Ученый который разработал теорию эволюции органического мира. История и соотношение различных теорий эволюции органического мира

Эволюция органического мира.

    Определение эволюции.

    Теории эволюции.

    Биологический вид, его популяционная структура.

    Действие элементарных факторов на популяцию.

В основе биологической эволюции лежат процессы самовоспроизведения макромолекул и организмов.

Биологическая эволюция – необратимое и направленное историческое развитие живой природы.

Биологическая эволюция сопровождается:

Изменением генетического состава популяции;

Формированием адаптаций;

Образованием и вымиранием видов;

Преобразованием экосистем и биосферы в целом.

Возникает соответствие организмов и внешней среды. Каждый может существовать и воспроизводить себе подобных только в среде, соответствующей ему.

1809 год – Жан Батист Ламарк сосредоточил внимание на прогрессивном развитии организмов.

Принципы эволюции (по Ламарку)

    Существование у организмов внутреннего стремления к самосовершенствованию.

    Способность у организмов приспосабливаться к обстоятельствам, т.е. внешней среде.

    Частые акты самозарождения.

    Передача по наследству приобретенных признаков и черт.

Важная заслуга – 2 положение. Ламарк не смог доказать свою теорию, кроме того отсутствовали эмпирические факты, подтверждающие его точку зрения. Позднее возник неоламаркизм.

К.Рувье развивал концепцию о возникновении органического мира из неорганического, о постепенном естественном изменении организмов, о формировании многообразия живых существ под влиянием изменения внешних условий, о наследственности и изменчивости как основных свойствах живых организмов.

Бекетов в 1854 году проводил исследование изменений у растений.

1858 год – Дарвин сделал предварительное сообщение о теории в Линнейском обществе. А.Уолрес сделал такие же выводы и написал письмо Ч.Дарвину, т.к. к моменту написания рукописи Уолресом, Дарвин уже напечатал часть трудов. Дарвин был не первым, кто предположил теорию всеобщей эволюции, но он доказал, что эволюция существует, а кроме того в природе существуют движущие силы эволюции.

24 ноября 1859 года была полностью издана работа Дарвина «Происхождение видов путем естественного отбора».

Постулаты теории Дарвина .

    Окружающий мир не статичен, а постоянно развивается. Виды непрерывно изменяются, одни виды возникают, другие вымирают.

    Эволюционный процесс происходит постепенно и непрерывно. Эволюционный процесс – это не совокупность отдельных скачков или внезапных изменений.

    Сходные организмы происходят от общего предка и связаны узами родства.

    Теория естественного отбора.

До 30-х годов ХХ века, когда появилась теория синтетической эволюции, было много расхождений. Все теории можно разделить на 4 группы:

Монистические;

Синтетические;

Теория прерывистого равновесия;

Теория нейтральных мутаций.

Монистические теории объясняют эволюционные изменения действием одного фактора.

Эктогенетические – изменения вызываются непосредственно средой.

Эндогенетические – изменения контролируются внутренними силами, истинный ламаркизм.

Случайные события («случайности») – спонтанные мутации, рекомбинации.

Естественный отбор.

Синтетические теории объясняют эволюционные изменения действием многих факторов.

Большинство теорий ламаркистского толка;

Поздние взгляды Ч.Дарвина;

Ранний этап «современного синтеза»;

Современный этап.

1926г – Четвериков в «Экспериментальной биологии» издал статью «О некоторых моментах эволюционного процесса с точки зрения современной генетики». Связал некоторые факты Дарвина.

1935г – И.И.Воронцов сформулировал основные положения синтетической теории эволюции (11 постулатов).

Синтетическая теория эволюции.

    Наименьшей единицей эволюции является местная популяция.

    Основным фактором эволюции является естественный отбор.

    Эволюция носит дивергентный характер (конвергентная, параллельная).

    Эволюция носит постепенный поэтапный характер (иногда скачкообразный).

    Обмен аллелями и поток генов происходит только в пределах одного биологического вида.

    Макроэволюция идет путем микроэволюции.

    Вид состоит из множества соподчиненных единиц.

    Понятие вида неприемлемо к формам, не имеющим полового размножения.

    Эволюция осуществляется на основе изменчивости (т.н. тихогенез).

    Таксон имеет монофилитические возможности (происходит от одного предка).

    Эволюция непредсказуема.

Стало ясно, что элементарная единица эволюции не один организм, а популяция. Установлено, что причина эволюции – не отдельный фактор, а взаимодействие между многими факторами, которые реализуются в результате естественного отбора.

Синтетическая теория эволюции принимается большинством ученых. Все положения на уровне микроэволюции доказаны, на уровне макроэволюции они еще недостаточно подтверждены, поэтому создаются новые эволюционные теории.

Помимо синтетической теории интересна концепция прерывистого равновесия. В эволюции чередуются периоды стабильности видов с короткими периодами бурного видообразования. Появление внезапных мутаций связано с регуляторными генами. Однако у растений регуляторные гены не обнаружены.

Теория нейтральных мутаций. Авторы – Кинг, Кимура – 1970г. Появилась после открытия закономерностей в молекулярной биологии. Основным фактором на молекулярном уровне является не естественный отбор, а случайности, которые приводят к закреплению нейтральных или почти нейтральных мутаций. Происходят изменения в последовательности триплетов ДНК, соответственно изменяются белки. Изменения ДНК обусловлены случайным дрейфом генов. Теория не отрицает роли естественного отбора, но считает, что только небольшая часть изменений ДНК является адаптивной. Большинство изменений филогенетического влияния не оказывают, они не селективны, нейтральны и не оказывают никакой роли на эволюцию. Теория имеет доказательства: лейцин колируется 6 триплетами, причем предпочтительных у разных видов животных. Изменение триплета в данном случае ничего не меняет, однако, разные триплеты у разных животных выполняют функцию «ключа».

Завацкий - «Общие признаки биологического вида».

    численность;

    тип организации/определенный набор хромосом;

    воспроизведение (в процессе размножения вид сохраняет себя);

    дискретность (вид существует и эволюционирует как обособленное образование);

    экологическая определенность. Вид приспособлен к определенным условиям, там он и конкурентоспособен;

    географическая определенность/ареал вида;

    многообразие форм – внутренняя структура вида – популяции;

    историчность. Вид - система, способная эволюционно развиваться;

    устойчивость;

    целостность. Вид – племенная общность, объединенная определенными адаптациями и внутривидовыми отношениями.

Вопрос о том, что же такое биологический вид, не решен. Основные концепции:

Философско-логическая концепция;

Биологическая концепция;

Морфологическая концепция.

По философско-логической концепции, вид - категория мышления. Общие свойства характерны для всех представителей.

Морфологический критерий – приложение философско-логической концепции к живым организмам. Виды определяются строго по наличию у популяции определенных признаков (Линней, большинство естествоиспытателей и таксономистов XVIII – XIX вв.).

Биологическая концепция основана на том, что все виды состоят из популяций. Особи потенциально способны к скрещиванию между собой, виды существуют реально, особи имеют общую генетическую программу, сложившуюся в процессе эволюции. Это репродуктивное сообщество, экологическая единица, генетическая единица. Вид обладает генетической замкнутостью и репродуктивной изолированностью. В генетической структуре отражена сущность вида. Для вида характерно генетическое разнообразие.

Вид – группа морфологически сходных организмов, имеющих общее происхождение и потенциально способных к скрещиванию между собой в естественных условиях.

Особи не всегда живут между собой в близком отношении (непосредственном соседстве); они обитают в популяциях.

Признаки популяции.

    Популяция – свободно скрещивающаяся группа.

    Панмиксная группа представляет собой репродуктивную единицу.

    Популяция представляет собой экологическую единицу. Особи генетически сходны по экологическим требованиям.

Популяция – группа особей одного вида, достаточно долго населяющих определенную территорию, свободно скрещивающихся между собой в естественных условиях и дающих плодовитое потомство.

Величина популяции нестабильна. Реальные популяции различны по форме и числу особей.

Структура популяции.

Пространственная конфигурация;

Система размножения;

Скорость миграции.

В зависимости от пространственной конфигурации выделяют:

Большие непрерывные популяции (десятки и сотни километров).

Мелкие колониальные популяции (соответствуют островному типу).

В системе размножения большие диапазоны значений.

Аутогамные популяции - размножаются путем самооплодотворения.

Аллогамные популяции – размножаются путем перекрестного оплодотворения.

В аутогамных - преобладают гомозиготные организмы, доля гетерозигот мала.

Аллогамные популяции характерны для всех животных и некоторых растений. Состав аллелей определяется мутациями и, в большинстве своем, рекомбинациями генов. Т.к. потомство происходит благодаря скрещиванию, доля гетерозигот велика. Числа генотипов достигают значений, характерных для закона Харди – Вайнберга. Пока факторы эволюции не подействуют, соотношения сохраняются. Факторы микроэволюции вызывают хромосомные аберрации, мутации и другие изменения – это основной фактор эволюции.

Факторы эволюции .

    Мутационный процесс.

    Поток генов.

    Дрейф генов.

    Естественный отбор.

Мутационный процесс и поток генов создают изменчивость. Дрейф генов и естественный отбор ее сортируют, работают над ней и определяют ее судьбу.

Мутационный процесс. Каждый мутантный аллель впервые появляется очень редко. Если он нейтрален – происходит элиминирование. Если полезен – накапливается в популяции.

Поток генов. Новый ген может проявиться только в результате мутации, но популяция может его получить при иммиграции носителя данного гена из другой популяции. Поток генов – перенос генов из одной популяции в другую. Поток генов можно считать запаздывающим эффектом эволюционного процесса. Носители потока генов различны.

Естественный отбор слагается из разных процессов:

Движущий (направленный, прогрессивный) отбор – установлен Ч.Дарвином.

Стабилизирующий.

Дизруптивный (разрывающий) Мауер.

Движущий отбор – направленный отбор, при котором популяция изменяется вместе со средой обитания. Возникает при постепенном изменении популяции вместе со средой.

Стабилизирующий отбор – отбор, возникающий, когда среда не меняется, популяция же хорошо адаптирована, элиминируются крайний формы, численность растет.

Дизруптивный отбор – отбор, при котором происходит элиминирование средних форм, а сохраняются крайние варианты. Генетический полиморфизм. Чем полиморфнее популяция, тем легче идет процесс видообразования.

Дрейф генов. Выполнение закона Харди – Вайнберга возможно только в идеальных популяциях. В малых популяциях есть отклонения от этого распределения. Случайные изменения генотипов и частот аллелей при переходе из одного поколения в другое поколение – дрейф генов, который характерен для малой популяции.

    популяционная система состоит из ряда изолированных колоний;

    популяция имеет большой размер, затем сокращается и вновь восстанавливается за счет выживших особей;

    большая популяция дает начало нескольким колониям. Особи – родоначальницы образуют колонии.

  1. Теория эволюции органического мира

    Реферат >> Биология

    Становлении идеи эволюции органического мира существенную роль сыграла систематика ― биологическая наука... в половых клетках материальных структур , предопределяющих развитие зародыша и... популяционно -генетических исследований, которая была реализована его ...

  2. Биологическая карта мира

    Реферат >> Биология

    ... эволюции органического мира существенную роль сыграла систематика – биологическая ... материальных структур , ... видов к идее эволюции , исторического развития видов предполагал, во-первых, рассмотрение процесса образования видов в его ... популяционные волны...

  3. Теория эволюции (4)

    Шпаргалка >> Биология

    Закономерность эволюции органического мира . Теория... вид и возможности его дальнейшей эволюции . С возникновением человека как социального существа биологические факторы

7.2.1. Доказательства эволюции органического мира

Доказательства эволюции - свидетельства общности происхождения всех организмов от единых предков, изменяемости видов и возникно­вения одних видов от других

Доказательства эволюции подразделяют на группы.

1. Цитологические. Все организмы (кроме вирусов) состоят из кле­ток, которые имеют общее строение и функции.

2. Биохимические. Все организмы состоят из одинаковых химиче­ских веществ: белков, нуклеиновых кислот и т.д.

3. Сравнительно-анатомические:

единство строения организмов в пределах типа, класса, рода и т.д. На­пример, для всех представителей класса млекопитающих характерны высокоразвитая кора больших полушарий переднего мозга, внутриу­тробное развитие, выкармливание детенышей молоком, волосяной покров, четырехкамерное сердце и полное разделение артериальной и венозной крови, теплокровность, легкие альвеолярного строения:

гомологичные органы - органы, имеющие единое происхождение независимо от выполняемых функций. Например, конечности позво­ночных, видоизменения корня, стебля и листьев у растений;

рудименты - остатки имевшихся у предков органов (признаков). Например, человек имеет такие рудименты, как копчик, червеобраз­ный отросток (аппендикс), третье веко, зубы мудрости, мышцы, дви­гающие ушную раковину, и др.;

атавизмы - внезапное появление у отдельных особей органов (признаков) их предков. Например, рождение людей с хвостом, гу­стым волосяным покровом тела, дополнительными сосками, сильно развитыми клыками и др.

4. Эмбриологические доказательства. К ним относят: сходство гаме- тогенеза, наличие в развитии одноклеточной стадии - зиготы; сход­ство зародышей на ранних этапах развития; связь между онтогенезом и филогенезом.

Зародыши организмов многих систематических групп сходны меж­ду собой, причем, чем ближе организмы, тем до более поздней стадии развития зародыша сохраняется это сходство (рис. 7.8). На основе этих наблюдений Э. Геккель и Ф. Мюллер сформулировали биогенетиче­ский закон - каждая особь на ранних стадиях онтогенеза повторяет не­которые основные черты строения своих предков. Таким образом, онто­генез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития).




6. Реликтовые доказательства. В настоящее время существуют по­томки переходных форм (рис. 7.11), например, кистеперая рыба лати- мерия - потомок переходной формы между рыбами и земноводными, гаттерия - потомок переходной формы между земноводными и пре­смыкающимися; утконос - потомок переходной формы между пре­смыкающимися и млекопитающими


7. Биогеографические доказательства. Сходство и различие организ­мов, обитающих в разных биогеографических зонах. Например, сум­чатые млекопитающие сохранились только в Австралии.

7.2.2. Происхождение жизни

Развитие взглядов на происхождение жизни. С глубокой древности и по сей день человечество ищет ответ па вопрос о происхождении жизни на Зем­ле. Ранее считали, что возможно самозарождение жизни из неживой материи. По мнению ученых Средневековья, рыбы могли зарождаться из ила, черви - из почвы, мыши - из грязных тряпок, мухи - из гнилого

мяса. В XVII в. итальянский ученый Ф. Реди провел оригинальный эксперимент: он по­местил кусочки мяса в стеклянные сосуды, часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах (рис. 7.12). В се­редине XIX в. французский микробиолог Л. Пастер поместил простерилизованный бульон в колбу с длинным узким горлыш­ком Б-образной формы. Бактерии и другие находящиеся в воздухе организмы оседа­ли под действием силы тяжести в нижней изогнутой части горлышка и не достигали бульона, тогда как воздух поступал в саму колбу (рис. 7.13).


Эти и другие сходные опыты убедитель­но доказывали, что в современную эпо­ху живые организмы происходят только от других живых организмов. Невозмож­ность самозарождения жизни из неживо­го назвали принципом Реди. В результате закономерен вопрос о происхождении первых живых организмов.

Многообразие подходов к вопросу о происхождении жизни. По во­просу происхождения жизни так же, как и по вопросу о сущности жизни, среди ученых нет единого мнения. Существует несколько под­ходов к решению вопроса о происхождения жизни, которые тесно пе­реплетаются между собой. Классифицировать их можно следующим образом.

1) по принципу, что идея, разум первичны, а материя вторична (идеалистические гипотезы) или материя первична, а идея, разум вто­ричны (материалистические гипотезы);

2) по принципу, что жизнь существовала всегда и будет существо­вать вечно (гипотезы стационарного состояния) или жизнь возникает на определенном этапе развития мира;

3) по принципу, что живое только от живого (гипотезы биогене­за) или возможно самозарождение живого из неживого (гипотезы абиогенеза)",

4) по принципу, что жизнь возникла на Земле или была занесена из космоса (гипотезы панспермии).

Рассмотрим наиболее значимые из гипотез.

Креационизм. Согласно этой гипотезе жизнь была создана Творцом. Творец - это Бог, Идея, Высший разум или др.

Пшотеза стационарного состояния. Жизнь, как и сама Вселенная, су­ществовала всегда и будет существовать вечно, ибо не имеющее начала не имеет и конца. Вместе с тем существование отдельных тел и обра­зований (звезд, планет, организмов) ограничено во времени: они воз­никают, рождаются и погибают. В настоящее время эта гипотеза имеет в основном историческое значение, так как общепризнанной является «теория Большого взрыва», согласно которой Вселенная существует ограниченное время; она образовалась из одной точки около 15 млрд лет назад.

Пшотеза панспермии. Жизнь была занесена на Землю из космоса и прижилась здесь после того, как на Земле сложились благоприятные для этого условия. Это предположение высказал немепкий ученый Г. Рихюр в 1865 г., окончательно сформулировал шведский ученый С. Аррениус в 1895 г. С метеоритами и космической пылью на Зем­лю могли попасть споры бактерий, которые в значительной степени устойчивы к радиации, вакууму, низким температурам Решение во­проса о том, как возникла жизнь в космосе в силу объективных труд­ностей отодвигается на неопределенное время. Она могла быть созда­на Творцом, существовать всегда или возникнуть из неживой материи. В последнее время среди ученых появляется все больше сторонников гипотезы панспермии.

Пшотеза абиогенеза (самозарождения живого из неживого и последу­ющей биохимической эволюции). В 1924 г. русский биохимик А. И. Опа­рин, а позднее в 1929 г английский ученый Дж. Холдейн высказали предположение, что живое возникло на Земле из неживой материи в результате химической эволюции - сложных химических преобра­зований молекул. Этому событию благоприятствовали сложившиеся в то время на Земле условия.

Согласно этой гипотезе в процессе становления жизни на Земле можно выделить четыре этапа -

1) синтез низкомолекулярных органических соединений из газов первичной атмосферы;

2) полимеризация мономеров с образованием цепей белков и ну­клеиновых кислот;

3) образование фазово-обособленных систем органических ве­ществ, отделенных от внешней среды мембранами;

4) возникновение простейших клеток, обладающих свойствами жи­вого, в том числе репродуктивным аппаратом, осуществляющим пере­
дачу дочерним клеткам всех химических и метаболических свойств родительских клеток.

Первые три этапа относят к периоду химической эволюции, с чет­вертого - начинается биологическая эволюция.


Представления о возможноеги химической эволюции вещества подтверждены рядом модельных экспериментов. В 1953 г. американ­ский химик С. Миллер и физик Г. Юри в лабораторных условиях ими­тировали состав первичной атмосферы Земли, состоявшей из метана, аммиака и паров воды, и, воздействуя на нее искровым разрядом, по­лучили простые органические вещества - аминокислоты глицин, ала­нин и др. (рис. 7.14). Тем самым была доказана принципиальная воз­можность абиогенного синтеза органических соединений (но не живых организмов) из неорганических веществ

Таким образом, органические вещества могли создаваться в первич­ном океане из простых неорганических соединений. В результате на­копления в океане органических веществ образовался так называемый «первичный бульон». Затем, объединяясь, белки и другие органические молекулы образовали капли коацерватов, которые служили прообразом
клеток Капли коацерватов подвергались естественному отбору и эво­люционировали. Первые организмы были гетеротрофными. По мере расходования запасов «первичного бульона» возникли автотрофы.

Следует отметить, что с точки зрения теории вероятности, вероят­ность синтеза сверхсложных биомолекул при условии случайных сое­динений их составных частей крайне низка.

В.И. Вернадский о происхождении и сущности жизни и биосфе­ры. В.И. Вернадский изложил свои взгляды о происхождении жизни в следующих тезисах.

1. Начала жизни в том космосе, который мы наблюдаем, не было, поскольку не было начала этого космоса. Жизнь вечна, поскольку ве­чен космос, и всегда передавалась путем биогенеза.

2. Жизнь, извечно присущая Вселенной, явилась новой на Земле, ее зародыши приносились извне постоянно, но укрепились на Земле лишь при благоприятных для этого возможностях.

3. Жизнь на Земле была всегда. Время существования планеты - это лишь время существования на ней жизни. Жизнь геологически (планетарно) вечна. Возраст планеты неопределим.

4. Жизнь никогда не была чем-то случайным, ютящимся в каких-то отдельных оазисах. Она была распространена всюду и всег­да живое вещество существовало в образе биосферы.

5. Древнейшие формы жизни - дробянки - способны выпол­нять все функции в биосфере. Значит, возможна биосфера, состоящая из одних прокариот. Вероятно, что такова она и была в прошлом.

6. Живое вещество не могло произойти от косного. Между этими двумя состояниями материи нет никаких промежуточных ступеней. Напротив, в результате воздействия жизни происходила эволюция земной коры.

Таким образом, необходимо признать, что к настоящему времени ни одна из существующих гипотез о происхождении жизни прямыми доказательствами не располагает, и у современной науки нет одно­значного ответа на вопрос о происхождении жизни.

7.2.3. Краткая история развития органического мира

Возраст Земли около 4,6 млрд лет. Жизнь на Земле возникла в океане более 3,5 млрд лет назад.

Краткая история развития органического мира приведена в табл. 7.2. Филогенез основных групп организмов отражен на рис. 7.15. Органи­ческий мир былых эпох воссоздан на рис. 7.16-7.21.

Геохронологическая шкала и история развития живых организмов
Эра, возраст, млн лет Период, продолжитель­ность. млн лет Мир животных Мир растений Важнейшие аро- морфозы
Кайнозой­ская, 66 Антропоген, 1,5 Неоднократные сме­ны потеплений и по­холоданий Крупные оледенения в среди их широтах Северного полушария Современный животный мир Эволюция и господство че­ловека Современный

растительный

Интенсивное развитие коры головного мозга; прямохождение
Неоген, ] 23,0 1 Палеоген, ? 41 ±2) Равномерный теплый климат Интенсивное горообразование Движение матери­ков, обособляются Черное, Каспийское, Средиземное моря Доминируют млекопитающие, птицы, насекомые; появляются лераые приматы (лемуры, дол­гопяты), позднее парапитеки и дриопитеки; исчезают многие группы пресмыкающихся, го­ловоногих моллюсков Широко рас­пространяются цветковые рас­тения, особенно травянистые; со­кращается флора голосеменных
Мезозой­ская, 240 Меловой (мел), 70 Похолодание кли­мата, увеличение площади Мирового океана Преобладают костистые рыбы, лерволтицы, мелкие млекопитающие; появляются и распространяются плацен­тарные млекопитающие и со­временные птицы, вымирают гигантские пресмыкающиеся Появляются и начинают до­минировать по­крытосеменные; сокращаются папоротники и голосеменные Возникновение цветка и пло­да Появление матки
Юрский (юра), СО Вначале влажный климат сменяется засушливым на эк­ваторе Господствуют гигантские пре­смыкающиеся, кости стые рыбы, насекомые, головоно­гие моллюски, появляется осподствуют со­временные голо­семенные; выми­рают древние

Эра, возраст, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
Мезозой­ская, 240 археоптерикс; вымирают древние хрящевые рыбы голосеменные
Триасовый Ослабление климати­ческой зональности Начало движения материков Преобладают земноводные, головоногие моллюски,тра­воядные и хищные пресмы­кающиеся; появляются кости­стые рыбы, яйцекладущие и сумчатые млекопитающие Преобладают древние го­лосеменные; появляются со­временные голо­семенные, выми­рают семенные папоротники Появление че­тырехкамерного сердца; полное разделение арте­риального и ве­нозного крово­тока, появление теплокровности, появление мо­лочных желез
Палеозой­ Пермский (пермь), 50± 10 Резкая зональность климата, завершение горообразовательных процессов ГЪсподствуют морские бес­позвоночные, акулы; быстро развиваются пресмыкающие­ся и насекомые; возникают зверозубые и травоядные пресмыкающиеся; вымирают стегоцефалы и трилобиты Богатая фло­ра семенных и травянистых па­поротников; по­являются древние голосеменные; вымирают дре­вовидные хвощи, плауны и папо­ротники Образование пыльцевой труб­ки и семени
Карбонский (карбон), б5± 10 Распространение лесных болот. Равно­мерно влажный те- Доминируют земноводные, моллюски, акулы, двоякоды­шащие рыбы, появляются и Обилие древо­видных Появление вну­треннего опло­дотворения 1 по-

Эра, возраст, млн лет Период, продолжитель­ность, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
плый климат сменя­ется в конце периода засушливым быстро развиваются крылатые формы насекомых, пауки, скорпионы, возникают пер­вые пресмыкающиеся; замет­но уменьшаются трилобиты и стегоцефалы папоротни­кообразных, образующих «ка­менноугольные леса», возникают семенные папо­ротники, исчеза­ют лсилофиты явление плотных оболочек яйца; ороговение кожи
Девонский (де­вон). Смена сухих и до­ждливых сезонов, оледенение на терри­тории современных Южной Африки и Америки Преобладают панцирные, моллюски, трилобиты, корал­лы; появляются кистелерые, двоякодышащие и лучеперые рыбы, стегоцефалы Богатая флора л сил офитов, по­являются мхи, папоротниковид­ные, грибы Расчленение тела растений на органы; преоб­разование плав­ников в назем­ные конечности; появление орга­нов воздушного дыхания
Силурийский Вначале сухой, затем влажный климат, го­рообразование Богатая фауна трилобитов, моллюсков, ракообразных, кораллов, появляются пан­цирные рыбы, первые на­земные беспозвоночные: многоножки, скорпионы, бескрылые насекомые Обилие водорос­лей; растения вы­ходят на сушу - появляются ПС ил офиты Дифференциров- ка тела растений на ткани, разде­ление тела живот­ных на отделы, образование че­люстей и поясов конечностей у позвоночных

Эра, возраст, млн лет Период, продолжитель­ность, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
Палеозой­ Ордовикский (ордовик), \ 55± 10 | Кембрийский) (кембрий), I 80±20) Оледенение сменя­ется умеренно влаж­ным, потом сухим климатом. Большая часть суши занята морем, горообразо­вание Преобладают губки, кишеч­нополостные, черви, иглоко­жие, трилобиты; появляются бесчелюстные позвоночные (щитковые), моллюски Процветание всех отделов водо­рослей
Протеро­ Поверхность плане­ты - голая пустыня. Частые оледенения, активное образова­ние горных пород Широко распространены простейшие; появляются все типы беспозвоночных, игло­кожих: первичные хордовые - подтип Бесчерепные Широко рас­пространены бактерии, сине- зеленые и зеле­ные водоросли; появляются крас­ные водоросли Появление дву­сторонней сим­метрии
Архейская, 3 500 (3 800) Активная вулкани­ческая деятельность Анаэробные условия жизни в мелководье Возникновение жизни, прокариоты (бактерии, сине-зеленые водоросли), эукариоты (зеленые водоросли, простейшие), примитивные много­клеточные Появление фотосинтеза, аэробного дыха­ния, эукариоти­ческих клеток, полового про­цесса, многокле­точное™






Историю развития жизни на Земле изучают по ископаемым остан­кам организмов или следам их жизнедеятельности. Они встречаются в горных породах разного возраста.

Геохронологическая шкала истории развития органического мира Земли включает эры и периоды (см. табл. 7.2). Выделяют следующие эры: архейская (архей) - эра древнейшей жизни, протерозойская (про­терозой) - эра первичной жизни, палеозойская (палеозой) - эра древ­ней жизни, мезозойская (мезозой) - эра средней жизни, кайнозойская (кайнозой) - эра новой жизни. Названия периодов образованы либо от названий местностей, где впервые были найдены соответствующие отложения (город Пермь, графство Девон), либо от происходивших в то время процессов (в угольный период - карбон - происходила за­кладка отложений каменного угля, в меловой - мела и т.д.).

Архейская эра (эра древнейшей жизни: 3500 (3800 2600 млн лет на­зад). Первые живые организмы на Земле появились по разным данным 3,8-3,2 млрд лет назад. Это были прокариотические гетеротрофные анаэробы (доядерные, питающиеся готовыми органическими веще­ствами, не нуждающиеся в кислороде). Они жили в первичном океане и питались растворенными в его воде органическими веществами, соз­данными абиогенно из неорганических веществ под действием энер­гии ультрафиолетовых лучей Солнца и грозовых разрядов.

Атмосфера Земли состояла преимущественно из С0 2 , СО, Н 2 , N7, водяных паров, небольших количеств N113, Н 2 5, СН 4 и почти не со­держала свободного кислорода 0 2 . Отсутствие свободного кислорода обеспечило возможность накопления в океане абиогенно созданных органических веществ, в противном случае они сразу же расщепля­лись бы кислородом.

Первые гетеротрофы осуществляли окисление органических ве­ществ анаэробно - без участия кислорода путем брожения. При бро­жении органические вещества расщепляются не полностью, и энергии образуется немного. По этой причине эволюция на ранних этапах раз­вития жизни шла очень медленно.

С течением времени гетеротрофы сильно размножились и им стало не хватать абиогенно созданного органического вещества. Тогда воз­никли прокариотические автотрофные анаэробы. Они могли синтези­ровать органические вещества из неорганических самостоятельно сна­чала посредством хемосинтеза, а затем - фотосинтеза.

Первым был фотосинтез анаэробный, который не сопровождался выделением кислорода:

6С0 2 + 12Н 2 5 -> С(,Н 12 0 6 + 125 + 6 Н,0

Затем появился фотосинтез аэробный:

6С0 2 + 6Н 2 0 -> СбН, 2 0 6 + 60,

Аэробный фотосинтез был характерен для существ, похожих на со­временных цианобактерий.

Выделяющийся при фотосинтезе свободный кислород стал окис­лять растворенные в воде океана двухвалентное железо, соединения серы н марганца. Эти вещества превращались в нерастворимые фор­мы и оседали на дне океана, |де образовали залежи железных, серных и марганцевых руд, которые в настоящее время использует человек.

Окисление растворенных в океане веществ происходило в тече­ние сотен миллионов лет, и только когда их запасы в океане были исчерпаны, кислород стал накапливаться в воде и диффундировать в атмосферу.

Необходимо отметить, что обязательным условием накопления в океане и атмосфере кислорода было погребение некоторой части синтезированного организмами органического вещества на дне океа­на. В противном случае, если бы вся органика расщеплялась с участи­ем кислорода, его излишков не оставалось бы и кислород не смог бы накапливаться. Неразложившиеся тела организмов оседали на дне океана, где образовали залежи ископаемого топлива - нефти и газа.

Накопление в океане свободного кислорода сделало возможным появление автотрофных и гетеротрофных аэробов Это произошло когда концентрация 0 2 в атмосфере достигла 1% от современного уровня (а он равен 21 6С0 2 + 6Н 2 0 + 38АТФ.

Поскольку при аэробных процессах стало выделяться намного больше энергии, эволюция организмов значительно ускорилась.

В результате симбиоза различных прокариотических клеток появи­лись первые эукариоты (ядерные).

В результате эволюции эукариот возник половой процесс - обмен организмов генетическим материалом - ДНК. Благодаря половому процессу эволюция пошла еще быстрее, поскольку к мутационной из­менчивости добавилась комбинативная.

Сначала эукариоты были одноклеточными, а затем появились пер­вые многоклеточные организмы. Переход к многоклеточное™ у расте­ний, животных и грибов произошел независимо друг от друга.

Многоклеточные организмы получили ряд преимуществ по срав­нению с одноклеточными:

1) большую продолжительность онтогенеза, так как в ходе инди­видуального развития организма происходит замещение одних клеток другими;

2) многочисленное потомство, поскольку для размножения орга­низма может выделить больше клеток;

3) значительные размеры и разнообразное строение тела, что обе­спечивает ббльшую устойчивость к внешним факторам среды за счет стабильности внутренней среды ор1анизма.

Ученые не имеют единого мнения по вопросу, когда возникли по­ловой процесс и многоклеточность - в архейскую или протерозой­скую эру.

Протерозойская эра (эра первичной жизни: 2600-570 млн лет на­зад). Появление многоклеточных еще более ускорило эволюцию и за относительно короткий период (в геологическом масштабе вре­мени) появились различные виды живых организмов, приспособлен­ные к разным условиям существования. Новые формы жизни занима­ли и формировали все новые экологические ниши в разных областях и глубинах океана. В породах возрастом 580 млн лет уже имеются от­печатки существ с твердыми скелетами и поэтому изучать эволюцию с этого периода гораздо легче. Твердые скелеты служат опорой для тел организмов и способствуют увеличению их размеров.

К концу протерозойской эры (570 млн лет назад) сложилась система продуценты-консументы и сформировался кислородно-углеродный биогеохимический круговорот веществ.

Палеозойская эра (эра древней жизни: 570-240 млн лет назад).

В первый период палеозойской эры - кембрийский (570-505 млн лет назад) - произошел так называемый «эволюционный взрыв»: за короткое время образовались почти все известные в настоящее вре­мя типы животных. Все предшествующее этому периоду эволюцион­ное время получило название докембрий, или криптозой («эра скрытой жизни») - это 7 /jj истории Земли. Время после кембрия назвали фане- розоеи («эрой явной жизни»).

Так как кислорода образовывалось все больше, атмосфера посте­пенно приобретала окислительные свойства. Когда концентрация 0 2 в атмосфере достигла lOfS? от современного уровня (на границе силура и девона), на высоте 20-25 км в атмосфере начал образовываться озо­новый слой. Он формировался из молекул 0 2 под действием энергии ультрафиолетовых лучей Солнца:

о 2 + о -> о,

Молекулы озона (0 3) обладают способностью отражать ультрафио­летовые лучи. В результате озоновый экран стал зашитой живых ор­ганизмов от губительных для них в больших дозах ультрафиолетовых лучей. До этого зашитой служила вола. Теперь жизнь получила воз­можность выйти из океана на сушу.

Выход живых существ на сушу начался в кембрийском периоде: первыми на нее вышли бактерии, а затем - грибы и низшие растения. В результате на суше образовалась почва и в силурийский период (435- 400 млн лет назад) на суше появились первые сосудистые растения - псилофиты. Выход на сушу способствовал появлению у растений тка­ней (покровных, проводяших, механических и др.) и органов (корня, стебля, листьев). В результате появились высшие растения. Первы­ми сухопутными животными стали членистоногие, произошедшие от морских ракоскорпионов.

В это время в морской среде эволюционировали хордовые: от бес­позвоночных хордовых произошли позвоночные рыбы, а в девоне от кистеперых рыб - амфибии. Они господствовали на суше 75 млн лет и были представлены очень крупными формами. В пермский пери­од, когда климат стал холодней и засушливей, превосходство над ам­фибиями получили рептилии.

Мезозойская эра (эра средней жизни: 240-66 млн лег назад). В ме­зозойской эре- «эра динозавров« рептилии достигли своего расцвета (образовались их многочисленные формы) и упадка. В триасе появи­лись крокодилы и черепахи, а от зверозубых рептилий произошел класс Млекопитающие. В течение всей мезозойской эры млекопитающие были мелкими и не были широко распространены. В конце мелово­го периода наступило похолодание и произошло массовое вымирание рептилий, окончательные причины которого до конца не выяснены. В меловом периоде появились покрытосеменные (цветковые).

Кайнозойская эра (эра новой жизни: 66 млн лет назад - настоящее время). В кайнозойской эре широко распространились млекопитаю­щие, птицы, членистоногие, цветковые растения. Появился человек.

В настоящее время деятельность человека стала важным фактором развития биосферы.

Вплоть до конца XVII в. большинство европейцев полага­ли, что в природе все пребывает неизменным со дня сотворения, что все виды растений и животные поныне таковы, какими их создал Бог. Однако в XVIII в. новые научные данные заставили усомниться в этом. Люди стали находить подтверждения того, что виды растений и животных изменяются на протяжении длительных периодов времени. Этот процесс называется эволюцией.

Первые теории эволюции

Жан-Батист де Моне (1744-1829), шевалье де Ламарк, родился во Франции. Он был одиннадцатым ребенком в обедневшей аристократической семье. Ламарк прожил трудную жизнь, умер нищим слепцом, его труды забылись. В 16 лет он вступил в армию, но вскоре ушел в отставку из-за слабого здоровья. Нужда вы­нудила его работать в банке, вместо того чтобы заниматься любимым де­лом - медициной.

Королевский ботаник

В свободное время Ламарк изучал растения и приобрел в этом столь обширные познания, что в 1781 году его назначили главным ботаником французского короля. Спустя десять лет, после , Ламарка избрали профессором зоологии Музея естествен­ной истории в Париже. Здесь он выступал с лекциями, устраивал выставки. Заметив различия между окаменелостями и современными видами животных, Ламарк пришел к выводу, что виды и признаки животных и растений не неизменны, а наоборот, меняются от поколения к поколению. Этот вывод ему подсказали не только окаменелости, но и геологические свидетельства изменений ландшафта за долгие миллионы лет.

Ламарк пришел к выводу, что на протяжении жизни особенности животного могут меняться в зависимости от внешних условий. Он доказал, что эти изменения передаются по наследству. Так, шея жира­фа могла удлиниться в течение его жизни из-за того, что ему приходи­лось тянуться за листьями деревьев, и это изменение перешло к его потомству. В наши дни эта теория признана ошибочной, хотя ее использованы в по­явившейся через 50 лет теории эволюции Дарвина и Уоллеса.

Экспедиция в Южную Америку

Чарлз Дарвин (1809-1882) родился в Шрюсбери в Англии. Он был сыном врача. Окончив школу, Дарвин поехал изучать медицину в Эдинбургский университет, но вскоре разочаровался в этом предмете и, по настоянию отца, уехал в Кембриджский университет, что­бы готовиться к сану священ­ника. И хотя подготовка шла успешно, Дарвин вновь разочаровался в предстоявшей ему карьере. В то же время он увлекся ботаникой и энтомологией (наукой о насекомых). В 1831 г. профессор ботани­ки Джон Хенслоу заметил способности Дарвина и предложил ему место натуралиста в экспедиции в Южную Америку. Перед отплытием Дарвин прочел тру­ды геолога Чарлза Лайеля (см. статью « »). Они поразили молодого ученого и повлияли на его собственные взгляды.

Открытия Дарвина

Экспедиция отплыла на корабле «Бигл» и продолжалась 5 лет. За это время исследователи посетили Бразилию, Аргентину, Чили, Перу и Галапагосские острова - десять скалистых островков у побережья Эквадора в Тихом океане, на каждом из которых существует своя фауна. В этой экспедиции Дарвин собрал огромную коллекцию горных пород окаменелостей, составил гербарии и коллекцию чучел животных. Он вел подробный дневник экспедиции и впоследствии воспользовался многими материалами сделанными на Галапагосских островах, при изложении своей теории эволюции.

В октябре 1836 г. «Бигл» возвратился в Англию. Следующие 20 лет Дарвин посвятил обработке со­бранных материалов. В 1858 г. он получил рукопись Альфреда Уоллеса (1823- 1913) с очень близкими ему идеями. И хотя оба натуралис­та выступили соавторами, роль Дарвина в выдвижении новой теории гораздо значительнее. В 1859 г. Дарвин опубликовал книгу «Происхождение видов пу­тем естественного отбора», в которой изложил теорию эволюции. Книга имела огромный успех и наделала много шума, так как противоречила традиционным представлениям о возникновении жизни на Земле. Одной из самых смелых мыслей было утверждение, что эволюция продолжалась многие миллионы лет. Это противоречило учению Библии о том, что мир был создан за 6 дней и с тех пор неизменен. В наши дни большинство ученых используют модернизированный вариант теории Дарвина для объяснения изменений в живых организмах. Некоторые же отвергают его теорию по религиозным мотивам.

Естественный отбор

Дарвин открыл, что организмы борются друг с другом за пищу и среду обитания. Он заметил, что даже в пределах одного вида есть особи с особыми признаками, увеличивающими их шансы на выживание. Потомство таких особей наследует эти признаки, и они постепенно становятся общими. Особи, не имеющие этих признаков, вымирают. Так, через много поколений весь вид приобретает полезные при­знаки. Этот процесс называют естественным отбором. Посмот­рим, к примеру, как приспосабливался к изменениям среды обитания мотылек. Сперва все мотыльки имели серебристую окраску и были незаметными на ветвях деревьев. Но вот деревья потемнели от дыма - и мотыль­ки стали заметнее, их активнее поедали птицы. Выживали же мотыльки, окрашенные темнее. Эта темная окраска перешла к их потомству и впоследствии распространилась на весь вид.

Роль трудов Ч. Дарвина в создании научной эволюционной теории

К середине XIX в. возникли объективные условия для создания научной эволюционной теории. Они сводятся к следующему.

1. К этому времени в биологии накопилось много фактического материала, доказывающего способность организмов к изменениям, и была создана первая эволюционная теория.

2. Совершены все наиболее важные географические открытия, в результате чего были более или менее подробно описаны наиболее важные представители органического мира; обнаружено большое разнообразие видов животных и растений, выявлены некоторые промежуточные формы организмов.

3. Бурное развитие капитализма требовало изучения источников сырья (в том числе и биологического) и рынков сбыта, что активизировало развитие биологических исследований.

4. Достигнуты большие успехи в селекции растений и животных, что способствовало выявлению причин изменчивости и закрепления возникших признаков у организмов.

5. Интенсивная разработка полезных ископаемых позволила обнаружить кладбища доисторических животных, отпечатки древних растений и животных, что подтверждало эволюционные идеи.

Создателем основ научной эволюционной теории стал Чарльз Дарвин (1809-1882). Ее основные положения были опубликованы в 1859 г. в книге «Происхождение видов путем естественного отбора, или Сохранение благоприятствующих рас в борьбе за жизнь». Ч. Дарвин продолжал работу по развитию эволюционной теории и опубликовал книги «Изменение домашних животных и культурных растений» (1868) и «Происхождение человека и половой отбор» (1871). Эволюционная теория постоянно развивается, дополняется, но ее основы были изложены в вышеназванных книгах.

Созданию теории Дарвина способствовали ситуация, сложившаяся в биологии к моменту начала научной деятельности ученого, то, что он жил в самой развитой (в тот период) капиталистической стране - Англии, возможность осуществлять путешествия (Ч. Дарвин совершил кругосветное путешествие на корабле «Бигль»), а также личные качества ученого.

При разработке научной эволюционной теории Ч. Дарвин создал свое определение «вид», выдвинул новые принципы систематизации органического мира, состоящие в нахождении родственных (генетических) связей, возникших за счет одинакового происхождения всего органического мира; дал определение эволюции как способности видов к медленному, постепенному развитию в процессе своего исторического существования. Он правильно раскрыл причину эволюции, состоящую в проявлении наследственной изменчивости, а также правильно раскрыл факторы (движущие силы) эволюции, включающие естественный отбор и борьбу за существование, через которую и реализуется естественный отбор.

Теория эволюции органического мира, разработанная в трудах Ч. Дарвина, явилась фундаментом для создания современной синтетической эволюционной теории.

Синтетическая теория эволюции органического мира - это совокупность научно обоснованных положений и принципов, объясняющих возникновение современного органического мира Земли. При разработке этой теории были использованы результаты исследований в области генетики, селекции, молекулярной биологии и других биологических наук, полученные во второй половине XIX и в течение всего XX столетия.

Карл Линней и роль его работ в становлении эволюционной теории

Человека всегда интересовало, откуда возник такой прекрасный мир животных и растений, всегда ли он был таким, как сейчас, изменяются ли организмы, существующие в природе. Глазами одного поколения трудно, а порой и невозможно обнаружить значительные изменения в окружающем мире, поэтому у человека первоначально сформировалось представление о неизменности окружающего мира, особенно мира животных (фауны) и растений (флоры).

Представления о неизменности органического мира называются метафизическими, а людей (в том числе и ученых), разделяющих эти взгляды, называют метафизиками.

Наиболее ярые метафизики, считающие, что все живое сотворено Богом и не меняется со дня сотворения, называются креационистами, а псевдоучение о божественном творении живого и его неизменности - креационизмом. Это крайне реакционное учение, оно тормозит развитие науки, мешает нормальной деятельности человека как в развитии цивилизации, так и в обычной жизни.

Креационизм был распространен в средние века, но и в настоящее время этого учения придерживаются верующие люди и церковные деятели, правда, и теперь церковь признает изменяемость живого и считает, что только душа была сотворена Богом.

По мере накопления знаний о природе, систематизации знаний было выявлено, что мир изменяем и это в дальнейшем привело к созданию и разработке эволюционной теории.

Выдающимся ученым-биологом, являвшимся метафизиком и креационистом, но своими работами подготовившим возможность разработки эволюционной теории, был шведский естествоиспытатель Карл Линней (1707-1778).

К. Линней создал самую совершенную искусственную систему органического мира. Она была искусственной потому, что в ее основу Линней положил признаки, которые часто не отражали родство между организмами (что в то время было и невозможно из-за неполноты знаний об организмах). Так, он отнес сирень и душистый колос (растения совершенно разных классов и семейств) в одну группу потому, что оба эти растения имеют по две тычинки (душистый колосок относится к классу однодольных, семейство злаковых, а сирень - к классу двудольных, семейство маслинных).

Система, предложенная К.Линнеем, была практичной, удобной. В ней применялась бинарная номенклатура, которую ввел Линней и которая используется и в настоящее время из-за своей рациональности. В данной системе высшим таксоном был класс. Растения разделялись на 24 класса, а животные - на шесть. Научным подвигом К. Линнея было включение человека в царство Животные, что во время безраздельного господства религии было далеко не безопасным для ученого. Значение системы К.Линнея для дальнейшего развития биологии состоит в следующем:

1) она создала основы для научной систематизации, так как в ней было четко видно, что между организациями существует взаимосвязь и родственные взаимоотношения;

2) эта система поставила задачу выяснения причин сходства между организмами, что явилось стимулом для изучения глубинных черт сходства и объяснения причин такого сходства.

К концу жизни К.Линней отказался от идеи неизменности видов, так как предложенная им система органического мира не укладывалась в рамки метафизических и креационных представлений.

Общая характеристика эволюционной теории, разработанной Ж. Б. Ламарком

В конце XVIII - начале XIX в. идея об изменяемости органического мира все в большей степени завоевывает умы ученых. Появляются первые эволюционные теории.

Эволюция - постепенное длительное развитие органического мира, сопровождающееся его изменением и появлением новых форм организмов.

Первую, более или менее обоснованную эволюционную теорию создал французский естествоиспытатель Жан Батист Ламарк (1744-1829). Он был видным представителем трансформизма. Трансформистами были также Ж. Бюффон (Франция), Эразм Дарвин - дед Ч. Дарвина (Англия), И. В. Гете (Германия), К. Ф. Рулье (Россия).

Трансформизм - учение об изменяемости видов различных организмов, включая животных, растения и человека.

Основы своей теории эволюции Ж. Б. Ламарк изложил в книге «Философия зоологии». Суть этой теории состоит в том, что организмы изменяются в процессе исторического существования. Изменения растений происходят под непосредственным влиянием условий среды, на животных эти условия воздействуют косвенно.

Причиной появления новых форм организмов (особенно животных) является внутреннее стремление организма к совершенству, а появившиеся изменения закрепляются за счет упражнения или неупражнения органов. Возникающие изменения наследуются организмом при последовательном воздействии условий, вызвавших эти изменения, если эти условия действуют в течение нескольких поколений.

Центральным положением эволюционной теории Ламарка является представление о видах организмов, их градации и стремлении вида перейти с низшей ступени (градации) на более высокую (отсюда и стремление к совершенству).

Примером, иллюстрирующим упражнение органов, является вытягивание шеи жирафом для доставания пищи, что приводит к ее удлинению. Если жираф не будет вытягивать шею, то она станет короче.

Факторами эволюции (по Ламарку) являются:

1) адаптация к условиям среды обитания, за счет чего возникают различные изменения в организмах;

2) наследование приобретенных признаков.

Движущие силы эволюции (по Ламарку) состоят в стремлении организмов к совершенствованию.

Основным достижением теории Ламарка явилось то, что впервые была сделана попытка доказать наличие эволюции в органическом мире в процессе исторического существования, однако ученый не сумел правильно вскрыть причины и движущие силы эволюции (на том этапе развития научной мысли это было и невозможно из-за недостатка научной ).

Аналогичные взгляды на развитие органического мира высказывал и профессор Московского университета К. Ф. Рулье. В своих теоретических положениях он пошел дальше Ж. Б. Ламарка, так как отрицал идею о стремлении организмов к совершенствованию. Но свою теорию он опубликовал позже Ламарка и не смог создать эволюционной теории в том виде, в каком ее разработал Ч. Дарвин.

Общая характеристика доказательств эволюции органического мира

Изучение организмов в течение длительного исторического времени человеческого развития показало, что организмы подвергались изменениям, находились в состоянии постоянного развития, т. е. эволюционировали. Выделяют четыре группы доказательств эволюционной теории: цитологические, палеонтологические, сравнительно-анатомические и эмбриологические. В данном подразделе рассмотрим эти доказательства в общем виде.

Общая характеристика цитологических доказательств эволюции организмов

Суть цитологических доказательств состоит в том, что практически все организмы (кроме вирусов) имеют клеточное строение. Для клеток животных и растений характерен общий план строения и общие по форме и функциям органоиды (цитоплазма, эндоплазматическая сеть, клеточный центр и т. д.). Однако клетки растений отличаются от клеток животных различным способом питания и разной приспособленностью к среде обитания по сравнению с животными.

Клетки имеют одинаковый химический и элементарный состав независимо от принадлежности к какому-либо организму, обладая специфичностью, связанной с особенностью организма.

Существование в природе промежуточного типа одноклеточных организмов - жгутиковых, сочетающих в себе признаки растительных и животных организмов (они как растения способны к фотосинтезу, а как животные - к гетеротрофному способу питания), свидетельствует о единстве происхождения животных и растений.

Обзор эмбриологических доказательств эволюции

Известно, что в индивидуальном развитии (онтогенезе) все организмы проходят стадию эмбрионального (внутриутробного - для живородящих организмов) развития. Изучение эмбрионального периода разных организмов показывает общность происхождения всех многоклеточных организмов и способность их к эволюции.

Первым эмбриологическим доказательством является то, что развитие всех (и животных, и растительных) организмов начинается с одной клетки - зиготы.

Вторым важнейшим доказательством является биогенетический закон, открытый Ф.Мюллером и Э.Геккелем, дополненный А. Н. Северцовым, А. О. Ковалевским и И. И. Шмальгаузеном. Этот закон гласит: «В эмбриональном развитии онтогенеза организмы проходят основные эмбриональные стадии филогенетического (исторического) развития вида». Так, отдельные особи вида, независимо от уровня его организации, проходят стадию зиготы, морулы, бластулы, гаструлы, трех зародышевых листков, органогенеза; более того, и у рыб, и у человека есть личиночная рыбообразная стадия и зародыш человека имеет жабры и жаберные щели (это относится к животным).

Уточнение биогенетического закона русскими учеными относится к тому, что организмы проходят основные стадии филогенетического развития, повторяя стадии, характерные для эмбрионального периода развития, а не для взрослых состояний организмов.

Сравнительно-анатомические доказательства эволюции

Эти доказательства относятся к эволюции животных и основаны на сведениях, полученных сравнительной анатомией.

Сравнительная анатомия - наука, изучающая внутреннее строение различных организмов в их сравнении друг с другом (наибольшее значение эта наука имеет для животных и человека).

В результате изучения особенностей строения хордовых было обнаружено, что эти организмы имеют двустороннюю (билатеральную) симметрию. Они имеют опорно-двигательную систему, обладающую единым, общим для всех, планом строения (сравните скелет человека и скелет ящерицы или лягушки). Это свидетельствует об общности происхождения человека, пресмыкающихся и земноводных.

У различных организмов имеются гомологичные и аналогичные органы.

Гомологичными называют органы, характеризующиеся общим планом строения, единством происхождения, но они могут иметь различное строение из-за выполнения разных функций.

Примерами гомологичных органов являются грудной плавник рыбы, передняя конечность лягушки, крыло птицы и рука человека.

Аналогичными называют те органы, которые имеют примерно одинаковое строение (внешняя форма) из-за выполнения близких функций, но обладают различным планом строения и разным происхождением.

К аналогичным органам относится роющая конечность крота и медведки (насекомого, ведущего подземный образ жизни), крыло птицы и крыло бабочки и т. д.

К сравнительно-анатомическим доказательствам относят также наличие у организмов рудиментов и атавизмов.

Рудиментами называют остаточные органы, которые не используются данными организмами. Примерами рудиментов являются аппендикс (слепой отросток кишки), копчиковые позвонки и т. д. Рудиментами являются остатки тех органов, которые когда-то были необходимы, а на данном этапе филогенеза потеряли свое значение.

Атавизмы - признаки, ранее присущие и характерные для данного организма, но на данном этапе эволюции утратившие свое значение для большинства особей, но проявившиеся у данной конкретной особи в ее онтогенезе. К атавизмам относится хвостатость некоторых людей, полимастия человека (многососковость), чрезмерное развитие волосяного покрова. Суеверные люди придают хвостатости и повышенному развитию волосяного покрова некоторый религиозный смысл, считают таких людей близкими к дьяволу, а в средние века их даже сжигали на костре.

Палеонтологические доказательства эволюции

Палеонтология - наука об органическом мире прошедших геологических эпох, т. е. об организмах, когда-то живших на Земле, а ныне вымерших. В палеонтологии выделяют палеозоологию и палеоботанику.

Палеозоология изучает остатки ископаемых животных, а палеоботаника - остатки ископаемых растений.

Палеонтология прямо доказывает, что органический мир Земли в разные геологические эпохи был различен, он изменялся и развивался от примитивных форм организмов к более высокоорганизованным формам.

Палеонтологические исследования позволяют установить историю развития разных форм организмов на Земле, выявить родственные (генетические) связи между отдельными организмами, что способствует созданию естественной системы органического мира Земли.

В заключение можно сделать вывод о том, что кратко рассмотренные явления доказывают, что органический мир Земли находится в состоянии постоянного медленного постепенного развития, т. е. эволюции, при этом развитие шло и идет от простого к сложному.

Роль наследственности и изменчивости в эволюции органического мира

Важнейшими факторами эволюции являются изменчивость и наследственность. Роль наследственности в эволюции состоит в передаче признаков, в том числе и возникших в онтогенезе от родителей к потомкам.

Изменчивость организмов приводит к появлению особей, имеющих разный уровень отличий друг от друга. Всякое ли изменение, возникшее в онтогенезе, наследуется? Вероятно, нет. Модификационные изменения, не затрагивающие генома, не наследуются. Их роль в эволюции состоит в том, что такие изменения позволяют организму выжить в сложных, порой экстремальных условиях среды. Так, мелкие листья способствуют снижению транспирации (испарения ), что позволяет растению выжить в условиях недостатка влажности.

Большую роль в процессах эволюции играет наследственная (мутационная) изменчивость, затрагивающая геном гамет. В этом случае возникшие изменения передаются от родителей к потомкам, и новый признак либо закрепляется в потомстве (если он полезен организму), либо организм гибнет, если этот признак ухудшает его приспособленность к среде обитания.

Таким образом, наследственная изменчивость «создает» материал для естественного отбора, а наследственность закрепляет возникшие изменения и приводит к их накоплению.

Концепция эволюционизма 1. Понятие "эволюция". 2. Основные постулаты концепции эволюции органического мира. 3. Принципы глобального эволюционизма.


Понятие "эволюция" 1. Эволюционная теория ныне не рассматривается как единое описание однозначного пути развития, который наукой познан до конца, скорее эволюционизм в современной науке – это спектр в различной степени обоснованных концепций. 2. Эволюция подразумевает всеобщее постепенное развитие, упорядоченное и последовательное.


Понятие "эволюция" Ко второй половине XVIII века сложились объективные предпосылки для появления научно обоснованных эволюционистских взглядов: описания множества новых видов в результате географических открытий; установлено единство плана строения многих ранее известных групп организмов; появление особой биологической дисциплины – палеонтологии; появление научно обоснованных теорий происхождения Земли и Солнечной системы


Понятие "эволюция". На рубеже XVIII и XIX веков раскрытие закономерностей исторического развития растительного и животного мира стало первоочередной задачей.


Основные постулаты концепции эволюции органического мира. Французский биолог Жан-Батист Ламарк (1744 – 1829) выдвинул гипотезу о механизме эволюции. Он опубликовал свои воззрения, которые ныне считаются сущностью ламаркизма, в работе "Философия зоологии" в 1809 году. Реализация принципа градации, по Ламарку, становится возможной благодаря наличию у организмов внутреннего стремления к совершенствованию.


Основные постулаты концепции эволюции органического мира. Основным обобщением взглядов Ламарка являются два положения, которые вошли в историю науки под названием "законы Ламарка". 1. У всех животных, не достигших предела своего развития, органы и системы органов, подвергавшиеся длительному усиленному упражнению, постепенно увеличиваются в размерах и усложняются, а неупражняемые – упрощаются и исчезают. 2. Признаки и свойства, приобретенные в результате длительного и устойчивого воздействия внешней среды, передаются по наследству и сохраняются у потомства при условии их наличия у обоих родительских организмов.


Основные постулаты концепции эволюции органического мира. Концепция Ламарка представляла собой первую законченную систему эволюционных взглядов и одновременно первую попытку обосновать эти взгляды. Ламарк в целом правильно охарактеризовал эволюцию как прогрессивный процесс, идущий в направлении усложнения строения организмов. Передовыми для своего времени были взгляды Ламарка на адаптивный характер эволюционного процесса. В концепции Ламарка содержался целый ряд ошибочных положений: 1. объяснение эволюционного процесса как результата внутреннего стремления к совершенствованию. 2. допущение возможности появления наследуемых приспособительных признаков в ответ на воздействие среды. 3. отрицание реальности вида.


Основные постулаты концепции эволюции органического мира. Теория эволюции Чарльза Дарвина (англ. Charles Robert Darwin;) считается одной из главных научных революций, так как она помимо сугубо научного значения, привела к пересмотру широкого круга мировоззренческих, этических, социальных проблем.


Основные постулаты концепции эволюции органического мира. В теории эволюции Чарльза Дарвина несколько научных компонентов. 1. Представление об эволюции как реальности, что означает определение жизни как динамической структуры естественного мира, а не статической системы. 2. В результате избыточной рождаемости между организмами в природе возникает конкуренция за среду обитания и пищу -"борьба за существование". Принято различать три ее формы: борьбу с факторами небиологического (абиотического) происхождения, межвидовую и внутривидовую борьбу.


Основные постулаты концепции эволюции органического мира. Благодаря наличию изменчивости разные особи в процессе борьбы за существование оказываются в неравном положении. Индивидуальные изменения, облегчающие выживание, обеспечивают своим носителям преимущество, в результате чего чаще выживают и дают потомство более приспособленные к данным условиям особи, а слабейшие с большей вероятностью погибают или устраняются от скрещивания. Это явление Дарвин назвал естественным отбором.


Основные постулаты концепции эволюции органического мира. Приспособительный характер эволюции достигается путем отбора из множества случайных изменений таких, которые облегчают выживание в данных, конкретных условиях среды. Приспособленность организмов имеет, как правило, относительный характер.


Основные постулаты концепции эволюции органического мира. Положение о том, что виды произошли путем естественного отбора, Дарвин вывел, основываясь на пяти основных постулатах: 1.Все виды обладают биологическим потенциалом к увеличению количества особей до больших популяций. 2.Популяции в природе демонстрируют относительное постоянство количества особей во времени. 3.Ресурсы, необходимые для существования видов, ограничены, поэтому количество особей в популяциях примерно постоянно во времени. Вывод 1. Между представителями одного вида существует борьба за ресурсы, необходимые для выживания и размножения. Только небольшая часть особей выживает и дает потомство.


Основные постулаты концепции эволюции органического мира. 4. Не существует двух особей одного вида, которые бы обладали одними свойствами. Представители одного вида демонстрируют большую изменчивость. 5. В основном изменчивость обусловлена генетически, поэтому наследуется. Вывод 2. Конкуренция между представителями одного вида зависит от уникальных наследственных свойств особей, обеспечивающих преимущества в борьбе за ресурсы для выживания и размножения. Такая неодинаковая способность к выживанию и есть естественный отбор. Вывод 3. Накопление более благоприятных свойств в результате естественного отбора приводит к постоянному изменению видов. Так происходит эволюция.


Доказательства эволюционной концепции Сведения, подтверждающие современные представления об эволюции, поступают из разных источников. Некоторые из событий, приводимых в качестве доказательств эволюционной теории, могут быть воспроизведены в лаборатории, однако, это не значит, что они действительно имели место в прошлом, они просто свидетельствуют о возможности таких событий.




Доказательства эволюционной концепции. Систематика Естественная классификация может быть филогенетической или фенотипической. Чаще используют филогенетическую классификацию, поскольку она отражает эволюционные связи, в основе которых лежит происхождение организмов и наследование ими определенных признаков. Черты сходства и различия между организмами можно объяснить как результат прогрессивной адаптации организмов в пределах каждой таксономической группы к определенным условиям среды на протяжении некоторого периода времени.


Доказательства эволюционной концепции. В систематике используются следующие основные иерархические единицы: Царство; Тип (отдел у растений); Класс; Отряд (порядок у растений); Семейство; Род; Вид. Каждый таксон может содержать несколько таксономических единиц более низкого ранга. Но вместе с тем таксон может принадлежать только одному таксону, расположенному непосредственно над ним. На каждом иерархическом уровне может находиться несколько таксонов, но все они отличаются друг от друга.




Доказательства эволюционной концепции. Сравнительная анатомия В качестве свидетельства происхождения животных от общего предка рассматривается наличие гомологичных и рудиментарных органов Мигательная перепонка - "рудимент" человека.








Концепция катастрофизма Гипотезы катастрофистов можно подразделить на две основные группы. 1. Земной катастрофизм: катастрофы связаны с геологическими процессами (оживлением вулканизма, ведущим к глобальному похолоданию и выбросу в атмосферу больших объемов токсических веществ, горообразовательными процессами, сопряженными с изменением климата).
концепция катастрофизма 2. Космический катастрофизм: катастрофы имеют космическое происхождение: катастрофическо е повышени е радиации, вызванно е вспышкой сверхновой звезды; колебания солнечной активности; б омбардировк а Земли кометами и гигантскими астероидами, сопряженн ая с колебаниями положения Солнечной системы относительно плоскости галактики; прохождени е крупного небесного тела через окружающее Солнечную систему кометное облако.


Концепция катастрофизма В 1980 году американский физик, лауреат Нобелевской премии Л. Альварез и его сын геолог У. Альварез предположили, что иридиевая аномалия – следствие удара о Землю крупного астероида, вещество которого рассеялось по всей земной поверхности. Что привело к полной кратковременной приостановке фотосинтеза и массовой гибели зеленых растений, а вслед за зелеными растениями гибели растительноядных животные, а за ними и хищников.


Концепция катастрофизма Ни одна из катастрофических моделей не объясняет смысла процессов, совершавшихся на Земле в критические эпохи, но скорее ставят новые вопросы. Большую роль в распространении альтернативных, антидарвиновский концепций эволюции играют психологические факторы (новизна идеи об астероидах).




Соотношение микро- и макроэволюции. Микроэволюция – совокупность эволюционных процессов, протекающих в популяциях вида и приводящих к изменению генофонда этих популяций и образованию новых видов. Макроэволюция – эволюционные преобразования, ведущие к формированию таксонов более высокого ранга, чем вид.



Эволюция органического мира Земли неразрывно связана с эволюцией литосферы. История развития литосферы Земли подразделяется на геологические эры: катархейскую, архейскую, протерозойскую, палеозойскую, мезозойскую, кайнозойскую. Каждая эра делится на периоды и эпохи. Геологическим эрам, периодам и эпохам соответствуют определенные этапы развития жизни на Земле.

Катархей, архей и протерозой объединяются в криптозой – «эпоху скрытой жизни». Ископаемые остатки криптозоя представлены отдельными фрагментами, не всегда поддающимися идентификации. Палеозой, мезозой и кайнозой объединяются вфанерозой – «эпоху явной жизни». Начало фанерозоя характеризуется появлением скелетообразующих животных, хорошо сохраняющихся в ископаемом состоянии: фораминифер, раковинных моллюсков, древних членистоногих.

Ранние этапы развития органического мира

В условиях избытка готовых органических веществ гетеротрофный (сапротрофный) способ питания является первичным. Бо льшая часть архебионтов специализировалась именно нагетеротрофном сапротрофном питании . У них формируются сложные ферментные системы. Это привело к увеличению объема генетической информации, появлению ядерной оболочки, разнообразных внутриклеточных мембран и органоидов движения. У части гетеротрофов происходит переход отсапротрофного питания кголозойному . В дальнейшем появляются белки–гистоны, что сделало возможным появление настоящих хромосом и совершенных способов деления клетки: митоза и мейоза. Таким образом, происходит переход отпрокариотического типа организации клеток кэукариотическому .

Другая часть архебионтов специализировалась на автотрофном питании . Древнейшим способом автотрофного питания являетсяхемосинтез . На основе ферментно-транспортных систем хемосинтеза возникаетфотосинтез – совокупность обменных процессов, основанных на поглощении световой энергии с помощью разнообразных фотосинтетических пигментов (бактериохлорофилла, хлорофилловa , b , c , d и других). Избыток углеводов, образующихся при фиксации СО 2 , позволил синтезировать разнообразные полисахариды.

Все перечисленные признаки у гетеротрофов и автотрофов являются крупными ароморфозами .

Вероятно, на ранних стадиях эволюции органического мира Земли был широко распространен обмен генами между совершенно разными организмами (перенос генов путем трансдукции, межвидовой гибридизации и внутриклеточного симбиоза). В ходе синтезогенеза свойства гетеротрофных и фотоавтотрофных организмов объединились в одной клетке. Это привело к формированию различных отделов водорослей – первых настоящих растений.

Основные этапы эволюции растений

Водоросли – многочисленная неоднородная группа первично-водных фотоавтотрофных организмов. В ископаемом состоянии водоросли известны еще из докембрия (свыше 570 млн. лет назад), а в протерозое и начале мезозоя уже существовали все ныне известные отделы. Ни один из современных отделов водорослей не может считаться предком другого отдела, что указывает на сетчатый характер эволюции водорослей.

В конце силура (≈ 400 млн. лет назад) возникают Высшие (наземные)растения .

В силуре происходило обмеление океана и опреснение воды. Это создало предпосылки для заселения литорали и супралиторали (литораль – часть берега, заливаемая во время приливов; литораль занимает промежуточное положение между водной и наземно-воздушной средой обитания;супралитораль – часть берега выше уровня приливов, увлажняемая брызгами; в сущности, супралитораль является частью наземно-воздушной среды обитания).

Содержание кислорода в атмосфере до появления наземных растений было значительно ниже современного: протерозой – 0,001 от современного уровня, кембрий – 0,01, силур – 0,1. При дефиците кислорода лимитирующим фактором в атмосфере является ультрафиолет. Выход растений на сушу сопровождался развитием метаболизма фенольных соединений (дубильных веществ, флавоноидов, антоцианов), которые участвуют в осуществлении защитных реакций, в том числе от мутагенных факторов (ультрафиолет, ионизирующие излучения, некоторые химические вещества).

Продвижение растений на сушу связано с появлением ряда ароморфозов:

1)Появление дифференцированных тканей: покровных, проводящих, механических, фотосинтезирующих. Появление дифференцированных тканей неразрывно связано с появлением меристем и основной паренхимы.

2) Появление дифференцированных органов: побега (органа углеродного питания) и корня (органа минерального питания).

3) Появляются многоклеточные гаметангии: антеридии и архегонии.

4) Происходят существенные изменения в обмене веществ.

Предками Высших растений считаются организмы, сходные с современными Харовыми водорослями. Древнейшее известное наземное растений – куксония. Куксония обнаружена в 1937 г. (У. Ланг) в силурийских песчаниках Шотландии (возраст порядка 415 млн. лет). Это растение представляло собой похожий на водоросль кустик веточек, несущих спорангии. Прикреплялось к субстрату с помощью ризоидов.

Дальнейшая эволюция Высших растений разделилась на две линии: гаметофитную и спорофитную

Представители гаметофитной линии – современные Моховидные. Это бессосудистые растения , у которых отсутствуют специализированные проводящие и механические ткани.

Другая линия эволюции привела к появлению сосудистых растений , у которых в жизненном цикле доминирует спорофит, и имеются все ткани высших растений (образовательные, покровные, проводящие, основная паренхима и ее производные). Благодаря появлению всех типов тканей происходит дифференцировка тела растений на корень и побег. Древнейшими из сосудистых растений являются ныне вымершиеРиниевые (псилофиты ). В течение девона формируются современные группыспоровых растений (Плауны, Хвощи, Папоротники). Однако у споровых растенийотсутствует семя , и спорофит развивается из недифференцированного зародыша.

В начале мезозоя (≈ 220 млн. лет назад) появляются первые Голосеменные растения , которые господствовали в мезозойской эре. Крупнейшие ароморфозы Голосеменных:

1) Появление семязачатков ; в семязачатке развивается женский гаметофит (эндосперм).

2) Появление пыльцевых зерен ; у большинства видов пыльцевое зерно при прорастании образует пыльцевую трубку, образуя мужской гаметофит.

3) Появление семени , в состав которого входит дифференцированный зародыш.

Однако у Голосеменных растений сохраняется ряд примитивных признаков: семяпочки расположены на семенных чешуях (мегаспорангиофорах) открыто, опыление происходит только с помощью ветра (анемофилия), эндосперм гаплоидный (женский гаметофит), проводящие ткани примитивные (в состав ксилемы входят трахеиды).

Первые Покрытосеменные (Цветковые )растения появились, вероятно, еще в юрском периоде, а в меловом периоде начинается ихадаптивная радиация . В настоящее время Покрытосеменные находятся в состоянии биологического прогресса, которому способствует ряд ароморфозов:

1)Появление пестика – замкнутого плодолистика с семязачатками.

2) Появление околоцветника , что сделало возможным переход к энтомофилии (опылению насекомыми).

3) Появление зародышевого мешка идвойного оплодотворения .

В настоящее время Покрытосеменные представлены множеством жизненных форм: деревья, кустарники, лианы, однолетние и многолетние травы, водные растения. Особого разнообразия достигает строение цветка, что способствует точности опыления и обеспечивает интенсивное видообразование – к Покрытосеменным относится около 250 тысяч видов растений.

Основные этапы эволюции животных

Эукариотические организмы, специализирующиеся на гетеротрофном питании, дали начало Животным иГрибам .

В протерозойской эре возникают все известные типы Многоклеточных беспозвоночных животных . Существует две основные теории происхождения многоклеточных животных. Согласно теориигастреи (Э. Геккель), исходным способом формирования двуслойного зародыша является инвагинация (впячивание стенки бластулы). Согласно теориифагоцителлы (И. И. Мечников), исходным способом формирования двуслойного зародыша является иммиграция (перемещение отдельных бластомеров в полость бластулы). Возможно, эти две теории взаимно дополняют друг друга.

Кишечнополостные – представители наиболее примитивных (двуслойных) многоклеточных: их тело состоит всего из двух слоев клеток: эктодермы и энтодермы. Уровень дифференцировки тканей очень низкий.

У Низших червей (Плоские иКруглые черви ) появляется третий зародышевый листок – мезодерма. Это крупный ароморфоз, благодаря которому появляются дифференцированные ткани и системы органов.

Затем эволюционное древо животных разветвляется на Первичноротых и Вторичноротых. Среди Первичноротых у Кольчатых червей образуется вторичная полость тела (целом ). Это крупный ароморфоз, благодаря которому становится возможным разделение тела на отделы.

Кольчатые черви имеют примитивные конечности (параподии) и гомономную (равнозначную) сегментацию тела. Но в начале кембрия появляются Членистоногие , у которых параподии преобразованы в членистые конечности. У Членистоногих появляется гетерономная (неравнозначная) сегментация туловища. У них имеется хитиновый экзоскелет, который способствует появлению дифференцированных пучков мышц. Перечисленные особенности Членистоногих являются ароморфозами.

Наиболее примитивные Членистоногие – Трилобитообразные – господствовали в палеозойских морях. СовременныеЖабродышащие первично-водные членистоногие представленыРакообразными . Однако в начале девона (после выхода на сушу растений и формирования наземных экосистем) происходит выход на сушуПаукообразных иНасекомых .

Паукообразные вышли на сушу, благодаря многочисленным алломорфозам (идиоадаптациям):

1)Непроницаемость покровов для воды.

2) Утрата личиночных стадий развития (за исключением клещей, однако нимфа клещей принципиально не отличается от взрослых животных).

3) Формирование компактного слабо расчлененного тела.

4) Формирование органов дыхания и выделения, соответствующих новым условиям обитания.

Насекомые наиболее приспособлены к жизни на суше, благодаря появлению крупных ароморфозов:

1) Наличие зародышевых оболочек – серозной и амниотической.

2) Наличие крыльев.

3) Пластичность ротового аппарата.

С появлением Цветковых растений в меловом периоде начинается совместная эволюция Насекомых и Цветковых (коэволюция ), и у них формируются совместные адаптации (коадаптации ). В кайнозойской эре Насекомые, как и Цветковые растения, находятся в состоянии биологического прогресса.

Среди Вторичноротых животных наивысшего расцвета достигают Хордовые животные , у которых появляется ряд крупных ароморфозов: хорда, нервная трубка, брюшная аорта (а затем – сердце).

Происхождение хорды до сих пор точно не установлено. Известно, что тяжи вакуолизированных клеток имеются у низших беспозвоночных. Например, у ресничного червя Coelogynopora ветвь кишечника, располагающаяся над нервными ганглиями в переднем конце тела, состоит из вакуолизированных клеток, так что внутри тела возникает эластичный стержень, помогающий вбуравливаться в песчаный грунт. У североамериканского ресничного червяNematoplana nigrocapitula в добавление к описанной передней кишке вся спинная сторона кишечника преобразована в жгут, состоящий из вакуолизированных клеток. Этот орган назвали кишечной хордой (chordaintestinalis). Возможно, что прямо из вакуолизированных клеток спинной стороны кишки и возникла спинная хорда (chordadorsalis) энтомезодермального происхождения.

От примитивных Хордовых животных в силуре происходят первыеПозвоночные (Бесчелюстные ). У позвоночных формируется осевой и висцеральный скелет, в частности, мозговая коробка и челюстной отдел черепа, что также является ароморфозом. НизшиеЧелюстноротые позвоночные представлены разнообразнымиРыбами . Современные классы рыб (Хрящевые и Костные) формируются в конце палеозоя – начале мезозоя).

Часть Костных рыб (Мясистолопастные), благодаря двум ароморфозам – легочному дыханию и появлению настоящих конечностей – дала начало первым Четвероногим Амфибиям (Земноводным ). Первые Земноводные вышли на сушу в девонском периоде, но их расцвет приходится на каменноугольный период (многочисленныестегоцефалы ). Современные Амфибии появляются в конце юрского периода.

Параллельно среди Четвероногих появляются организмы с зародышевыми оболочками – Амниоты . Наличие зародышевых оболочек – крупный ароморфоз, который впервые появляется уРептилий . Благодаря зародышевым оболочкам, а также ряду других признаков (ороговевающий эпителий, тазовые почки, появление коры больших полушарий) Рептилии полностью утратили зависимость от воды. Появление первых примитивных рептилий –котилозавров – относится к концу каменноугольного периода. В перми появляются разнообразные группы рептилий: зверозубые, первоящеры и другие. В начале мезозоя формируются ветви черепах, плезиозавров, ихтиозавров. Начинается расцвет рептилий.

От групп, близких к первоящерам, отделяются две ветви эволюционного развития. Одна ветвь в начале мезозоя дала начало многочисленной группе псевдозухий . Псевдозухии дали начало нескольким группам: крокодилы, птерозавры, предки птиц и динозавры, представленные двумя ветвями: ящеротазовые (бронтозавр, диплодок) и птицетазовые (только растительноядные виды – стегозавр, трицератопс). Вторая ветвь в начале мелового периода привела к появлению подклассачешуйчатых (ящерицы, хамелеоны и змеи).

Однако Рептилии не смогли утратить зависимость от низких температур: теплокровность у них невозможна из-за неполного разделения кругов кровообращения. В конце мезозоя с изменением климата происходит массовое вымирание рептилий.

Лишь у части псевдозухий в юрском периоде появляется полная перегородка между желудочками, редуцируется левая дуга аорты, происходит полное разделение кругов кровообращения, и становится возможной теплокровность. В дальнейшем эти животные приобрели ряд адаптаций к полету и дали начало классу Птицы .

В юрских отложениях мезозойской эры (≈ 150 млн. лет назад) обнаружены отпечатки Первоптиц: археоптерикса и археорниса (три скелета и одно перо). Вероятно, это были древесно-лазающие животные, которые могли планировать, но не были способны к активному полету. Еще раньше (в конце триаса, ≈ 225 млн. лет назад) существовал протоавис (два скелета обнаружены в 1986 году в Техасе). Скелет протоависа существенно отличался от скелета рептилий, большие полушария мозга и мозжечок были увеличены в размерах. В меловом периоде существовали две группы ископаемых птиц: ихтиорнисы и гесперорнисы. Современные группы птиц появляются только в начале кайнозойской эры.

Существенным ароморфозом в эволюции птиц можно считать появление четырехкамерного сердца в сочетании с редукцией левой дуги аорты. Произошло полное разделение артериальной и венозной крови, что сделало возможным дальнейшее развитие головного мозга и резкое повышение уровня обмена веществ. Расцвет Птиц в кайнозойской эре связан с рядом крупных идиоадаптаций (появление перьевого покрова, специализация опорно-двигательного аппарата, развитие нервной системы, забота о потомстве и способность к перелетам), а также с рядом признаков частичной дегенерации (например, утрата зубов).

В начале мезозойской эры появляются первые Млекопитающие , которые возникли благодаря целому ряду ароморфозов: увеличенные полушария переднего мозга с развитой корой, четырехкамерное сердце, редукция правой дуги аорты, преобразование подвеска, квадратной и сочленовой костей в слуховые косточки, появление шерстного покрова, млечных желез, дифференцированных зубов в альвеолах, предротовой полости. Предками Млекопитающих были примитивные пермские Пресмыкающиеся, сохранявшие ряд признаков Амфибий (например, были хорошо развиты кожные железы).

В юрском периоде мезозойской эры Млекопитающие были представлены, как минимум, пятью классами (Многобугорчатые, Трехбугорчатые, Трикодонты, Симметродонты, Пантотерии). Один из этих классов, вероятно, дал начало современным Первозверям, а другой – Сумчатым и Плацентарным. Плацентарные млекопитающие, благодаря появлению плаценты и настоящего живорождения, в кайнозойской эре переходят в состояние биологического прогресса.

Исходным отрядом Плацентарных являются Насекомоядные. От Насекомоядных рано отделились Неполнозубые, Грызуны, Приматы и ныне вымершая группа Креодонтов – примитивных хищников. От Креодонтов отделились две ветви. Одна из этих ветвей дала начало современным Хищным, от которых отделились Ластоногие и Китообразные. Другая ветвь дала начало примитивным копытным (Кондилартрам), а затем Непарнокопытным, Парнокопытным и родственным отрядам.

Окончательная дифференцировка современных групп Млекопитающих завершилась в эпоху великих оледенений – в плейстоцене. На современный видовой состав Млекопитающих значительное влияние оказывает антропогенный фактор. В историческое время были истреблены: тур, стеллерова корова, тарпан и другие виды.

В конце кайнозойской эры у части Приматов возникает особый тип ароморфоза – переразвитие коры больших полушарий головного мозга. В результате возникает совершенно новый вид организмов –Человек разумный .

Растения

Животные

Криптозой

Архейская

Восстановленная атмосфера, первичный океан, большое давление и температура

Прокариотическая биосфера, хемо и фотосинтез, оплодотворение, на границе с протерозоем появление эукариот

Протерозой

2,6млрд-650млн

Эукариоты, могоклеточные,ткани,2х слойность

Фанерозой

Палеозой

Сухой климат моря

60% трилобиты, скелет, все типы животных.

Гора и моря

Головоногие, плеченогие расцвет молюсков

Членистоногие, бесчелюстные позвоночные

Вышли растения на сушу риниофиты

Земоводные и рыбы

спороввые

потепление

пресмыкающиеся

Похолодание, ледниковый период

Триасовый

Раскол пангеи

Млеки и птицы

Раскол континентов

Появление плацентарных

Ледниковый период, раскол континентов

вымирание