Учимся решать простейшие логарифмические уравнения. Логарифмические уравнения

Сегодня мы научимся решать самые простые логарифмические уравнения, где не требуются предварительные преобразования и отбор корней. Но если научиться решать такие уравнения, дальше будет намного проще.

Простейшее логарифмическое уравнение — это уравнение вида log a f (x ) = b , где a , b — числа (a > 0, a ≠ 1), f (x ) — некоторая функция.

Отличительная особенность всех логарифмических уравнений — наличие переменной x под знаком логарифма. Если изначально в задаче дано именно такое уравнение, оно называется простейшим. Любые другие логарифмические уравнения сводятся к простейшим путем специальных преобразований (см. «Основные свойства логарифмов »). Однако при этом надо учитывать многочисленные тонкости: могут возникнуть лишние корни, поэтому сложные логарифмические уравнения будут рассмотрены отдельно.

Как решать такие уравнения? Достаточно заменить число, стоящее справа от знака равенства, логарифмом по тому же основанию, что и слева. Затем можно избавиться от знака логарифма. Получим:

log a f (x ) = b ⇒ log a f (x ) = log a a b ⇒ f (x ) = a b

Получили обычное уравнение. Его корни являются корнями исходного уравнения.

Вынесение степеней

Зачастую логарифмические уравнения, которые внешне выглядят сложно и угрожающе, решаются буквально в пару строчек без привлечения сложных формул. Сегодня мы рассмотрим именно такие задачи, где все, что от вас потребуется — аккуратно свести формулу к канонической форме и не растеряться при поиске области определения логарифмов.

Сегодня, как вы уже наверняка догадались из названия, мы будем решать логарифмические уравнения по формулам перехода к канонической форме. Основной «фишкой» данного видеоурока будет работа со степенями, а точнее, вынесение степени из основания и аргумента. Давайте рассмотрим правило:

Аналогичным образом можно вынести степень и из основания:

Как видим, если при вынесении степени из аргумента логарифма у нас просто появляется дополнительный множитель спереди, то при вынесении степени из основания — не просто множитель, а перевернутый множитель. Это нужно помнить.

Наконец, самое интересное. Данные формулы можно объединить, тогда мы получим:

Разумеется, при выполнении данных переходов существуют определенные подводные камни, связанные с возможным расширением области определения или, наоборот, сужением области определения. Судите сами:

log 3 x 2 = 2 ∙ log 3 x

Если в первом случае в качестве x могло стоять любое число, отличное от 0, т. е. требование x ≠ 0, то во втором случае нас устроят лишь x , которые не только не равны, а строго больше 0, потому что область определения логарифма состоит в том, чтобы аргумент был строго больше 0. Поэтому напомню вам замечательную формулу из курса алгебры 8—9 класса:

То есть, мы должны записать нашу формулу следующим образом:

log 3 x 2 = 2 ∙ log 3 |x |

Тогда никакого сужения области определения не произойдет.

Однако в сегодняшнем видеоуроке никаких квадратов не будет. Если вы посмотрите на наши задачи, то увидите только корни. Следовательно, применять данное правило мы не будем, однако его все равно необходимо держать в голове, чтобы в нужный момент, когда вы увидите квадратичную функцию в аргументе или основании логарифма, вы вспомните это правило и все преобразования выполните верно.

Итак, первое уравнение:

Для решения такой задачи предлагаю внимательно посмотреть на каждое из слагаемых, присутствующих в формуле.

Давайте перепишем первое слагаемое в виде степени с рациональным показателем:

Смотрим на второе слагаемое: log 3 (1 − x ). Здесь делать ничего не нужно, здесь все уже преобразовании.

Наконец, 0, 5. Как я уже говорил в предыдущих уроках, при решении логарифмических уравнений и формул очень рекомендую переходить от десятичных дробей к обычным. Давайте так и сделаем:

0,5 = 5/10 = 1/2

Перепишем наше исходную формулу с учетом полученных слагаемых:

log 3 (1 − x ) = 1

Теперь переходим к канонической форме:

log 3 (1 − x ) = log 3 3

Избавляемся от знака логарифма, приравнивая аргументы:

1 − x = 3

−x = 2

x = −2

Все, мы решили уравнение. Однако давайте все-таки подстрахуемся и найдем область определения. Для этого вернемся к исходной формуле и посмотрим:

1 − x > 0

−x > −1

x < 1

Наш корень x = −2 удовлетворяет это требование, следовательно, x = −2 является решением исходного уравнения. Вот теперь мы получили строгое четкое обоснование. Все, задача решена.

Переходим ко второй задаче:

Давайте разбираться с каждым слагаемым отдельно.

Выписываем первое:

Первое слагаемое мы преобразовали. Работаем со вторым слагаемым:

Наконец, последнее слагаемое, которое стоит справа от знака равенства:

Подставляем полученные выражения вместо слагаемых в полученной формуле:

log 3 x = 1

Переходим к канонической форме:

log 3 x = log 3 3

Избавляемся от знака логарифма, приравнивая аргументы, и получаем:

x = 3

Опять же, давайте на всякий случай подстрахуемся, вернемся к исходному уравнению и посмотрим. В исходной формуле переменная x присутствует только в аргументе, следовательно,

x > 0

Во втором логарифме x стоит под корнем, но опять же в аргументе, следовательно, корень должен быть больше 0, т. е. подкоренное выражение должно быть больше 0. Смотрим на наш корень x = 3. Очевидно, что он удовлетворяет это требование. Следовательно, x = 3 является решением исходного логарифмического уравнения. Все, задача решена.

Ключевых моментов в сегодняшнем видеоуроке два:

1) не бойтесь преобразовывать логарифмы и, в частности, не бойтесь выносить степени за знак логарифма, при этом помните нашу основную формулу: при вынесении степени из аргумента она выносится просто без изменений как множитель, а при вынесении степени из основания эта степень переворачивается.

2) второй момент связан с само канонической формой. Переход к канонической форме мы выполняли в самом конце преобразования формулы логарифмического уравнения. Напомню следующую формулу:

a = log b b a

Разумеется, под выражением «любое число b », я подразумеваю такие числа, которые удовлетворяют требования, накладываемые на основание логарифма, т. е.

1 ≠ b > 0

Вот при таких b , а поскольку основание у нас уже известно, то это требование будет выполняться автоматически. Но при таких b — любых, которые удовлетворяют данное требование — данный переход может быть выполнен, и у нас получится каноническая форма, в которой можно избавиться от знака логарифма.

Расширение области определения и лишние корни

В процессе преобразования логарифмических уравнений может произойти неявное расширение области определения. Зачастую ученики этого даже не замечают, что приводит к ошибкам и неправильным ответам.

Начнем с простейших конструкций. Простейшим логарифмическим уравнением называется следующее:

log a f (x ) = b

Обратите внимание: x присутствует лишь в одном аргументе одного логарифма. Как мы решаем такие уравнения? Используем каноническую форму. Для этого представляем число b = log a a b , и наше уравнение перепишется в следующем виде:

log a f (x ) = log a a b

Данная запись называется канонической формой. Именно к ней следует сводить любое логарифмическое уравнение, которое вы встретите не только в сегодняшнем уроке, но и в любой самостоятельной и контрольной работе.

Как прийти к канонической форме, какие приемы использовать — это уже вопрос практики. Главное понимать: как только вы получите такую запись, можно считать, что задача решена. Потому что следующим шагом будет запись:

f (x ) = a b

Другими словами, мы избавляемся от знака логарифма и просто приравниваем аргументы.

К чему весь этот разговор? Дело в том, что каноническая форма применима не только к простейшим задачам, но и к любым другим. В частности и к тем, которые мы будем решать сегодня. Давайте посмотрим.

Первая задача:

В чем проблема данного уравнения? В том, что функция стоит сразу в двух логарифмах. Задачу можно свести к простейшей, просто вычтя один логарифм из другого. Но возникают проблемы с областью определения: могут появиться лишние корни. Поэтому давайте просто перенесем один из логарифмов вправо:

Вот такая запись уже гораздо больше похожа на каноническую форму. Но есть еще один нюанс: в канонической форме аргументы должны быть одинаковы. А у нас слева стоит логарифм по основанию 3, а справа — по основанию 1/3. Знаит, нужно привести эти основания к одному и тому же числу. Например, вспомним, что такое отрицательные степени:

А затем воспользуемся вынесем показатель «−1» за пределы log в качестве множителя:

Обратите внимание: степень, которая стояла в основании, переворачивается и превращается в дробь. Мы получили почти каноническую запись, избавившись от разных оснований, но взамен получили множитель «−1» справа. Давайте внесем этот множитель в аргумент, превратив его в степень:

Разумеется, получив каноническую форму, мы смело зачеркиваем знак логарифма и приравниваем аргументы. При этом напомню, что при возведении в степень «−1» дробь просто переворачивается — получается пропорция.

Воспользуемся основным свойством пропорции и перемножим ее крест-накрест:

(x − 4) (2x − 1) = (x − 5) (3x − 4)

2x 2 − x − 8x + 4 = 3x 2 − 4x − 15x + 20

2x 2 − 9x + 4 = 3x 2 − 19x + 20

x 2 − 10x + 16 = 0

Перед нами приведенное квадратное уравнение, поэтому решаем его с помощью формул Виета:

(x − 8)(x − 2) = 0

x 1 = 8; x 2 = 2

Вот и все. Думаете, уравнение решено? Нет! За такое решение мы получим 0 баллов, потому что в исходном уравнении присутствуют сразу два логарифма с переменной x . Поэтому требуется учесть область определения.

И здесь начинается самое веселое. Большинство учеников путаются: в чем состоит область определения логарифма? Разумеется, все аргументы (у нас их два) должны быть больше нуля:

(x − 4)/(3x − 4) > 0

(x − 5)/(2x − 1) > 0

Каждое из этих неравенств нужно решить, отметить на прямой, пересечь — и только потом посмотреть, какие корни лежат на пересечении.

Скажу честно: такой прием имеет право на существование, он надежный, и вы получите правильный ответ, однако в нем слишком много лишних действий. Поэтому давайте еще раз пройдемся по нашему решению и посмотрим: где именно требуется применить область определения? Другими словами, нужно четно понимать, когда именно возникают лишние корни.

  1. Изначально у нас было два логарифма. Потом мы перенесли один из них вправо, но на область определения это не повлияло.
  2. Затем мы выносим степень из основания, но логарифмов все равно остается два, и в каждом из них присутствует переменная x .
  3. Наконец, мы зачеркиваем знаки log и получаем классическое дробно-рациональное уравнение.

Именно на последнем шаге происходит расширение области определения! Как только мы перешли к дробно-рациональному уравнению, избавившись от знаков log, требования к переменной x резко поменялись!

Следовательно, область определения можно считать не в самом начале решения, а только на упомянутом шаге — перед непосредственным приравниваем аргументов.

Здесь-то и кроется возможность для оптимизации. С одной стороны, от нас требуется, чтобы оба аргумента были больше нуля. С другой — далее мы приравниваем эти аргументы. Следовательно, если хотя бы один и них будет положителен, то и второй тоже окажется положительным!

Вот и получается, что требовать выполнение сразу двух неравенств — это излишество. Достаточно рассмотреть лишь одну из этих дробей. Какую именно? Та, которая проще. Например, давайте разберемся с правой дробью:

(x − 5)/(2x − 1) > 0

Это типичное дробно-рациональное неравенство, решаем его методом интервалов:

Как расставить знаки? Возьмем число, заведомо большее всех наших корней. Например 1 млрд. И подставляем его дробь. Получим положительное число, т.е. справа от корня x = 5 будет стоять знак «плюс».

Затем знаки чередуются, потому что корней четной кратности нигде нет. Нас интересуют интервалы, где функция положительна. Следовательно, x ∈ (−∞; −1/2)∪(5; +∞).

Теперь вспоминаем про ответы: x = 8 и x = 2. Строго говоря, это еще не ответы, а лишь кандидаты на ответ. Какой из них принадлежит указанному множеству? Конечно, x = 8. А вот x = 2 нас не устраивает по области определения.

Итого ответом к первому логарифмическому уравнению будет x = 8. Вот теперь мы получили грамотное, обоснованное решение с учетом области определения.

Переходим ко второму уравнению:

log 5 (x − 9) = log 0,5 4 − log 5 (x − 5) + 3

Напоминаю, что если в уравнении присутствует десятичная дробь, то от нее следует избавиться. Другими словами, перепишем 0,5 в виде обычной дроби. Сразу замечаем, что логарифм, содержащий это основание, легко считается:

Это очень важны момент! Когда у нас и в основании, и в аргументе стоят степени, мы можем вынести показатели этих степеней по формуле:

Возвращаемся к нашему исходному логарифмическому уравнению и переписываем его:

log 5 (x − 9) = 1 − log 5 (x − 5)

Получили конструкцию, довольно близкую к канонической форме. Однако нас смущают слагаемые и знак «минус» справа от знака равенства. Давайте представим единицу как логарифм по основанию 5:

log 5 (x − 9) = log 5 5 1 − log 5 (x − 5)

Вычтем логарифмы справа (при этом их аргументы делятся):

log 5 (x − 9) = log 5 5/(x − 5)

Прекрасно. Вот мы и получили каноническую форму! Зачеркиваем знаки logи приравниваем аргументы:

(x − 9)/1 = 5/(x − 5)

Это пропорция, которая легко решается умножением крест-накрест:

(x − 9)(x − 5) = 5 1

x 2 − 9x − 5x + 45 = 5

x 2 − 14x + 40 = 0

Очевидно, перед нами приведенное квадратное уравнение. Оно легко решается с помощью формул Виета:

(x − 10)(x − 4) = 0

x 1 = 10

x 2 = 4

Мы получили два корня. Но это не окончательные ответы, а лишь кандидаты, потому что логарифмическое уравнение требует еще и проверки области определения.

Напоминаю: не надо искать, когда каждый из аргументов будет больше нуля. Достаточно потребовать, чтобы один аргумент — либо x − 9, либо 5/(x − 5) — был больше нуля. Рассмотрим первый аргумент:

x − 9 > 0

x > 9

Очевидно, что этому требованию удовлетворяет лишь x = 10. Это и есть окончательный ответ. Все задача решена.

Еще раз ключевые мысли сегодняшнего урока:

  1. Как только переменная x появляется в нескольких логарифмах, уравнение перестает быть элементарным, и для него придется считать область определения. Иначе можно запросто записать в ответ лишние корни.
  2. Работу с самой областью определения можно существенно упростить, если выписывать неравенство не сразу, а ровно в тот момент, когда мы избавляемся от знаков log. Ведь когда аргументы приравниваются друг к другу, достаточно потребовать, чтобы больше нуля был лишь один из них.

Разумеется, мы сами выбираем, из какого аргумента составлять неравенство, поэтому логично выбирать самый простой. Например, во втором уравнении мы выбрали аргумент (x − 9) —линейную функцию, в противовес дробно-рациональному второму аргументу. Согласитесь, решать неравенство x − 9 > 0 значительно проще, чем 5/(x − 5) > 0. Хотя результат получается один и тот же.

Данное замечание существенно упрощает поиск ОДЗ, но будьте внимательны: использовать одно неравенство вместо двух можно только том случае, когда аргументы именно приравниваются друг к другу !

Конечно, кто-то сейчас спросит: а что, бывает по-другому? Да, бывает. Например, в самом шаге, когда мы перемножаем два аргумента, содержащие переменную, заложена опасность возникновения лишних корней.

Судите сами: сначала требуется, чтобы каждый из аргументов был больше нуля, но после перемножения достаточно, чтобы их произведение было больше нуля. В результате упускается случай, когда каждая из этих дробей отрицательна.

Поэтому если вы только начинаете разбираться со сложными логарифмическими уравнениями, ни в коем случае не перемножайте логарифмы, содержащие переменную x — уж слишком часто это приведет к возникновению лишних корней. Лучше сделайте один лишний шаг, перенесите одно слагаемое в другую сторону составьте каноническую форму.

Ну, а как поступать в том случае, если без перемножения таких логарифмов не обойтись, мы обсудим в следующем видеоуроке.:)

Еще раз о степенях в уравнении

Сегодня мы разберем довольно скользкую тему, касающуюся логарифмических уравнений, а точнее — вынесение степеней из аргументов и оснований логарифмов.

Я бы даже сказал, речь пойдет о вынесении четных степеней, потому что именно с четными степенями возникает большинство затруднений и при решении реальных логарифмических уравнений.

Начнем с канонической формы. Допустим, у нас есть уравнение вида log a f (x ) = b . В этом случае мы переписываем число b по формуле b = log a a b . Получается следующее:

log a f (x ) = log a a b

Затем мы приравниваем аргументы:

f (x ) = a b

Канонической формой называется предпоследняя формула. Именно к ней стараются свести любое логарифмическое уравнение, каким бы сложным и страшным оно не казалось на первый взгляд.

Вот давайте и попробуем. Начнем с первой задачи:

Предварительное замечание: как я уже говорил, все десятичные дроби в логарифмическом уравнении лучше перевести ее в обычные:

0,5 = 5/10 = 1/2

Перепишем наше уравнение с учетом этого факта. Заметим, что и 1/1000, и 100 являются степенью десятки, а затем вынесем степени отовсюду, где они есть: из аргументов и даже из основания логарифмов:

И вот здесь у многих учеников возникает вопрос: «Откуда справа взялся модуль?» Действительно, почему бы не написать просто (х − 1)? Безусловно, сейчас мы напишем (х − 1), но право на такую запись нам дает учет области определения. Ведь в другом логарифме уже стоит (х − 1), и это выражение должно быть больше нуля.

Но когда мы выносим квадрат из основания логарифма, мы обязаны оставить в основании именно модуль. Поясню почему.

Дело в том, что с точки зрения математики вынесение степени равносильно извлечению корня. В частности, когда из выражения (x − 1) 2 выносится квадрат, мы по сути извлекаем корень второй степени. Но корень из квадрата — это не что иное как модуль. Именно модуль , потому что даже если выражение х − 1 будет отрицательным, при возведении в квадрат «минус» все равно сгорит. Дальнейшее извлечение корня даст нам положительное число — уже без всяких минусов.

В общем, чтобы не допускать обидных ошибок, запомните раз и навсегда:

Корень четной степени из любой функции, которая возведена в эту же степень, равен не самой функции, а ее модулю:

Возвращаемся к нашему логарифмическому уравнению. Говоря про модуль, я утверждал, что мы можем безболезненно снять его. Это правда. Сейчас объясню почему. Строго говоря, мы обязаны были рассмотреть два варианта:

  1. x − 1 > 0 ⇒ |х − 1| = х − 1
  2. x − 1 < 0 ⇒ |х − 1| = −х + 1

Каждый из этих вариантов нужно было бы решить. Но есть одна загвоздка: в исходной формуле уже присутствует функция (х − 1) без всякого модуля. И следуя области определения логарифмов, мы вправе сразу записать, что х − 1 > 0.

Это требование должно выполняться независимо от всяких модулей и других преобразований, которые мы выполняем в процессе решения. Следовательно, второй вариант рассматривать бессмысленно — он никогда не возникнет. Даже если при решении этой ветки неравенства мы получим какие-то числа, они все равно не войдут в окончательный ответ.

Теперь мы буквально в одном шаге от канонической формы логарифмического уравнения. Давайте представим единицу в следующем виде:

1 = log x − 1 (x − 1) 1

Кроме того, внесем множитель −4, стоящий справа, в аргумент:

log x − 1 10 −4 = log x − 1 (x − 1)

Перед нами каноническая форма логарифмического уравнения. Избавляемся от знака логарифма:

10 −4 = x − 1

Но поскольку в основании стояла функция (а не простое число), дополнительно потребуем, чтобы эта функция была больше нуля и не равна единице. Получится система:

Поскольку требование х − 1 > 0 выполняется автоматически (ведь х − 1 = 10 −4), одно из неравенств можно вычеркнуть из нашей системы. Второе условие также можно вычеркнуть, потому что х − 1 = 0,0001 < 1. Итого получаем:

х = 1 + 0,0001 = 1,0001

Это единственный корень, который автоматически удовлетворяет всем требованиям области определения логарифма (впрочем, все требования были отсеяны как заведомо выполненные в условиях нашей задачи).

Итак, второе уравнение:

3 log 3 x x = 2 log 9 x x 2

Чем это уравнение принципиально отличается от предыдущего? Уже хотя бы тем, что основания логарифмов — 3х и 9х — не являются натуральными степенями друг друга. Следовательно, переход, который мы использовали в предыдущем решении, невозможен.

Давайте хотя бы избавимся от степеней. В нашем случае единственная степень стоит во втором аргументе:

3 log 3 x x = 2 ∙ 2 log 9 x |x |

Впрочем, знак модуля можно убрать, ведь переменная х стоит еще и в основании, т.е. х > 0 ⇒ |х| = х. Перепишем наше логарифмическое уравнение:

3 log 3 x x = 4 log 9 x x

Получили логарифмы, в которых одинаковые аргументы, но разные основания. Как поступить дальше? Вариантов тут множество, но мы рассмотрим лишь два из них, которые наиболее логичны, а самое главное — это быстрые и понятные приемы для большинства учеников.

Первый вариант мы уже рассматривали: в любой непонятной ситуации переводите логарифмы с переменным основанием к какому-нибудь постоянному основанию. Например, к двойке. Формула перехода проста:

Разумеется, в роли переменной с должно выступать нормальное число: 1 ≠ c > 0. Пусть в нашем случае с = 2. Теперь перед нами обычное дробно-рациональное уравнение. Собираем все элементы слева:

Очевидно, что множитель log 2 x лучше вынести, поскольку он присутствует и в первой, и во второй дроби.

log 2 x = 0;

3 log 2 9х = 4 log 2 3x

Разбиваем каждый log на два слагаемых:

log 2 9х = log 2 9 + log 2 x = 2 log 2 3 + log 2 x;

log 2 3x = log 2 3 + log 2 x

Перепишем обе части равенства с учетом этих фактов:

3 (2 log 2 3 + log 2 x ) = 4 (log 2 3 + log 2 x )

6 log 2 3 + 3 log 2 x = 4 log 2 3 + 4 log 2 x

2 log 2 3 = log 2 x

Теперь осталось внести двойку под знак логарифма (она превратится в степень: 3 2 = 9):

log 2 9 = log 2 x

Перед нами классическая каноническая форма, избавляемся от знака логарифма и получаем:

Как и предполагалось, этот корень оказался больше нуля. Осталось проверить область определения. Посмотрим на основания:

Но корень x = 9 удовлетворяет этим требованиям. Следовательно, он является окончательным решением.

Вывод из данного решения просто: не пугайтесь длинных выкладок! Просто в самом начале мы выбрали новое основание наугад — и это существенно усложнило процесс.

Но тогда возникает вопрос: какое же основание является оптимальным ? Об этом я расскажу во втором способе.

Давайте вернемся к нашему исходному уравнению:

3 log 3x x = 2 log 9x x 2

3 log 3x x = 2 ∙ 2 log 9x |x |

х > 0 ⇒ |х| = х

3 log 3 x x = 4 log 9 x x

Теперь немного подумаем: какое число или функция будет оптимальным основанием? Очевидно, что лучшим вариантом будет с = х — то, что уже стоит в аргументах. В этом случае формула log a b = log c b /log c a примет вид:

Другими словами, выражение просто переворачивается. При этом аргумент и основание меняется местами.

Эта формула очень полезна и очень часто применяется при решении сложных логарифмических уравнений. Однако при использовании этой формулы возникает один очень серьезный подводный камень. Если вместо основания мы подставляем переменную х, то на нее накладываются ограничения, которых ранее не наблюдалось:

Такого ограничения в исходном уравнении не было. Поэтому следует отдельно проверить случай, когда х = 1. Подставим это значение в наше уравнение:

3 log 3 1 = 4 log 9 1

Получаем верное числовое равенство. Следовательно, х = 1 является корнем. Точно такой же корень мы нашли в предыдущем методе в самом начале решения.

А вот теперь, когда мы отдельно рассмотрели этот частный случай, смело полагаем, что х ≠ 1. Тогда наше логарифмическое уравнение перепишется в следующем виде:

3 log x 9x = 4 log x 3x

Раскладываем оба логарифма по той же формуле, что и раньше. При этом заметим, что log x x = 1:

3 (log x 9 + log x x ) = 4 (log x 3 + log x x )

3 log x 9 + 3 = 4 log x 3 + 4

3 log x 3 2 − 4 log x 3 = 4 − 3

2 log x 3 = 1

Вот мы и пришли к канонической форме:

log x 9 = log x x 1

x = 9

Получили второй корень. Он удовлетворяет требованию х ≠ 1. Следовательно, х = 9 наравне с х = 1 является окончательным ответом.

Как видим, объем выкладок немножко сократился. Но при решении реального логарифмического уравнения количество действий будет намного меньше еще и потому, что от вас не требуется столь подробно расписывать каждый шаг.

Ключевое правило сегодняшнего урока состоит в следующем: если в задаче присутствует четная степень, из которой извлекают корень такой же степени, то на выходе мы получи модуль. Однако этот модуль можно убрать, если обратить внимание на область определения логарифмов.

Но будьте внимательны: большинство учеников после этого урока считают, что им все понятно. Но при решении реальных задач они не могут воспроизвести всю логическую цепочку. В результате уравнение обрастает лишними корнями, а ответ получается неправильным.

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с и .
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид log a x = b , где a и b -некоторые числа,x - неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log 2 х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log 2 2. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log 2 х = log 2 16. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения log a x = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log 2 х = 2log 2 (1- х) потенцирование неприменимо - коэффициент 2 справа не позволяет. В следующем примере log 2 х+log 2 (1 - х) = log 2 (1+х) также не выполняется одно из ограничений - слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

log a (...) = log a (...)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log 3 (2х-5) = log 3 х

Применяем потенцирование, получаем:

log 3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм - это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо. Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log 3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log 3 9, ведь 3 2 =9.

Тогда log 3 (2х-1) = log 3 9 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь решение логарифмических уравнений , даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая - работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log 3 (х 2 -3) = log 3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log 3 (х 2 -3) = log 3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

Находим корни уравнения:

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х 1 = 3:

log 3 6 = log 3 6

Проверка прошла успешно, теперь очередь х 2 = -1:

log 3 (-2) = log 3 (-2)

Так, стоп! Внешне всё идеально. Один момент - логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею - 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log 3 (х 2 -3) = log 3 (2х)

log 3 (х 2 -3) = log 3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х 1 = 3 и х 2 = -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый - решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео:

На видео другие примеры решения лог. уравнений и отработка метода интервалов на практике.

На это по вопросу, как решать логарифмические уравнения , пока всё. Если что то по решению лог. уравнений осталось не ясным или непонятным, пишите свои вопросы в комментариях.

Заметка: Академия социального образования (КСЮИ) - готова принять новых учащихся.


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).

Алгебра 11 класс

Тема: «Методы решения логарифмических уравнений»

Цели урока:

образовательная: формирование знаний о разных способах решения логарифмических уравнений, умений применять их в каждой конкретной ситуации и выбирать для решения любой способ;

развивающая: развитие умений наблюдать, сравнивать, применять знания в новой ситуации, выявлять закономерности, обобщать; формирование навыков взаимоконтроля и самоконтроля;

воспитательная: воспитание ответственного отношения к учебному труду, внимательного восприятия материала на уроке, аккуратности ведения записей.

Тип урока : урок ознакомления с новым материалом.

«Изобретение логарифмов, сократив работу астронома, продлило ему жизнь».
Французский математик и астроном П.С. Лаплас

Ход урока

I. Постановка цели урока

Изученные определение логарифма, свойства логарифмов и логарифмической функции позволят нам решать логарифмические уравнения. Все логарифмические уравнения, какой бы сложности они не были, решаются по единым алгоритмам. Эти алгоритмы рассмотрим сегодня на уроке. Их немного. Если их освоить, то любое уравнение с логарифмами будет посильно каждому из вас.

Запишите в тетради тему урока: «Методы решения логарифмических уравнений». Приглашаю всех к сотрудничеству.

II. Актуализация опорных знаний

Подготовимся к изучению темы урока. Каждое задание вы решаете и записываете ответ, условие можно не писать. Работайте в парах.

1) При каких значениях х имеет смысл функция:

(По каждому слайду сверяются ответы и разбираются ошибки)

2) Совпадают ли графики функций?

3) Перепишите равенства в виде логарифмических равенств:

4) Запишите числа в виде логарифмов с основанием 2:

5) Вычислите:

6) Попытайтесь восстановить или дополнить недостающие элементы в данных равенствах.

III. Ознакомление с новым материалом

Демонстрируется на экране высказывание:

«Уравнение - это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль

Попробуйте сформулировать определение логарифмического уравнения. (Уравнение, содержащее неизвестное под знаком логарифма).

Рассмотрим простейшее логарифмическое уравнение: log а x = b (где а>0, a ≠ 1). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. (Логарифм числа х по основанию а - это показатель степени, в которую надо возвести основание а, чтобы получить число х). Из определения логарифма сразу следует, что а в является таким решением.

Запишите заголовок: Методы решения логарифмических уравнений

1. По определению логарифма .

Так решаются простейшие уравнения вида .

Рассмотрим № 514(а ): Решить уравнение

Как вы предлагаете его решать? (По определению логарифма)

Решение. , Отсюда 2х - 4 = 4; х = 4.

В этом задании 2х - 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать. Условие 2х - 4 > 0 в этом задании выписывать не надо.

2. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим №519(г): log5(x2+8)-log5(x+1)=3log5 2

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны). Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение: ОДЗ:

X2+8>0 лишнее неравенство

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Потенцируем исходное уравнение

получим уравнение x2+8= 8x+8

Решаем его: x2-8x=0

Ответ: 0; 8

В общем виде переходом к равносильной системе :

Уравнение

(Система содержит избыточное условие - одно из неравенств можно не рассматривать).

Вопрос классу : Какое из этих трех решений вам больше всего понравилось? (Обсуждение способов).

Вы имеете право решать любым способом.

3. Введение новой переменной .

Рассмотрим № 520(г) . .

Что вы заметили? (Это квадратное уравнение относительно log3x) Ваши предложения? (Ввести новую переменную)

Решение. ОДЗ: х > 0.

Пусть , тогда уравнение примет вид:. Дискриминант D > 0. Корни по теореме Виета:.

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

Ответ: 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение:.

Решение: ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

Применим свойство логарифма степени:

(lgx + 3) lgx = 4

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4,; lgx = 1, .

Ответ: 0,0001; 10.

5. Приведение к одному основанию.

№ 523(в). Решите уравнение:

Решение: ОДЗ: х>0. Перейдем к основанию 3.

6. Функционально-графический метод.

509(г). Решить графически уравнение: = 3 - x.

Как вы предлагаете решать? (Строить по точкам графики двух функций у = log2x и y = 3 - x и искать абсциссу точек пересечения графиков).

Посмотрите ваше решение на слайде.

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функций у = f(x)возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х .

Если корень имеется, то его можно угадать.

В нашем случае функция возрастает при х>0, а функция y = 3 - x убывает при всех значениях х, в том числе и при х>0, значит, уравнение имеет не более одного корня. Заметим, что при х = 2 уравнение обращается в верное равенство, так как .

«Правильному применению методов можно научиться,
только применяя их на различных примерах».
Датский историк математики Г. Г. Цейтен

I V. Домашнее задание

П. 39 рассмотреть пример 3, решить № 514(б), № 529(б), №520(б), №523(б)

V. Подведение итогов урока

Какие методы решения логарифмических уравнений мы рассмотрели на уроке?

На следующих уроках рассмотрим более сложные уравнения. Для их решения пригодятся изученные методы.

Демонстрируется последний слайд:

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого. Благодарю за сотрудничество и понимание.