Углеводородное топливо его виды и назначение. Что такое углеводородное топливо


1 .Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Природный газ состоит главным образом из метана (табл. 1).
Таблица 1 Состав природного газа
Компоненты Формула Содержание,%
Метан СН 4 88-95
Этан С 2 Н 6 3-8
Пропан С 3 Н 8 0,7-2,0
Бутан С 4 Н 10 0,2-0,7
Пентан С 5 Н 12 0,03-0,5
Диоксид углерода СО 2 0,6-2,0
Азот N 2 0,3-3,0
Гелий
Не
0,01-0,5

Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

Рисунок 1 Природный газ и сырая нефть обнаруживаются в ловушках между слоями горных пород.
Уголь является древнейшим источником энергии, с которым знакомо человечество. Он представляет собой минерал, который образовался из растительного вещества в процессе метаморфизма. Метаморфическими называются горные породы, состав которых подвергся изменениям в условиях высоких давлений, а также высоких температур. Продуктом первой стадии в процессе образования угля является торф, который представляет собой разложившееся органическое вещество. Уголь образуется из торфа после того, как он покрывается осадочными породами. Эти осадочные породы называются перегруженными. Перегруженные осадки уменьшают содержание влаги в торфе.

Таблица 2Содержание углерода в некоторых видах топлива и их теплотворная способность

Уголь служит важным источником сырья для получения ароматических соединений.
Углеводороды встречаются в природе не только в горючих ископаемых, но также и в некоторых материалах биологического происхождения. Натуральный каучук является примером природного углеводородного полимера. Молекула каучука состоит из тысяч структурных единиц, представляющих собой метилбута-1,3-диен (изопрен); ее строение схематически показано на рис. 4. Метилбута- 1,3-диен имеет следующую структуру:

И в составе природного газа, и нефти, и торфа, и угля общим является наличие группы углеводорода.

2. Физические свойства нефти. Нефть представляет собой маслянистую жидкость обычно тёмного цвета со своеобразным запахом. Она немного легче воды и в воде не растворяется.

Рисунок 2. Геологический разрез нефтеносной местности.
Нефть залегает в земле, заполняя пустоты между частицами различных горных пород (рис. 2). Для добывания её бурят скважины (рис. 3). Если нефть богата газами, она под давлением их сама поднимается на поверхность, если же давление газов для этого недостаточно, в нефтяном пласту создают искусственное давление путём нагнетания туда газа, воздуха или воды (рис. 4).
Если нефть нагревать в приборе, изображённом на рисунке 4, то можно заметить, что она кипит и перегоняется не при постоянной температуре, что характерно для чистых веществ, а в широком интервале температур. Это значит, что нефть представляет собой не индивидуальное вещество, а смесь веществ. При нагревании нефти сначала перегоняются вещества с меньшим молекулярным весом, обладающие более низкой температурой кипения, затем температура смеси постепенно повышается, и начинают перегоняться вещества с большим молекулярным весом, имеющие более высокую температуру кипения, и т. д.

Рисунок 3 .Нефть поднимается под давлением нагнетаемой в пласт
В состав нефти входят главным образом углеводороды. Основную массу её составляют жидкие углеводороды, в них растворены газообразные и твёрдые углеводороды.

Рисунок 4. Перегонка нефти в лаборатории.
Состав нефти различных месторождений неодинаков. Грозненская и западноукраинская нефть состоят главным образом из предельных углеводородов. Бакинская нефть состоит преимущественно из циклических углеводородов - цикланов. Цикланы - это углеводороды, отличающиеся по своему строению от предельных тем, что содержат замкнутые цепи (циклы) углеродных атомов.

3 .Серьезная экологическая проблема - загрязнение нефтепродуктами вод Мирового океана. Нефтепродукты попадают в воду прежде всего при морских перевозках. При погрузке, разгрузке, чистке танкеров часть нефти теряется. Кроме того, случаются и аварии танкеров, при которых в море могут попасть десятки тысяч тонн нефти. По оценкам экологов, в Мировой океан попадает ежегодно около 10 млн. тонн нефти, которая растекается по поверхности воды, образуя тонкую радужную пленку. По данным спутниковой фотосьемки, такой пленкой покрыта уже треть поверхности Мирового океана. Из-за этой пленки нарушается контакт поверхности воды с воздухом, уменьшается содержание растворенного в воде кислорода, и гибнут обитатели морей и озер. Кроме того, пленка на поверхности воды замедляет испарение воды, и воздушные массы, проходя над водой, мало насыщаются водяными парами - нефтяная пленка мешает. То есть эти воздушные массы несут на континент меньше осадков, и тоненькая пленка на поверхности воды может изменить климат целых материков

4 . РЕКТИФИКАЦИЯ - разделение жидких многокомпонентных смесей на отдельные компоненты. Ректификация основана на многократной дистилляции.(ДИСТИЛЛЯЦИЯ - разделение многокомпонентных жидких смесей на отличающиеся по составу фракции; основано на различии в составах жидкости и образующегося из нее пара. Осуществляется путем частичного испарения жидкости и последующей конденсации пара. Полученный конденсат обогащен низкокипящими компонентами, остаток жидкой смеси - высококипящими).
Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 4 указаны диапазоны температур кипения и состав различных фракций нефти
Таблица 3 Типичные фракции перегонки нефти

Фракция Температура кипения, °С Число атомов углерода в молекуле Содержание, масс. %
Газы <40 1-4 3
Бензин 40-100 4-8 7
Лигроин (нафта) 80-180 5-12 7
Керосин 160-250 10-16 13
Мазут: Смазочное масло и воск
350-500 20-35 25
Битум >500 >35 25

Перейдем теперь к описанию свойств отдельных фракций нефти.
Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.
Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.
Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракцией. Она состоит преимущественно из алканов (табл.4).
Бльшую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ.
Таблица 4 Углеводородный состав лигроиновой фракции типичной ближневосточной нефти
Углеводороды Число атомов углерода Содержание, %
5 6 7 8 9
Неразветвленные алканы 13 7 7 8 5 40
Разветвленные алканы 7 6 6 9 10 38
Циклоалканы 1 2 4 5 3 15
Ароматические соединения 2 4 1 7
100

Керосин . Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов и ароматических углеводородов. Часть ее подвергается очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.
Газойль . Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.
Мазут . Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска.Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.
5 .Крекинг. При вторичных методах переработки нефти и происходит изменение структуры углеводородов, входящих в ее состав. Среди этих методов большое значение имеет крекинг (расщепление) углеводородов нефти, проводимый для повышения выхода бензина. В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции
В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности.
сырой нефти

С 16 Н 34 > С 8 Н 16 + С 8 Н 18
Гексадекан октен октан

С 8 Н 18 > С 4 Н 10 + С 4 Н 8
Октан бутан бутен

С 4 Н 10 > С 2 Н 6 + С 2 Н 4
бутан этан этен

6 . Термический крекинг проводится при нагревании исходного сырья (мазута и др.) при температуре 450...550 °С и давлении 2...7 МПа. При этом молекулы углеводородов с большим числом атомов углерода расщепляются на молекулы с меньшим числом атомов как предельных, так и непредельных углеводородов. Таким способом получают главным образом автомобильный бензин. Выход его из нефти достигает 70%. Термический крекинг открыт русским инженером В.Г. Шуховым в 1891 г.
Каталитический крекинг производится в присутствии катализаторов (обычно алюмосиликатов) при 450 °С и атмосферном давлении. Этим способом получают авиационный бензин с выходом до 80%. Такому виду крекинга подвергается преимущественно керосиновая и газойлевая фракции нефти. При каталитическом крекинге наряду с реакциями расщепления протекают реакции изомеризации. В результате последних образуются предельные углеводороды с разветвленным углеродным скелетом молекул, что улучшает качество бензина.
Важным каталитическим процессом является ароматизация углеводородов, т. е. превращение парафинов и циклопарафинов в ароматические углеводороды. При нагревании тяжелых фракций нефтепродуктов в присутствии катализатора (платины или молибдена) углеводороды, содержащие 6...8 атомов углерода в молекуле, превращаются в ароматические углеводороды. Эти процессы протекают при риформинге (облагораживании бензинов).

Общее:
Реакция расщепления,при крекинг-процессах образуется большое количество газов (газы крекинга), которые содержат главным образом предельные и непредельные углеводороды. Эти газы используют в качестве сырья для химической промышленности.

Различия:
Получение разного рода бензина с разным процентным содержанием, в разных условиях,из неодинакового сырья.
7 .Газы нефтяные попутные - это углеводородные газы, которые сопутствуют нефти и выделяются из неё при сепарации.Газы нефтяные попутные содержат значительные количества этана, пропана, бутана и других предельных углеводородов. Кроме того, в газах нефтяных попутных присутствуют пары воды, а иногда и азот, углекислый газ, сероводород и редкие газы (гелий, аргон).
Перед подачей в магистральные газопроводы газ нефтяной попутный перерабатывают на так называемых газоперерабатывающих заводах, продукцией которых является газовый бензин, так называемый отбензиненный газ и углеводородные фракции, представляющие собой технически чистые углеводороды (этан, пропан, бутан, изобутан и др.) или их смеси.
Газовый бензин применяют как компонент автомобильных бензинов. Сжиженные газы (пропан-бутановая фракция) широко используют как моторное топливо для автотранспорта или как топливо для коммунально-бытовых нужд. Углеводородные фракции - ценное сырьё для химической и нефтехимической промышленности. Они широко используются для получения ацетилена. При окислении пропан-бутановой фракции образуются ацетальдегид, формальдегид, уксусная кислота, ацетон и др. продукты. Изобутан служит для производства высокооктановых компонентов моторных топлив, а также изобутилена - сырья для изготовления синтетического каучука. Дегидрированием изопентана получают изопрен - важный продукт при производстве синтетических каучуков.

Рис. 5 Оборудование по очистке попутного газа
8 .К природным газам относятся и так называемые попутные газы, которые обычно растворены в нефти и выделяются при ее добыче. В попутных газах содержится меньше метана, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в других природных газах, не связанных с залежами нефти, а именно: сероводород, азот, благородные газы, пары воды, углекислый газ.

СН 2 =СН 2 +Н 2 > СН 3 -СН 3

С 3 Н 6 +Сl 2 > СН 3 -СНСl-СН 3

С 2 Н 6 Сl-С 2 Н 6 Cl +2Nа> СН 3 -СН 2 -СН 2 -СН 3 +2NaCl

9.

10 .Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода. Процесс получения- кокса в результате переработки природных топлив называется коксованием.
В наше время 10% добываемого в мире каменного угля превращают в кокс. Коксование проводят в камерах коксовой печи, обогреваемых снаружи горящим газом. При повышении температуры в каменном угле происходят разнообразные процессы. При 250 0 С из него испаряется влага, выделяются СО и СО 2 ; при 350 0 С уголь размягчается, переходит в тестообразное, пластическое состояние, из него выделяются углеводороды-газообразные и низкокипящие, а также азотистые и фосфористые соединения. Тяжелые углистые остатки спекаются при 500 0 С, давая полукокс. А при 700 0 С и выше полукокс теряет остаточные летучие вещества, главным образом водород, и превращается в кокс.
Важным источником промышленного получения ароматических углеводородов наряду с переработкой нефти является коксование каменного угля.
При нагревании угля без доступа воздуха до 900-1050 о С приводит к его термическому разложению с образованием летучих продуктов и твердого остатка-кокса.
Коксование угля - периодический процесс. Основные продукты: кокс-96-98% углерода; коксовый газ-60% водорода, 25% метана, 7% оксида углерода (II) и др. Побочные продукты: каменноугольная смола (бензол, толуол), аммиак (из коксового газа)и др.
Реакции, характерные для продуктов коксования каменного угля.
Кокс применяют для изготовления электродов, для фильтрования жидкостей и, самое главное, для восстановления железа из железных руд и концентратов в доменном процессе выплавки чугуна. В доменной печи кокс сгорает и образуется оксид углерода (IV):

С + 0 2 = СО 2 + Q,

который взаимодействует с раскаленным коксом с образованием оксида углерода (II):
С + СO 2 = 2CO - Q
Оксид углерода (II) и является восстановителем железа, причем сначала из оксида железа (III) образуется оксид железа (II, III), затем оксид железа (II) и, наконец, железо:

        3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 + Q
        Fe 3 O 4 + CO = 3FeO + CO 2 – Q
        FeO + CO = Fe + CO 2 + Q
11. В последние годы (наряду с увеличением выработки топлива и масел) углеводороды нефти широко используют как источник химического сырья. Различными способами из них получают вещества, необходимые для производства пластмасс, синтетического текстильного волокна, синтетического каучука, спиртов, кислот, синтетических моющих средств, взрывчатых веществ, ядохимикатов, синтетических жиров и т.д.
Природный газ широко используют как дешевое топливо с высокой теплотворной способностью (при сжигании 1 м 3 выделяется до 54 400 кДж). Это один из лучших видов топлива для бытовых и промышленных нужд. Кроме того, природный газ служит ценным сырьем для химической промышленности. Разработано много способов переработки природных газов. Главная задача этой переработки - превращение предельных углеводородов в более активные - непредельные, которые затем переводят в синтетические полимеры (каучук, пластмассы). Кроме того, окислением углеводородов получают органические кислоты, спирты и другие продукты.
Раньше попутным газам также не находили применения, и при добыче нефти, они сжигались факельным способом. В настоящее время их стремятся улавливать и использовать как в качестве топлива, так и главным образом в качестве ценного химического сырья. Из попутных газов, а также газов крекинга нефти путем перегонки при низких температурах получают индивидуальные углеводороды.
Именно поэтому сжигание нефти, каменного угля и попутного нефтяного газа не является рациональным способом их использования.

МОУ ГИМНАЗИЯ №48

Реферат по химии на тему:

Природные источники углеводородов.


Челябинск 2003 г.
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Углеводородное топливо его виды и значение

Углеводородные топлива - представляют собой смесь углеводородов.

Схема установки для определения фракционного состава топлива. Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90 % объема топлива и температуру конца кипения.

Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболее гигроскопичными являются ароматические углеводороды и особенно бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.

Углеводородное топливо, поступающее при 260 С, подвергается крекингу при 500 С в псевдо ожженном слое; применяется технологическая схема реактор - регенератор.

Углеводородные топлива характеризуются высокой теплотой сгорания. Продуктами их полного сгорания являются, главным образом, двуокись углерода и вода. Лишь водород, бериллий и бор имеют большие теплоты сгорания, чем углеводороды. Однако При их использовании в качестве топлив возникают весьма сложные проблемы, которые здесь не рассматриваются. По эксплуатационным свойствам углеводороды как топлива отличаются значительными преимуществами.

Углеводородные топлива отличаются высокой скоростью и пол-нотой сгорания. Благодаря этому двигатель получает для своей работы тепловой заряд большой плотности в весьма короткий отрезок времени. При хорошо организованном процессе полнота сгорания углеводородных топлив достигает 98 % и более.

Углеводородные топлива мало различаются по количеству воздуха, теоретически необходимого для полного его сгорания - в пределах от 13 9 до 15 0 кг / кг топлива. Причем чем выше массовая теплота сгорания топлива (выше соотношение водорода к углероду), тем больше воздуха необходимо для его сгорания.

Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболее гигроскопичными являются ароматические углеводороды, и особенно, бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.

Углеводородное топливо, которое находится в газообразном состоянии при температуре от 15 С и атмосферном давлении.

Углеводородные топлива без добавок неуглеводородных соединений обладают высокой физической стабильностью.

Гигроскопичность углеводородов. Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее.

Легкое углеводородное топливо, перевозимое в жидком виде, а используемое в газообразном, называют сжиженным газом. Он получает широкое применение в качестве топлива в городах и сельских районах.

Углеводородные топлива типа керосина и широкой бензино-лигроино-керосиновой фракции имеют близкие пределы устойчивого горения в двигателе.

Для углеводородных топлив отношение СР / НР определяется с учетом относительного содержания углерода и водорода в рабочей массе топлива.

Для углеводородных топлив это сближение в первом приближении (за исключением области, близкой к области максимальной концентрации инертного газа) происходит прямо пропорционально изменению концентрации инертного газа и в основном вследствие смещения верхнего предела.

Дымность продуктов сгорания Д топлива ТС-1 на выходе из камеры сгорания ГТД в зависимости от давления в камере Я (по данным К. Н. Ерастова. Расход углеводородов и топлива GT, сжигаемых без дымления, в зависимости от давления Р [ 140 ]. Склонность углеводородных топлив к дымлению характеризуется высотой некоптящего пламени, люминометрическим числом и определяется непосредственно при квалификационных испытаниях топлив на модельной камере сгорания.

Сравнение эффективности различных способов получения водорода. Для углеводородных топлив единственным ограничением является минимум производительности, при которой еще оправдывается сравнительная сложность конструкции установок. При этом первостепенный интерес представляют установки на жидких нефтепродуктах как наиболее универсальные.

Среди углеводородных топлив худшую фильтруемость при одинаковых условиях имеют дизельные топлива, наилучшую - бензины. На установке, моделирующей топливную систему летательных аппаратов, была исследована фильтруемость различных топлив.

Теплопроводность углеводородных топлив зависит от химического состава и температуры.

Теплопроводность углеводородных топлив зависит от их химического состава и при 0 С и атмосферном давлении лежит в пределах 0 115 - 0 125 Вт / (м - К), С повышением температуры теплопроводность топлив уменьшается; давление влияет незначительно. Наибольшую теплоемкость имеют алканы нормального строения. По мере увеличения разветвленности и роста отношения С: Н теплоемкость углеводородов падает. Высокую теплоемкость имеют спирты. При увеличении давления теплоемкость немного уменьшается.

Для углеводородных топлив (без присадки антидетонатора) замечено, что скорость сгорания изменяется пропорционально октановому числу.

Теплоемкость углеводородных топлив при 20 С и атмосферном давлении составляет 1 6 - 2 0 кДж / кг К.

Теплопроводность углеводородных топлив при 0 С и атмосферном давлении изменяется в пределах 0 115 - 0 125 Вт / м К.

Теплотворность углеводородных топлив колеблется в довольно узких пределах.

Фракции, получаемые при перегонке сырой нефти.

Источниками углеводородного топлива являются сырая нефть и природный газ. Месторождения нефти и газа обычно находятся рядом и имеются во многих странах мира.

Эра дешевого углеводородного топлива, обеспечившего небывалые темпы экономического роста промышленно развитых государств, ушла в прошлое безвозвратно.

В углеводородных топливах, при их хранении, происходят химические изменения в основном за счет окисления и дальнейших превращений наиболее нестойких углеводородов. При этом образуются продукты окисления смолистого характера и топлива становятся непригодными к применению на двигателях.

Высшая теплота сгорания некоторых элементов. Теплота сгорания углеводородных топлив зависит от химического состава и строения индивидуальных углеводородов, входящих в состав топлива, и для углеводородов различных групп находится в пределах 9500 - 10 500 ккал / кг. В табл. 4 приведены значения теплоты сгорания на единицу массы и объема для элементов, обладающих наибольшей теплотой сгорания по сравнению с остальными элементами периодической системы.

Теплота сгорания углеводородных топлив может быть рассчитана по различным эмпирическим формулам.

Зависимость пределов устойчивости горения от химического состава углеводородов. При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть твердых выделений отлагается на поверхностях камеры сгорания в виде нагара. Образование нагара в двигателе зависит от следующих свойств топлива: фракционного и химического состава, плотности, содержания смолистых веществ, серы и других примесей. Кроме того, нагарообразование зависит от конструкции камеры сгорания и от полноты процесса сгорания.

Один пожарник спасает другого, попавшего в ядовитый дым, при пожаре в закрытом складе. При сжигании углеводородного топлива при низких температурах могут образовываться легкие углеводороды, альдегиды (такие как формальдегид) и органические кислоты. Значительные количества окиси азота образуются при высоких температурах - как следствие окисления азота, содержащегося в атмосфере, и при низких температурах горения топлива, в котором содержится много азота. Если топливо содержит хлор, образуется хлористый водород. Полимерные пластические материалы представляют особую опасность.

Молекулярную массу углеводородных топлив определяют главным образом криоскопическим методом и в редких случаях используют метод измерения плотности паров.

Сернистые соединения углеводородных топлив, в том числе и дизельного, в процессе конверсии паром переходят в основном в сероводород. Термодинамические расчеты, выполненные для некоторых реакций сероводорода с твердыми реагентами с целью определения степени превращения сероводорода в условиях больших концентраций водяного пара, показали, что для улавливания сероводорода из влажного газа наиболее благоприятным реагентом является окись цинка. Степень поглощения сероводорода окисью цинка даже в условиях высоких концентраций водяного пара (около 50 %) при температуре 800 - 900 С остается значительной (52 %), а окись кальция в этих же условиях не хемосор-бирует сероводорода.

Катализ окисления

Катализ окисления углеводородных топлив ионами металлов заключается в генерировании радикалов, обусловливающих развитие окислительных цепей и требующих дополнительного расхода антиокислителя на вывод из сферы реакции вновь образующихся пероксидных радикалов.

Для получения углеводородных топлив с повышенной термической стабильностью предложены способы , которые применяют обработку нефтяных дистиллятов серной кислотой и молекулярными ситами. Молекулярные сита избирательно выделяют полярные соединения, ухудшающие его термостабильность.

При контакте углеводородных топлив с металлами, особенно при повьппенной температуре, на поверхности последних образуются отложения.

Условия применения углеводородных топлив в ракетных двигателях и в сверхзвуковых самолетах существенно различаются. Из бака под наддувом газифицированного азота горючее поступает в центробежный насос, откуда через главный клапан - в зарубашечное пространство двигателя. Часть топлива после главного клапана горючего отбирается в систему автоматического управления рабочим процессом, где имеются узлы с зазорами трущихся пар 17 - 20 мк.

Схема термовоздушного газификатора бензина. Паровая конверсия углеводородного топлива в конструктивном оформлении более сложная. Это обусловлено необходимостью иметь дополнительную емкость для воды, систему ее подачи и дозирования.

Энергетические характеристики топлив для ВРД. Энергетические характеристики углеводородных топлив для ВРД могут быть повышены при помощи их радиоактивного облучения. При радиоактивном облучении молекулярный вес топлива увеличивается.

Энергетические характеристики углеводородных топлив для ВРД ограничены тем, что в их составе наряду с водородом, обладающим самой высокой теплотой сгорания 28 700 ккал / кг, содержится углерод, теплота сгорания которого невысока - 7800 ккал / кг. Путем замены углерода на более высококалорийные элементы, например бериллий (14 970 ккал / кг) и бор (14 170 ккал / кг), открываются широкие возможности получения перспективных высокоэнергетических топлив для ВРД.

Кислотное число углеводородных топлив и масел очень мало. Кислоты, а особенно оксикислоты, накапливающиеся в топливах и маслах при эксплуатации, являются крайне нежелательной примесью.

При выборе углеводородного топлива необходимо рассмотреть некоторые свойства углеводородов. К ним относятся количество теплоты, выделяемое на каждый грамм сожженного топлива; преимущество высокой энтальпии сгорания может быть утрачено, если из-за большой молекулярной массы требуется мною топлива.

Теплотворная способность углеводородных топлив зависит от элементарного состава, который в свою очередь связан с групповым составом.

При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы, по-видимому, в результате пиролиза топлива до кокса уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть коксовых выделений отлагается на поверхностях камеры сгорания, лопатках турбины и прочих частях в виде нагара. Образование нагара в первую очередь зависит от условий сгорания топлива и его химического состава, в частности, от содержания углерода и водорода.

теплопроводность углеводородный топливо водород

Виды углеводородного топлива

Ароматические углеводороды - органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. -- бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5--C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Осн. источником получения А. у. служат продукты коксования кам. угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда (см. Ароматизация нефтепродуктов). Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу:

По химическим свойствам А. у. резко отличаются от ненасыщенных алициклических соединений; их выделяют в самостоятельный большой класс органических соединений (см. Ароматические соединения). При действии серной кислоты, азотной кислоты, галогенов и других реагентов в А. у. замещаются атомы водорода и образуются ароматические сульфокислоты, нитросоединения, галогенбензолы и т. д. Эти соединения служат промежуточными продуктами в производстве красителей, лекарственных средств и др. Стирол легко образует практически важный полимер -- полистирол. При окислении нафталина образуется фталевая кислота о-С6Н4 (COOH)2, служащая исходным продуктом в производстве многих красителей, глифталевых смол, фенолфталеина.

(алканы) разветвлённого строения, наименьшее октановое число имеют парафиновые углеводороды нормального строения. Топлива нефтяного происхождения, полученные каталитическим риформингом и крекингом, имеют более высокие октановые числа, чем полученные при прямой перегонке.

Для повышения октанового числа топлив используются высокооктановые компоненты и антидетонационные присадки. Многие из них (например, МТБЭ) испаряются легче, чем бензин, что приводит к интересному эффекту у машин с негерметичным бензобаком -- по мере расходования топлива и испарения присадки октановое число бензина, оставшегося в баке, уменьшается на несколько единиц. Это приводит к лёгкому звону при полной мощности мотора (необорудованного датчиком детонации). Подавляющее большинство современных инжекторных двигателей имеют датчики детонации, позволяющие использовать любой бензин с октановым числом 91--98, в двигатели с высокой степенью сжатия можно заливать бензин с октановым числом не ниже 95 или даже 98.

Органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. -- бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5--C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Осн. источником получения А. у. служат продукты коксования кам. угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда (см. Ароматизация нефтепродуктов). Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу

По химическим свойствам А. у. резко отличаются от ненасыщенных алициклических соединений; их выделяют в самостоятельный большой класс органических соединений (см. Ароматические соединения). При действии серной кислоты, азотной кислоты, галогенов и других реагентов в А. у. замещаются атомы водорода и образуются ароматические сульфокислоты, нитросоединения, галогенбензолы и т. д.

Парафиновые углеводороды

Из нефти выделены все алканы нормального строения, вплоть до С33Н68. С5 - C16 - жидкости, С17 и более - твердые вещества.

При осуществлении технологического процесса следует учитывать склонность их при определенных условиях к образованию ассоциатов.

Межмолекулярные взаимодействия высокомолекулярных (ВМ) алканов обусловлены водородными связями типа С-Н …С с энергией 2-4 кДж/моль и дисперсионными силами.

С понижением температуры число молекул углеводородов в парафиновом ассоциате возрастает, т.к. парафиновая цепь из зигзагообразной формы переходит в распрямленную, линейную и в этом состоянии молекулы ВМ парафинов являются склонными к межмолекулярному взаимодействию (ММВ) и образуют надмолекулярные структуры.

Температура начала образования ассоциата повышается с увеличением молекулярной массы углеводородов:

Н-пентан - -60°С;

Н-гексадекан - +80°С.

Число молекул углеводорода в ассоциате тем больше, чем ниже температура:

Н-гексадекан при 20°С - 3 молекулы.

Н-октан при -50°С - 31 молекула.

Это объясняется ослаблением теплового движения молекул углеводородов с понижением температуры и усилением энергии ММВ алканов с ростом длины цепи. Интенсивность ММВ алканов существенно ниже по сравнению с углеводородами других классов, присутствующими в нефтяных системах.

Парафиновые надмолекулярные структуры могут существовать в нефтяной системе только в области низких температур и полностью дезагрегируются при повышении температуры.

Размещено на Allbest.ru

...

Подобные документы

    Основные виды жидких и твёрдыхе ракетных топлив, их характеристики, состав и свойства. Особенности выбора горючего, влияние вида окислителя. Преимущества однокомпонентных и недостатки двухкомпонентных топлив. Ракетные пороха и смесевые ракетные топлива.

    курсовая работа , добавлен 13.12.2013

    Циклоалканы, их химические качества и влияние на эксплуатационные свойства топлив. Свойства жидких топлив, склонность к образованию отложений и коррозионная активность. Виды трения, износ и основные функции смазочных масел (моторных и трансмиссионных).

    реферат , добавлен 11.10.2015

    Преимущества и недостатки дизельного топлива. Влияние воспламеняемости, вязкости и плотности, фракционного состава, содержания серы и воды на работу дизеля. Сравнение биодизеля с дизтопливом по физико-химическим и эксплуатационным характеристикам.

    реферат , добавлен 23.09.2013

    Сущность и процесс получения бензина. Сферы применения бензина конце XIX века и в настоящее время. Особенности авиационного и автомобильного топлива. Маркировка автомобильного бензина, его физико-химические свойства и воздействие на человеческий организм.

    презентация , добавлен 11.12.2012

    Классификация газообразных топлив. Очистка газа от примесей. Осушка газа короткоцикловой безнагревной адсорбцией. Разделение газа на фракции на установке ГФУ. Получение и применение продуктов газофракционирования. Состав сухого газообразного топлива.

    курсовая работа , добавлен 05.05.2015

    Основные характеристики дизельного топлива. Требования к качеству дизтоплива в Европе и США, России. Понижение содержания серы в дизельном топливе с помощью специальных присадок. Изменение фракционного состава топлива. Описание основных методов очистки.

    курсовая работа , добавлен 26.03.2013

    Нефть, ее происхождение и состав, значение углеводородной, неуглеводородной части и минеральных примесей. Нефтепродукты и их детонационное свойство, общая схема переработки нефти и получения топлива для нужд хозяйства. Технология крекинг-процесса.

    курсовая работа , добавлен 16.11.2009

    Общие теории гомогенного катализа. Стадии процесса катализа и скорость реакции. Кинетика каталитической реакции диспропорционирования пероксида водорода в присутствии различных количеств катализатора Fe2+, влияние pH на скорость протекания реакции.

    контрольная работа , добавлен 18.09.2012

    Исследование физических и химических свойств водорода, методов его получения и применения. Характеристика топливного водородно-кислородного элемента Бэкона, хранения энергии планирования нагрузки. Анализ состава космического топлива, особой роли платины.

    курсовая работа , добавлен 11.10.2011

    Современные технологии гидроочистки (гидрокрекинг и др.) дизельного топлива и использование противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок. Химизм и механизм гидроочистки ДТ.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И МОЛОДЁЖНОЙ ПОЛИТИКИ СТАВРОПОЛЬСКОГО КРАЯ
Государственное бюджетное профессиональное образовательное учреждение «Ставропольский строительный техникум»

Индивидуальный проект
по учебной дисциплине
ХИМИЯ

На тему: УГЛЕВОДОРОДНОЕ ТОПЛИВО, ЕГО ВИДЫ И НАЗНАЧЕНИЕ

Выполнил (а):
Чередник
Валентин Андреевич
специальность
08.02.08
Монтаж и эксплуатация оборудования и системгазоснабжения
номер группы
СТ-152
Преподаватель:
Побережная Елена Геннадьевна

Ставрополь, 2016

Содержание
Введение.
Углеводородное топливо его виды и значение:
1. Жидкие нефтяные топлива.
2. Углеводородные горючие газы.
Заключение.
Список использованной литературы.
Цель работы:
Почему я выбралэту тему?
Я выбрал эту тему, потому что хотел больше узнать о видах топлива и где их применяют.
Даже в повседневной жизни, я использую предметы из углеводородов- самый яркий пример -это пластмассы, но также из углеводородов получают топливо, что естественно отражается на нём, если цены на переработку и добычу увеличиваются, самая дешёвая нефть в странах Персидского залива, так как там её ещё можнодобывать фонтанным способом! В России цены конечно выше, так как у нас и климатические условия трудные для разработки. А ещё Россия поставляет на мировой рынок не продукты полученные из нефти, а само сырьё, поэтому мы зависим от цен, так как почти вся нефть идет на экспорт, а себе закупаем из других стран на бензин.
Недавно группа британских ученых, похоже, нашла способ слезть с "нефтяной иглы".Исследователи разработали технологию получения топлива из компонентов самого обычного атмосферного воздуха. Кроме того, технология позволит снизить уровень выбросов углекислого газа в атмосферу.
Альтернативы углеводородному топливу предлагаются довольно часто. Но, если говорить о транспортных средствах, промышленные масштабы получили пока только два источника энергии для машин – электричество и водород (аточнее, топливные элементы, использующие водород).
Британские ученые из компании Air Fuel Synthesis (AFS) из города Стоктон-он-Тис на северо-востоке Англии предложили свою альтернативу. Как сообщает "РИА Новости" со ссылкой на местные СМИ, в компании смогли выработать 5 литров топлива, синтезированного из атмосферного углекислого газа и водяных паров.
"Мы взяли диоксид углерода из воздуха и водородиз воды и обратили эти элементы в горючее. Никто раньше ни в нашей стране, ни, насколько мне известно, за рубежом не делал этого. Жидкость выглядит и пахнет, как бензин, но это гораздо более чистый продукт, чем бензин, полученный из нефти", - пояснил глава компании Питер Харрисон.
Открытие было продемонстрировано научному сообществу в лондонском Институте механической инженерии. Сообщается, чтопока что процесс добычи топлива из воздуха нуждается в электроэнергии из национальной электросети. В будущем ученые планируют перевести его на возобновляемые источники.
Более того, в ближайшие два года AFS надеется построить завод по производству такого топлива. По предварительным расчетам, компания сможет выпускать по тонне горючего в день.
"Все это звучит слишком хорошо, чтобы быть правдой, но этоправда… Процесс использует хорошо известные всем компоненты, но что восхитительно - это то, что они сумели свести воедино весь этот процесс и показать, что он может приносить результаты", - добавил глава департамента энергетики и окружающей среды Института механической инженерии Тим Фокс.
Введение
Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количестваиндивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90 % объема топлива и температуру конца кипения.
Углеводородные топлива обладают свойством поглощать воду из воздуха и...

2.1 Компримированный природный газ

2.2 Сжиженный углеводородный газ

2.3 Сжиженный природный газ

3. Заключение

4. Список литературы

  1. Введение

На сегодняшний день топливно-энергетическая и природная проблемы обретают все большую значимость и масштабность. Сокращение нефтяных месторождений, ежегодное повышение использования моторного горючего приводят к нехватке и, как результат, увеличению цены бензина и дизельного топлива. Время от времени возникающие мировые топливные кризисы, раз за разом вынуждают подумать о потребности применения других типов энергоресурсов. А автотранспорт считается одним из основных загрязнителей окружающей среды во всем обществе.

Ежегодно только российским автопарком (это более 34 миллионов единиц автотранспортных средств по целой стране) выбрасывается с отработавшими газами 14 миллионов тонн вредных элементов, что составляет 40% общих промышленных выбросов в атмосферу. В крупных населенных пунктах они достигают 90% и представляют значительную экологическую опасность здоровью населения. Размер природоохранного ущерба, причиняемого промышленными выбросами, составляет 2% ВВП, при этом, 60% вреда наносится непосредственно автотранспортом. В совокупности с ежегодным удорожанием нефтепродуктов все без исключения вышеприведенные условия вынуждают сосредоточить более пристальное внимание на вопрос о переходе автотранспорта на другие разновидности топлива.

Наиболее перспективные из них – это природный газ (метан) и углеводородные газы (пропан-бутановые смеси), т.к. на территории нашего государства сконцентрирована без малого третья часть всемирных резервов углеводородного сырья. В настоящий момент сжатый природный газ (КПГ) и сжиженный углеводородный газ (СУГ) считаются более подготовленными видами горючего для применения в двигателях внутреннего сгорания в российских реалиях. За границей стремительно используется сжиженный природный газ (СПГ). Применение данного типа горючего в перспективе станет расширяться и в Российской федерации.

  1. Углеводородное топливо

Газообразное топливо - единственный тип альтернативного топлива, для которого в Российской Федерации решены технические и экологические проблемы использования. Главная сложность перехода автомобильного автотранспорта на газовое топливо состоит в необходимости формирования надлежащей инфраструктуры: заводов, хранилищ, заправочных станций. Приходится принимать во внимание и психологию покупателя, с предубеждением относящегося к необычному газообразному топливу.

По физическому состоянию горючие газы разделяются в 2 категории: сжатые и сжиженные. В случае если критическая температура углеводородов ниже обычных температур при эксплуатации машин, то их используют в сжатом варианте, а в случае если выше - то в сжиженном варианте под давлением 1,5...2,0 МПа.

2.1 Компримированный природный газ

Компримированный природный газ транспортируют по газопроводу под давлением 50-70 атм. Вплоть до 1994 годы вместо термина «компримированный природный газ» использовался термин «сжатый природный газ».

Природный газ состоит в основном из метана (на 90 %) с небольшими примесями этана (до 6%), пропана (до 1,7%), и бутана (до 1%).

Метан - газ без цвета и аромата, малорастворим в воде, легче воздуха. Он принадлежит к предельным углеводородам, молекулы которых состоят только лишь из углерода и водорода. Значительное содержание водорода гарантирует более полное горение топлива в цилиндрах двигателя по сопоставлению с бензином и сжиженным нефтяным газом, по этой причине метан считается полноценным топливом для машин с хорошими антидетонационными характеристиками.

Топливо – горючие вещества, в основе состава которых лежит элемент углерод. Кроме углерода в топливе, как правило, присутствует водород, кислород, азот, сера и некоторые другие элементы. Топливо служит для получения тепловой энергии и как химическое сырье. В настоящее время за счет топлива получается около 90% энергии потребляемой человеком и более 80% различных химических продуктов, в том числе почти все синтетические материалы (пластмассы, каучук, волокна и т.д.).

Кроме углеродистых топлив в последнее время некоторое значение по объему потребления приобрело топливо термоядерное (тепло выделяется за счет синтеза ядер или распаде ядер тяжелых элементов).

Основным показателем достоинств любого топлива при его использовании является теплота сгорания (Q) (теплотворная способность), т.е. количество тепла, которое можно получить при сгорании единицы массы или объема топлива. Различают высшую теплоту сгорания (Qв), которая учитывает теплоту конденсации водяных и низшую теплоту сгорания (Qн), когда это тепло не учитывается.

Теплота сгорания измеряется в джоулях или калориях (1 Кал. = 4,19 Дж). Обычно теплота сгорания выражается в калориях или Джоулях на единицу топлива (удельная теплота сгорания). Для твердого или жидкого топлива единицей является килограмм (кДж/кг, ккал/кг), для газообразного – кубический метр: (кДж/м 3 , ккал/м 3).

Теплота сгорания определяется сжиганием навески топлива с кислородом в специальных приборах (калориметрическая бомба, проточный калориметр). Определенная таким образом теплота сгорания обозначается, как теплота сгорания в бомбе (Qб). Эта величина служит обычно для практической оценки топлива и с соответствующими поправками для всякого рода теплотехнических расчетов.

Все виды ископаемого топлива значительно разнятся друг от друга по теплоте сгорания, в то же время расчеты энергетических установок требуют применения единой системы оценки качества топлива с этой точки зрения.

Уже давно введена такая условная единица – так называемое условное топливо. Условное топливо (т.у.т.) определяет не теплоту сгорания 1 кг топлива, а количество топлива, способное дать при сгорании 7000 ккал. Введение такой единицы позволяет вести теплотехнические и технохимические расчеты и, прежде всего, составлять топливные балансы предприятий и районов на одной основе.

Общие запасы углеродного топлива на земле достаточны, чтобы обеспечить энергетику и химическое их использование в течение многих столетий развития человеческого общества.

Оценка запасов топлива может определяться в различных единицах, например, в тоннах, калориях, киловаттчасах. Определение в тоннах мало показательно из-за различия в качестве топлива, а в калориях из-за разных КПД топочных устройств.



Энергетическая ценность источников энергии определяется количеством энергии (в кВт-ч), которая может быть получена при сжигании 1 кг или 1 м 3 топлива. Энергетическая ценность некоторых видов топлива приведена ниже (для природного газа – в кВт-ч/м 3 , для остальных – в кВт-ч/кг):

Целесообразность применения некоторых источников энергии определяется не только их энергетической ценностью, но и запасами их в природе, географическим положением, доступностью и некоторыми другими факторами.

Следует иметь ввиду, что количественное выражение запасов топлива в виде возможной для получения энергии в кВт-ч или Джоулях не отражает полностью их истинную ценность, так как необходимо учитывать также ценность их как сырья для химических производств. В этом отношении нефть и газ в настоящее время значительно превосходят все другие виды топлива. Следует сказать также, что потенциально все топлива одинаково ценны.

Исключительно важным обстоятельством для оценки топлива является его агрегатное состояние. Топлива делятся на твердые, жидкие и газообразные. Твердые топлива – угли, горючие сланцы, торф, древесина исторически первыми выступили в человеческой практике. Появление двигателей внутреннего сгорания вызвало необходимость производства жидких или газообразных топлив. Решающее значение среди топлив стала играть нефть, а также природный газ.

Эти оба топлива, наряду с самой высокой теплотой сгорания, обладают также и другими преимуществами. Для их добычи нет необходимости строить шахты, специальные машины для их извлечения, дробления и обогащения. Дальний транспорт нефти и газа осуществляется по трубопроводам, что также в очень большой степени увеличивает экономическую эффективность их применения. В то же время возможность добычи и транспорта нефти и газа стало возможно только при наличии высокой техники бурения, мощных компрессоров и насосов, больших количеств высококачественных сталей и других условий, которые характерны для современного уровня развития промышленности. Экономические показатели добычи и применения нефти и газа значительно превосходят все другие виды топлива.

В настоящее время нефть и газ занимают ведущее положение в мировом топливно-энергетическом балансе.

Мировые достоверные запасы нефти оцениваются в 159 млрд. м 3 (136 млрд. т). При существующих объемах добычи нефти равных 3,9 млрд. м 3 (3,3 млрд.т) они будут исчерпаны за 41 год. Мировые запасы ископаемых углей оцениваются величиной более 1,12×1013 тонн. При существующих объемах добычи они будут исчерпаны через более чем полтора тысячелетия.

Суммарные разведанные запасы природного газа не Земле оцениваются в 150×1012 м 3 . Россия является крупнейшей мировой державой по запасам природного газа, которые составляют до 30% мировых разведанных запасов.

В народном хозяйстве РФ расход топлива распределяется следующим образом:

По отдельным отраслям потребление топлива составляет:

В так называемых огнетехнических цехах предприятий доля топлива составляет:

Контрольные вопросы к теме V

«Топливо и энергия в химической промышленности»

1. Какие виды энергии и с какой целью используются в химической промышленности?

2. Что такое энергоемкость химического производства и на какие классы она делится? Приведите примеры.

3. Перечислите основные источники энергии и классифицируйте их.

4. Чем характеризуемся энергетическая ценность химического топ­лива?

5. На чем основано использование водорода в энергетике?

6. В чем особенности и преимущества использования новых видов энергии в химическом производстве?

7. Перечислите основные пути рационального использования энер­гии в химической промышленности.

8. Что такое вторичные энергетические ресурсы (ВЭР)? Приведите пример.

9. Для каких целей используются в химической промышленности плазмохимические процессы?

Раздел 2. Технология органических и неорганических веществ