по его основанию "a" считается степень "c", в которую необходимо возвести основание "a", чтобы в итоге получить значение "b". Разберем логарифм на примерах, допустим, есть выражение log 2 8. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное - понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание "a" всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь "1" и "0" в любой степени всегда равны своим значениям;
  • если а > 0, то и а b >0, получается, что и "с" должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, 10 2 =100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log 10 100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел - это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени - это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log 3 81 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log 2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема "логарифмы". Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log 2 (x-1) > 3 - оно является логарифмическим неравенством, так как неизвестное значение "х" находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример - логарифм 2 x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: log d (s 1 *s 2) = log d s 1 + log d s 2. При этом обязательным условием является: d, s 1 и s 2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть log a s 1 = f 1 и log a s 2 = f 2 , тогда a f1 = s 1 , a f2 = s 2. Получаем, что s 1 *s 2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, что и требовалось доказать.
  3. Логарифм частного выглядит так: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема в виде формулы приобретает следующий вид: log a q b n = n/q log a b.

Называется эта формула "свойством степени логарифма". Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть log a b = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;

но так как a tn = (a q) nt/q = b n , следовательно log a q b n = (n*t)/t, тогда log a q b n = n/q log a b. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов - примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ответ равен 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы "Натуральные логарифмы".

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log 2 (2x-1) = 4. Решение:
перепишем выражение, немного его упростив log 2 (2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).

Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях « » , « » . В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение :

Логарифмом числа a по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.


Например:

Log 3 9 = 2, так как 3 2 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения: log 3 (4–x) = 4

Так как log b a = x b x = a, то

3 4 = 4 – x

x = 4 – 81

x = – 77

Проверка:

log 3 (4–(–77)) = 4

log 3 81 = 4

3 4 = 81 Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения: log 2 (4 – x) = 7

Найдите корень уравнения log 5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как log a b = x b x = a, то

5 2 = 4 + x

x =5 2 – 4

x = 21

Проверка:

log 5 (4 + 21) = 2

log 5 25 = 2

5 2 = 25 Верно.

Ответ: 21

Найдите корень уравнения log 3 (14 – x) = log 3 5.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения log 5 (5 – x) = log 5 3.

Найдите корень уравнения: log 4 (x + 3) = log 4 (4x – 15).

Если log c a = log c b, то a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени ().

Ответ: – 51

Решите самостоятельно:

Найдите корень уравнения: log 1/7 (7 – x) = – 2

Найдите корень уравнения log 2 (4 – x) = 2 log 2 5.

Преобразуем правую часть. воспользуемся свойством:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Если log c a = log c b, то a = b

4 – x = 5 2

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно:

Найдите корень уравнения: log 5 (5 – x) = 2 log 5 3

Решите уравнение log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Если log c a = log c b, то a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно:

Найдите корень уравнения log 5 (x 2 + x) = log 5 (x 2 + 10).

Решите уравнение log 2 (2 – x) = log 2 (2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log 2 (......)

Представляем 1 как логарифм с основанием 2:

1 = log 2 2

log с (ab) = log с a + log с b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Получаем:

log 2 (2 – x) = log 2 2 (2 – 3x)

Если log c a = log c b, то a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: Далее необходимо решить квадратное уравнение. Кстати,

корни равны 6 и – 4.

Корень "– 4" не является решением, так как основание логарифма должно быть больше нуля, а при " 4" оно равно « 5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно:

Решите уравнение log x –5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Подготовка к итоговому тестированию по математике включает в себя важный раздел - «Логарифмы». Задания из этой темы обязательно содержатся в ЕГЭ. Опыт прошлых лет показывает, что логарифмические уравнения вызвали затруднения у многих школьников. Поэтому понимать, как найти правильный ответ, и оперативно справляться с ними должны учащиеся с различным уровнем подготовки.

Сдайте аттестационное испытание успешно с помощью образовательного портала «Школково»!

При подготовке к единому государственному экзамену выпускникам старших классов требуется достоверный источник, предоставляющий максимально полную и точную информацию для успешного решения тестовых задач. Однако учебник не всегда оказывается под рукой, а поиск необходимых правил и формул в Интернете зачастую требует времени.

Образовательный портал «Школково» позволяет заниматься подготовкой к ЕГЭ в любом месте в любое время. На нашем сайте предлагается наиболее удобный подход к повторению и усвоению большого количества информации по логарифмам, а также по с одним и несколькими неизвестными. Начните с легких уравнений. Если вы справились с ними без труда, переходите к более сложным. Если у вас возникли проблемы с решением определенного неравенства, вы можете добавить его в «Избранное», чтобы вернуться к нему позже.

Найти необходимые формулы для выполнения задачи, повторить частные случаи и способы вычисления корня стандартного логарифмического уравнения вы можете, заглянув в раздел «Теоретическая справка». Преподаватели «Школково» собрали, систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме.

Чтобы без затруднений справляться с заданиями любой сложности, на нашем портале вы можете ознакомиться с решением некоторых типовых логарифмических уравнений. Для этого перейдите в раздел «Каталоги». У нас представлено большое количество примеров, в том числе с уравнениями профильного уровня ЕГЭ по математике.

Воспользоваться нашим порталом могут учащиеся из школ по всей России. Для начала занятий просто зарегистрируйтесь в системе и приступайте к решению уравнений. Для закрепления результатов советуем возвращаться на сайт «Школково» ежедневно.

Алгебра 11 класс

Тема: « Методы решения логарифмических уравнений »

Цели урока:

    образовательная: формирование знаний о разных способах решения логарифмических уравнений, умений применять их в каждой конкретной ситуации и выбирать для решения любой способ;

    развивающая: развитие умений наблюдать, сравнивать, применять знания в новой ситуации, выявлять закономерности, обобщать; формирование навыков взаимоконтроля и самоконтроля;

    воспитательная: воспитание ответственного отношения к учебному труду, внимательного восприятия материала на уроке, аккуратности ведения записей.

Тип урока : урок ознакомления с новым материалом.

«Изобретение логарифмов, сократив работу астронома, продлило ему жизнь».
Французский математик и астроном П.С. Лаплас

Ход урока

I. Постановка цели урока

Изученные определение логарифма, свойства логарифмов и логарифмической функции позволят нам решать логарифмические уравнения. Все логарифмические уравнения, какой бы сложности они не были, решаются по единым алгоритмам. Эти алгоритмы рассмотрим сегодня на уроке. Их немного. Если их освоить, то любое уравнение с логарифмами будет посильно каждому из вас.

Запишите в тетради тему урока: «Методы решения логарифмических уравнений». Приглашаю всех к сотрудничеству.

II. Актуализация опорных знаний

Подготовимся к изучению темы урока. Каждое задание вы решаете и записываете ответ, условие можно не писать. Работайте в парах.

1) При каких значениях х имеет смысл функция:

а)

б)

в)

д)

(По каждому слайду сверяются ответы и разбираются ошибки)

2) Совпадают ли графики функций?

а) y = x и

б) и

3) Перепишите равенства в виде логарифмических равенств:

4) Запишите числа в виде логарифмов с основанием 2:

4 =

2 =

0,5 =

1 =

5) Вычислите :

6) Попытайтесь восстановить или дополнить недостающие элементы в данных равенствах.

III. Ознакомление с новым материалом

Демонстрируется на экране высказывание:

«Уравнение – это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль

Попробуйте сформулировать определение логарифмического уравнения. (Уравнение, содержащее неизвестное под знаком логарифма ).

Рассмотрим простейшее логарифмическое уравнение: log а x = b (где а>0, a ≠ 1). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. (Логарифм числа х по основанию а – это показатель степени, в которую надо возвести основание а, чтобы получить число х ). Из определения логарифма сразу следует, что а в является таким решением.

Запишите заголовок: Методы решения логарифмических уравнений

1. По определению логарифма .

Так решаются простейшие уравнения вида .

Рассмотрим № 514(а ): Решить уравнение

Как вы предлагаете его решать? (По определению логарифма )

Решение . , Отсюда 2х – 4 = 4; х = 4.

Ответ: 4.

В этом задании 2х – 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать . Условие 2х – 4 > 0 в этом задании выписывать не надо.

2. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим №519(г): log 5 ( x 2 +8)- log 5 ( x +1)=3 log 5 2

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны) . Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение: ОДЗ:

X 2 +8>0 лишнее неравенство

log 5 ( x 2 +8) = log 5 2 3 + log 5 ( x +1)

log 5 ( x 2 +8)= log 5 (8 x +8)

Потенцируем исходное уравнение

x 2 +8= 8 x +8

получим уравнение x 2 +8= 8 x +8

Решаем его: x 2 -8 x =0

х=0, х=8

Ответ: 0; 8

В общем виде переходом к равносильной системе :

Уравнение

(Система содержит избыточное условие – одно из неравенств можно не рассматривать).

Вопрос классу : Какое из этих трех решений вам больше всего понравилось? (Обсуждение способов).

Вы имеете право решать любым способом.

3. Введение новой переменной .

Рассмотрим № 520(г) . .

Что вы заметили? (Это квадратное уравнение относительно log3x) Ваши предложения? (Ввести новую переменную)

Решение . ОДЗ: х > 0.

Пусть , тогда уравнение примет вид: . Дискриминант D > 0. Корни по теореме Виета: .

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

; .

Ответ : 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение: .

Решение : ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

. Применим свойство логарифма степени:

(lgx + 3) lgx =

(lgx + 3) lgx = 4

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4, ; lgx = 1, . . Он заключается в следующем : если одна из функций у = f(x) возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х .

Если корень имеется, то его можно угадать. .

Ответ : 2

«Правильному применению методов можно научиться,
только применяя их на различных примерах».
Датский историк математики Г. Г. Цейтен

I V. Домашнее задание

П. 39 рассмотреть пример 3, решить № 514(б), № 529(б), №520(б), №523(б)

V. Подведение итогов урока

Какие методы решения логарифмических уравнений мы рассмотрели на уроке?

На следующих уроках рассмотрим более сложные уравнения. Для их решения пригодятся изученные методы.

Демонстрируется последний слайд:

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого. Благодарю за сотрудничество и понимание.