У каких планет солнечной системы нет атмосферы. Какая атмосфера на планетах Солнечной Системы

Энциклопедичный YouTube

    1 / 5

    ✪ Земля космический корабль (14 Серия) - Атмосфера

    ✪ Почему атмосферу не втянуло в космический вакуум?

    ✪ Вход в атмосферу Земли корабля "Союз ТМА-8"

    ✪ Атмосфера строение, значение, изучение

    ✪ О. С. Угольников "Верхняя атмосфера. Встреча Земли и космоса"

    Субтитры

Граница атмосферы

Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое . Атмосфера переходит в межпланетное пространство постепенно, в экзосфере , начинающейся на высоте 500-1000 км от поверхности Земли .

По определению, предложенному Международной авиационной федерацией , граница атмосферы и космоса проводится по линии Кармана , расположенной на высоте около 100 км, выше которой авиационные полёты становятся полностью невозможными. NASA использует в качестве границы атмосферы отметку в 122 километра (400 000 футов ), где «шаттлы » переключаются с маневрирования с помощью двигателей на аэродинамическое маневрирование .

Физические свойства

Кроме указанных в таблице газов, в атмосфере содержатся Cl 2 {\displaystyle {\ce {Cl2}}} , SO 2 {\displaystyle {\ce {SO2}}} , NH 3 {\displaystyle {\ce {NH3}}} , CO {\displaystyle {{\ce {CO}}}} , O 3 {\displaystyle {{\ce {O3}}}} , NO 2 {\displaystyle {\ce {NO2}}} , углеводороды , HCl {\displaystyle {\ce {HCl}}} , HF {\displaystyle {\ce {HF}}} , HBr {\displaystyle {\ce {HBr}}} , HI {\displaystyle {{\ce {HI}}}} , пары Hg {\displaystyle {\ce {Hg}}} , I 2 {\displaystyle {\ce {I2}}} , Br 2 {\displaystyle {\ce {Br2}}} , а также и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является Rn {\displaystyle {\ce {Rn}}} .

Строение атмосферы

Пограничный слой атмосферы

Нижний слой тропосферы (1-2 км толщиной), в котором состояние и свойства поверхности Земли непосредственно влияют на динамику атмосферы.

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом.
Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 метров.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от минус 56,5 до плюс 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 годах - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до минус 110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~ 150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен редкими частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Обзор

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы.

На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу .

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом O 2 {\displaystyle {\ce {O2}}} , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 {\displaystyle {\ce {N2}}} выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO {\displaystyle {{\ce {NO}}}} в верхних слоях атмосферы.

Азот N 2 {\displaystyle {\ce {N2}}} вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами - растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества потребляются при фотосинтезе и поглощаются мировым океаном . Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание CO 2 {\displaystyle {\ce {CO2}}} в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество CO 2 {\displaystyle {\ce {CO2}}} в атмосфере удвоится и может привести к

Долгие годы ученые задаются вопросами, касающимися планетных атмосфер. Так, почему планеты, гравитация которых гораздо слабее, чем на нашей, имеют давление атмосферы, в сотни раз превышающее земное (например, Венера)? С другой стороны, существуют планеты, такие как Титан, имеющие всемеро меньшую гравитацию, однако атмосфера здесь в четыре раза плотней, чем на Земле. Случается и так, что некоторые небесные тела с гравитацией всего лишь втрое слабее земной, обладают атмосферой, стократно разреженнее. В чем же причины? Выдвинуто великое множество гипотез на этот счет, однако характер их взаимоисключающ.

Астрономы из андалусского Института астрофизики во главе с Хосе Луис Ортисом при помощи трех телескопов детально пронаблюдали за поверхностью Макемаке в свете звезды, ставшей на воображаемую линию между ней и нашей планетой, при этом на короткое время затмившей ее. В итоге наблюдения достоверно показали: карликовая планета Макемаке атмосферы не имеет.

Как пояснил сам Хосе Луис Ортис, Макемаке, проходя между звездой и Землей, временно загородила ее свет от нас, в результате звезда сначала исчезла из виду, а затем вновь внезапно появилась, что указывает на отсутствие какой-либо значимой атмосферы на карликовой планете. До сих пор Макемаке считалась замерзшим миром с орбитой, расположенной во внешних областях Солнечной системы и имеющей по подобию близкого к нему Плутона полноценную глобальную атмосферу, хотя и тонкую.

Макемаке - карликовая планета, которая была открыта в 2005 году. Ее размер составляет около двух третей диаметра Плутона. Однако она вращается вокруг Солнца по гораздо удаленной орбите: дальше Плутона, но ближе Эриды. Диаметр планеты, согласно последним данным, варьирует в промежутке от 1 430 плюс-минус 9 км до 1 502 плюс-минус 45 км. Не исключен тот факт, что обе цифры верны, а форма планеты не совсем правильна. Альбедо планеты при этом равняется 0,77 плюс-минус 0,03 (относительно близко к Плутону), что находится в примерном соответствии с грязным снегом и говорит о сходстве данных объектов. Плотность планеты также составляет не ниже 1,7 плюс-минус 0,3 г/см³ (на 15% меньше, чем у Плутона). Но, несмотря на это, на поверхности Макемаке максимальное атмосферное давление не превышает 12 миллиардных земного. Это практически вакуум, что особенно странно, исходя из тех соображений, что температура планеты (половина поверхности Макемаке, по меньшей мере, является нагретой до 50 К) - довольно высока для транснептунового объекта без атмосферы, который относительно прохладного Плутона находится в значительном удалении от Солнца.

По мнению ученых, это может быть связано с отсутствием одного из важнейших у таких объектов источников атмосферных газов как азотный снег или же огромным наклоном оси планеты. В таком случае формирование устойчивой атмосферы весьма затруднительно.

И все же не исключен тот факт, что все же кое-где на Макемаке атмосфера существует, например, в районах, обладающих меньшим альбедо, в которых не исключен переход поверхностных веществ в газообразное состояние. Проверим эту теорию во время следующего затмения.

нравится

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему: « Атмосферы планет »

Атмосфера Меркурия

Атмосфера Меркурия имеет крайне низкую плотность. Она состоит из водорода, гелия, кислорода, паров кальция, натрия и калия. Водород и гелий планета, вероятно, получает от Солнца, а металлы испаряются с ее поверхности. «Атмосферой» эту тонкую оболочку можно назвать лишь с большой натяжкой. Давление у поверхности планеты в 500 млрд раз меньше, чем у поверхности Земли (это меньше, чем в современных вакуумных установках на Земле).

Максимальная температура поверхности Меркурия, зарегистрированная датчиками, +410 °С. Средняя температура ночного полушария равна -162 °С, а дневного +347 °С (этого достаточно, чтобы расплавить свинец или олово). Перепады температур из-за смены времен года, вызванной вытянутостью орбиты, на дневной стороне достигают 100 °С. На глубине 1 м температура постоянна и равна +75 °С, ведь пористый грунт плохо проводит тепло. Органическая жизнь на Меркурии исключается.

Атмосфера Венеры

Атмосфера Венеры крайне жаркая и сухая. Температура на поверхности достигает своего максимума, примерно у отметки 480°С. В атмосфере Венеры содержится в 105 раз больше газа, чем в атмосфере Земли. Давление этой атмосферы у поверхности очень велико, в 95 раз выше, чем на Земле. Космические корабли приходится конструировать так, чтобы они выдерживали сокрушительную, раздавливающую силу атмосферы.

В 1970 г. первый космический корабль, прибывший на Венеру, смог выдержать страшную жару лишь около одного часа - этого как раз хватило, чтобы послать на Землю данные об условиях на поверхности. Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал.

Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии.

Атмосфера Венеры разделена на несколько слоёв. Наиболее плотная часть атмосферы -- тропосфера, начинается на поверхности планеты и простирается вплоть до 65 км. Ветры у раскалённой поверхности слабые, однако в верхней части тропосферы температура и давление уменьшаются до земных значений, и скорость ветра возрастает до 100 м/с.

Атмосферное давление на поверхности Венеры в 92 раза выше, чем на Земле, и сравнимо с давлением, создаваемым слоем воды на глубине 910 метров. Из-за такого высокого давления углекислый газ фактически является уже не газом, а сверхкритическим флюидом. Атмосфера Венеры имеет массу 4,8·1020 кг, что в 93 раза превышает массу всей атмосферы Земли, а плотность воздуха у поверхности составляет 67 кг/м3, то есть 6,5 % от плотности жидкой воды на Земле.

Тропосфера Венеры содержит 99 % всей атмосферы планеты по массе. 90 % атмосферы Венеры находится в пределах 28 км от поверхности. На высоте 50 км атмосферное давление примерно равно давлению на поверхности Земли. На ночной стороне Венеры облака можно обнаружить даже в 80 км над поверхностью.

Верхняя атмосфера и ионосфера

Мезосфера Венеры находится в интервале между 65 и 120 км. Далее начинается термосфера, достигающая верхней границы атмосферы (экзосферы) на высоте 220--350 км.

Мезосфера Венеры может быть разделена на два уровня: нижний (62--73 км) и верхний (73--95) км. В первом слое температура почти постоянна и составляет 230К (?43 °С). Этот уровень совпадает с верхним слоем облаков. На втором уровне температура начинает понижаться, опускаясь до 165 К (?108 °C) на высоте 95 км. Это самое холодное место на дневной стороне атмосферы Венеры. Далее начинается мезопауза, которая является границей между мезосферой и термосферой и находится между 95 и 120 км. На дневной стороне мезопаузы температура возрастает до 300--400 К (27--127 °C) -- значений, преобладающих в термосфере. В противоположность этому, ночная сторона термосферы является самым холодным местом на Венере с температурой 100К (?173 °C). Её иногда называют криосферой. В 2015 году с помощью зонда «Венера-Экспресс» учёные зафиксировали тепловую аномалию в промежутке высот от 90 до 100 километров -- средние показатели температур тут выше на 20-40 градусов и равняются 220-224 градусам Кельвина.

Венера имеет вытянутую ионосферу, расположенную на высоте 120--300 км и почти совпадающую с термосферой. Высокие уровни ионизации сохраняются только на дневной стороне планеты. На ночной стороне концентрация электронов практически равна нулю. Ионосфера Венеры состоит из трёх слоев: 120--130 км, 140--160 км и 200--250 км. Также может быть дополнительный слой в районе 180 км. Максимальная плотность электронов (число электронов в единице объёма) 3·1011 м3 достигается во втором слое вблизи подсолнечной точки. Верхняя граница ионосферы -- ионопауза -- расположена на высоте 220--375 км. Основные ионы в первом и втором слое -- это O2+ ионы, в то время как третий слой состоит из O+ ионов. Согласно наблюдениям, ионосферная плазма находится в движении, а солнечная фотоионизация на дневной стороне и рекомбинация ионов на ночной являются процессами, главным образом, ответственными за ускорение плазмы до наблюдаемых скоростей. Плазменный поток, видимо, достаточен для поддержания наблюдаемого уровня концентрации ионов на ночной стороне.

Атмосфера Земли

Атмосфера планеты Земля, одна из геосфер, смесь газов, окружающих Землю, и содержатся благодаря силе тяжести. Атмосфера в основном состоит из азота (N2, 78%) и кислорода (O2, 21%; O3, 10%). Остальные (~ 1%) состоит в основном из аргона (0,93%) с небольшими примесями других газов, в частности углекислого газа (0,03%). Кроме того атмосфера содержит около 1,3 ч 1,5 Ч 10кг воды, основную массу которой сосредоточено в тропосфере.

Согласно изменениям температуры с высотой в атмосфере выделяют следующие слои:

· Тропосфера - до 8-10 км в полярных областях и до 18 км - над экватором. В тропосфере сосредоточено почти 80% атмосферного воздуха, почти весь водяной пар, здесь образуются облака и выпадают осадки. Теплообмен в тропосфере осуществляется преимущественно конвективно. Процессы, происходящие в тропосфере, непосредственно влияют на жизнь и деятельность людей. Температура в тропосфере с высотой понижается в среднем на 6 ° C на 1 км, а давление - на 11 мм рт. в. на каждые 100 м. Условной границей тропосферы считают тропопаузы, в которой снижение температуры с высотой прекращается.

· Стратосфера - от тропопаузы до стратопаузе, которая расположена на высоте около 50-55 км. Характеризуется незначительным увеличением температуры с высотой, которая достигает локального максимума на верхней границе. На высоте 20-25 км в стратосфере располагается слой озона, который защищает живые организмы от губительного воздействия ультрафиолетового излучения.

· Мезосфера - расположена на высотах 55-85 км. Температура постепенно падает (от 0 ° C в стратопаузе до -70 ч -90 ° C в мезопаузе).

· Термосфера - пролегает на высотах от 85 до 400-800 км. Температура растет с высотой (от 200 K до 500-2000 K в турбопаузы). По степени ионизации атмосферы в ней выделяют нейтральный слой (нейтросфера) - до высоты 90 км, и ионизированный слой - ионосферу - выше 90 км. По однородности атмосферу подразделяют на гомосферу (однородную атмосферу постоянного химического состава) и гетеросферу (состав атмосферы меняется с высотой). Условным пределом между ними на высоте около 100 км является гомопауза. Верхняя часть атмосферы, где концентрация молекул снижается настолько, что они движутся преимущественно баллистическими траекториями, почти без столкновений между собой, называется экзосфера. Она начинается на высоте около 550 км, состоящий преимущественно гелия и водорода и постепенно переходит в межпланетное пространство.

Значение атмосферы

Несмотря на то, что масса атмосферы составляет лишь одну миллионную долю массы Земли, она играет решающую роль в различных природных циклах (круговороте воды, углеродном цикле и азотном цикле). Атмосфера является промышленным источником азота, кислорода и аргона, которые получают путем фракционной дистилляции сжиженного воздуха.

Атмосфера Марса

Атмосфера Марса открыта была еще до полета автоматических межпланетных станции к планете. Благодаря противостояниям планеты, которые случаются раз в три года и спектральному анализу, астрономы уже в 19 веке знали, что она имеет весьма однородный состав, более 95% которого составляет CO2.

В 20 веке, благодаря межпланетным зондам мы узнали, что атмосфера Марса и его температура сильно взаимосвязаны, ведь благодаря переносу мельчайших частичек оксида железа возникают огромные пылевые бури, которые могут охватить половину планеты, попутно подняв ее температуру.

Примерный состав

Газовая оболочка планеты состоит из состоит из 95% углекислого газа, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов. Кроме того, она очень сильно наполнена мелкими частицами пыли (в основном из оксида железа), которые придают ей красноватый оттенок. Благодаря сведениям о частичках оксида железа, ответить на вопрос какого цвета атмосфера, совсем не трудно.

Почему атмосфера красной планеты состоит из углекислого газа? На планете нет тектоники плит вот уже в течение миллиардов лет. Отсутствие движения плит позволило вулканическим точкам извергать магму на поверхность миллионы лет подряд. Углекислый газ также является продуктом извержения и это единственный газ, которым постоянно пополняется атмосфера, собственно это фактически единственная причина, почему она существует. К тому же планета лишилась своего магнитного поля, что способствовало тому, что более легкие газы уносились солнечным ветром. Из-за непрерывных извержений, появилось множество больших вулканических гор. Гора Олимп, является крупнейшей горой в Солнечной системе.

Ученые считают, что Марс растерял всю свою атмосферу, из-за того, что потерял свою магнитосферу около 4 миллиардов лет назад. Когда-то газовая оболочка планеты была плотнее и магнитосфера защищала от солнечного ветра планету. Солнечный ветер, атмосфера и магнитосфера сильно взаимосвязаны. Солнечные частицы взаимодействует с ионосферой и уносит из нее молекулы, снижая плотность. Это и является разгадкой на вопрос куда делась атмосфера. Эти ионизированные частицы были обнаружены космическими аппаратами, в пространстве позади Марса. Это приводит к тому, что на поверхности давление в среднем 600 Па, по сравнению со средним давлением на Земле 101300 Па.

Строение

Атмосфера делится на четыре основных слоя: нижний, средний, верхний и экзосфера. Нижние слои это теплая область (температура около 210 К). Она нагревается от пыли в воздухе (пыль 1,5 мкм в поперечнике) и теплового излучения от поверхности.

Следует учесть, что, несмотря на очень большую разрежённость, концентрация углекислого газа, в газовой оболочке планеты, примерно в 23 раза больше, чем в нашей. Поэтому, не такая уж и дружелюбная атмосфера Марса, нельзя дышать в ней не только людям, но и другим земным организмам.

Средняя -- похожа на Земную. Верхние слои атмосферы нагревается от солнечного ветра и там температура гораздо выше, чем на поверхности. Это тепло заставляет газ покидать газовую оболочку. Экзосфера начинается примерно в 200 км от поверхности и не имеет четкой границы. Как видите, распределение температуры по высоте, достаточно предсказуемо для планеты земной группы.

Атмосфера Юпитера

Единственная видимая часть Юпитера - это атмосферные облака и пятна. Облака располагаются параллельно экватору в зависимости от восходящих тёплых или нисходящих холодных потоков, они светлые и тёмные атмосфера планета меркурий земля

В атмосфере Юпитера свыше 87% по объёму водорода и ~13% гелия, остальные газы, включая метан, аммиак, водяной пар находятся в виде примесей на уровне десятых и сотых долей процента.

Давлению 1 атм соответствует температура 170 К. Тропопауза находится на уровне с давлением 0,1 атм и температурой 115 К. Во всей нижележащей тропосфере высотных ход температуры можно охарактеризовать адиабатическим градиентом в водородногелиевой среде - около 2 К на километр. Спектр радиоизлучения Юпитера также свидетельствует об устойчивом росте радиояркостной температуры с глубиной. Выше тропопаузы расположена область температурной инверсии, где температура вплоть до давлений порядка 1 мбар постепенно нарастает до ~180 К. Это значение сохраняется в мезосфере, которая характеризуется почти изотермией до уровня с давлением ~10-6 атм, а выше начинается термосфера, переходящая в экзосферу с температурой 1250 К.

Облака Юпитера

Выделяется три основных слоя:

1. Самый верхний, при давлении около 0,5 атм, состоящий из кристаллического аммиака.

2. Промежуточный слой состоит из гидросульфида аммония

3. Нижний слой, при давлении в несколько атмосфер, состоящий из обычного водяного льда.

В некоторых моделях также допускается существования самого нижнего, четвёртого слоя облаков, состоящего из жидкого аммиака. Такая модель в целом удовлетворяет совокупности имеющихся экспериментальных данных и хорошо объясняет окраску зон и поясов: расположенные выше в атмосфере светлые зоны содержат ярко-белые кристаллы аммиака, а расположенные глубже пояса - красно-коричневые кристаллы гидросульфида аммония.

Подобно Земле и Венере, в атмосфере Юпитера зарегистрированы молнии. Судя по запечатленным на фотографиях "Вояджера" световым вспышкам, интенсивность разрядов чрезвычайно велика. Пока неясно, однако, в какой мере эти явления связаны с облаками, поскольку вспышки обнаружены на больших высотах, чем ожидалось.

Циркуляция на Юпитере

Характерным движением на Юпитере является наличие зональной циркуляции тропических и умеренных широт. Сама циркуляция является осесимметричной, то есть почти не имеющей отличий на различных долготах. Скорости восточных и западных ветров в зонах и поясах составляют от 50 до 150 м/с. на экваторе дует ветер в восточном направлении со скоростью около 100 м/с.

Структура зон и поясов различается характером вертикальных движений от которых зависит формирование горизонтальных течений. В светлых зонах, температура которых ниже, движения восходящие, облака плотнее и располагаются на более высоких уровнях в атмосфере. В более тёмных (красно- коричневых) поясах с более высокой температурой движения нисходящие, они расположены глубже в атмосфере и закрыты менее плотными облаками.

Кольца Юпитера

Кольца Юпитера, окружая планету перпендикулярно экватору, находятся на высоте 55 000 км от атмосферы.

Они были открыты зондом "Вояджер-1" в марте 1979 г, с тех пор с Земли за ними ведётся наблюдение. Существуют два основных кольца и одно, очень тонкое, внутреннее с характерной оранжевой окраской. Толщина колец, похоже, не превышает 30 км, а ширина - 1000 км.

В отличие от колец Сатурна, кольца Юпитера темны (альбедо (отражательная способность) - 0,05). И, вероятно, состоят из очень небольших твердых частиц метеорной природы. Частицы колец Юпитера, скорее всего, не остаются в них долго (из-за препятствий, создаваемых атмосферой и магнитным полем). Следовательно, раз кольца постоянны, то они должны непрерывно пополняться. Небольшие спутник Метис и Адрастея, чьи орбиты лежат в пределах колец, - очевидные источники таких пополнений. С Земли кольца Юпитера могут быть замечены при наблюдении только в инфракрасном диапазоне.

Атмосфера Сатурна

Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % -- из гелия (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды.

По данным «Вояджеров», на Сатурне дуют сильные ветры, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветры дуют в основном в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что циркуляция атмосферы происходит не только в слое верхних облаков, но и на глубине, по крайней мере, до 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветры в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (см. Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

12 ноября 2008 года камеры станции «Кассини» получили изображения северного полюса Сатурна в инфракрасном диапазоне. На них исследователи обнаружили полярные сияния, подобные которым не наблюдались ещё ни разу в Солнечной системе. Также данные сияния наблюдались в ультрафиолетовом и видимом диапазонах. Полярные сияния представляют собой яркие непрерывные кольца овальной формы, окружающие полюс планеты. Кольца располагаются на широте, как правило, в 70--80°. Южные кольца располагаются на широте в среднем 75 ± 1°, а северные -- ближе к полюсу примерно на 1,5°, что связано с тем, что в северном полушарии магнитное поле несколько сильнее. Иногда кольца становятся спиральной формы вместо овальной.

В отличие от Юпитера полярные сияния Сатурна не связаны с неравномерностью вращения плазменного слоя во внешних частях магнитосферы планеты. Предположительно, они возникают из-за магнитного пересоединения под действием солнечного ветра. Форма и вид полярных сияний Сатурна сильно меняются с течением времени. Их расположение и яркость сильно связаны с давлением солнечного ветра: чем оно больше, тем сияния ярче и ближе к полюсу. Среднее значение мощности полярного сияния составляет 50 ГВт в диапазоне 80--170 нм (ультрафиолет) и 150--300 ГВт в диапазоне 3--4 мкм (инфракрасный).

Во время бурь и штормов на Сатурне наблюдаются мощные разряды молнии. Электромагнитная активность Сатурна, вызванная ими колеблется с годами от почти полного отсутствия до очень сильных электрических бурь.

28 декабря 2010 года «Кассини» сфотографировал шторм, напоминающий сигаретный дым. Ещё один, особенно мощный шторм, был зафиксирован 20 мая 2011 года.

Атмосфера Урана

Атмосфера Урана, так же как и атмосферы Юпитера и Сатурна, состоит в основном из водорода и гелия. На больших глубинах она содержит значительные количества воды, аммиака и метана, что является отличительной чертой атмосфер Урана и Нептуна. Обратная картина наблюдается в верхних слоях атмосферы, которые содержит очень мало веществ тяжелее водорода и гелия. Атмосфера Урана -- самая холодная из всех планетарных атмосфер в Солнечной системе, с минимальной температурой 49 K.

Атмосфера Урана может быть разделена на три основных слоя:

1. Тропосфера -- занимает промежуток высот от?300 км до 50 км (за 0 принята условная граница, где давление составляет 1 бар;) и диапазон давления от 100 до 0,1 бар

2. Стратосфера -- покрывает высоты от 50 до 4000 км и давления между 0,1 и 10?10 бар

3. Экзосфера -- простирается от высоты 4000 км до нескольких радиусов планеты, давление в этом слое при удалении от планеты стремится к нулю.

Примечательно, что в отличие от земной, атмосфера Урана не имеет мезосферы.

В тропосфере существует четыре облачных слоя: метановые облака на границе, соответствующей давлению примерно в 1,2 бар; сероводородные и аммиачные облака в слое давлений 3-10 бар; облака из гидросульфида аммония при 20-40 бар, и, наконец, водяные облака из кристалликов льда ниже условной границы давления 50 бар. Только два верхних облачных слоя доступны прямому наблюдению, существование же нижележащих слоев предсказано только теоретически. Яркие тропосферные облака редко наблюдаются на Уране, что, вероятно, связано с низкой активностью конвекции в глубинных областях планеты. Тем не менее, наблюдения таких облаков использовались для измерения скорости зональных ветров на планете, которая доходит до 250 м/с.

Об атмосфере Урана в настоящее время имеется меньше сведений, чем об атмосферах Сатурна и Юпитера. По состоянию на май 2013 года только один космический корабль, Вояджер 2, изучал Уран с близкого расстояния. Никаких других миссий на Уран в настоящее время не запланировано.

Атмосфера Нептуна

В верхних слоях атмосферы обнаружен водород и гелий, которые составляют соответственно 80 и 19 % на данной высоте. Также наблюдаются следы метана. Заметные полосы поглощения метана встречаются на длинах волн выше 600 нм в красной и инфракрасной части спектра. Как и в случае с Ураном, поглощение красного света метаном является важнейшим фактором, придающим атмосфере Нептуна синий оттенок, хотя яркая лазурь Нептуна отличается от более умеренного аквамаринового цвета Урана. Так как содержание метана в атмосфере Нептуна не сильно отличается от такового в атмосфере Урана, предполагается, что существует также некий, пока неизвестный, компонент атмосферы, способствующий образованию синего цвета. Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура снижается вместе с высотой, и стратосфера, где температура с высотой, наоборот, увеличивается. Граница между ними, тропопауза, находится на уровне давления в 0,1 бар. Стратосфера сменяется термосферой на уровне давления ниже, чем 10?4 -- 10?5 микробар. Термосфера постепенно переходит в экзосферу. Модели тропосферы Нептуна позволяют полагать, что в зависимости от высоты, она состоит из облаков переменных составов. Облака верхнего уровня находятся в зоне давления ниже одного бара, где температура способствует конденсации метана.

При давлении между одним и пятью барами, формируются облака аммиака и сероводорода. При давлении более 5 бар облака могут состоять из аммиака, сульфида аммония, сероводорода и воды. Глубже, при давлении в приблизительно 50 бар, могут существовать облака из водяного льда, при температуре, равной 0 °C. Также, не исключено, что в данной зоне могут быть найдены облака из аммиака и сероводорода. Высотные облака Нептуна наблюдались по отбрасываемым ими теням на непрозрачный облачный слой ниже уровнем. Среди них выделяются облачные полосы, которые «обёртываются» вокруг планеты на постоянной широте. У данных периферических групп ширина достигает 50--150 км, а сами они находятся на 50--110 км выше основного облачного слоя. Изучение спектра Нептуна позволяет предполагать, что его более низкая стратосфера затуманена из-за конденсации продуктов ультрафиолетового фотолиза метана, таких как этан и ацетилен. В стратосфере также обнаружены следы циановодорода и угарного газа. Стратосфера Нептуна более тёплая, чем стратосфера Урана из-за более высокой концентрации углеводородов. По невыясненным причинам, термосфера планеты имеет аномально высокую температуру около 750 К.. Для столь высокой температуры планета слишком далека от Солнца, чтобы оно могло так разогреть термосферу ультрафиолетовой радиацией. Возможно, данное явление является следствием атмосферного взаимодействия с ионами в магнитном поле планеты. Согласно другой теории, основой механизма разогревания являются волны гравитации из внутренних областей планеты, которые рассеиваются в атмосфере. Термосфера содержит следы угарного газа и воды, которая попала туда, возможно, из внешних источников, таких как метеориты и пыль.

Размещено на Allbest.ru

...

Подобные документы

    Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

    реферат , добавлен 07.05.2012

    Проблема изучения солнечной системы. Открыты не все тайны и загадки даже нашей системы. Ресурсы других планет и астероидов нашей системы. Исследование Меркурия, Венеры, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона.

    реферат , добавлен 22.04.2003

    Понятие газовых гигантов. Юпитер как крупнейшая планета в Солнечной системе. Особенности Сатурна как небесного тела, обладающего системой колец. Специфика планетарной атмосферы Урана. Основные параметры Нептуна. Сравнительная характеристика этих планет.

    презентация , добавлен 31.10.2014

    Юпитер: общие сведения о планете и ее атмосфера. Состав юпитерианского океана. Спутники Юпитера и его кольцо. Редкие выбросы в атмосфере Сатурна. Кольца и спутники Сатурна. Состав атмосферы и температура Урана. Строение и состав Нептуна, его спутники.

    реферат , добавлен 17.01.2012

    Межпланетная система, состоящая из Солнца и естественных космических объектов, вращающихся вокруг него. Характеристика поверхности Меркурия, Венеры и Марса. Место расположения Земли, Юпитера, Сатурна и Урана в системе. Особенности пояса астероидов.

    презентация , добавлен 08.06.2011

    Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

    статья , добавлен 23.03.2014

    Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

    презентация , добавлен 15.06.2010

    История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

    презентация , добавлен 23.07.2016

    Спостереження за положеннями зірок та планет. Рух зореподібних планет, розташованих поблизу екліптики. "Петлі" на небі верхніх планет - Марса, Юпітера, Сатурна, Урана і Нептуна. Створення теорій руху планет: основні практичні аспекти небесної механіки.

    реферат , добавлен 18.07.2010

    Понятие и отличительные особенности планет-гигантов, характеристика каждой из них и оценка значения в Галактике: Юпитера, Сатурна, Урана и Нептуна. Физические характеристики данных планет: полярное сжатие, скорость вращения, объем, ускорение, площадь.

АТМОСФЕРА ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ. Отправляемся по планетам Солнечной системы, чтобы исследовать их атмосферные композиции, а также наши собственные. Практически каждую планету в нашей Солнечной системе можно рассматривать как имеющую атмосферу. А также посмотрим, какие определенные эффекты могут вызвать различные условия на разных планетах. МЕРКУРИЙ

У Меркурия невероятно тонкая атмосфера оценивается более чем в триллион раз тоньше, чем Земля. Его гравитация составляет около 38% от Земли, поэтому он не способен сохранять большую часть атмосферы, и, кроме того, его близость к Солнцу означает, что солнечный ветер может уносить газы с поверхности. Частицы солнечного ветра в сочетании с испарением поверхностных пород в результате воздействия метеоров, вероятно, являются крупнейшим источником атмосферы Меркурия ВЕНЕРА

Венера похожа на Землю в нескольких отношениях: ее плотность, размер, масса и объем сопоставимы. Тем не менее, на этом сходство заканчивается. Атмосферное давление на поверхности планеты примерно в 92 раза выше чем на Земле, причем основным газом является углекислый газ - результат предыдущих вулканических извержений на поверхности планеты. Также в небольшом количестве присутствует азот. Выше в атмосфере, планета имеет облака, которые представляют смесь двуокиси серы и серной кислоты. Под этими облаками находится толстый слой углекислого газа, который подвергает поверхность планеты интенсивному парниковому эффекту. Температура поверхности на Венере около 480 градусов Цельсия - слишком жарко, чтобы поддерживать жизнь, какую мы ее знаем. ЗЕМЛЯ

Атмосфера Земли состоит в основном из азота и кислорода, которые необходимы для жизни, которая обитает на планете. Состав атмосферы является прямым следствием жизни растений. Растения поглощают углекислый газ и вытесняют кислород через фотосинтез, и если бы это было не так, то вполне вероятно, что процент углекислого газа в атмосфере был бы значительно выше. Земная атмосфера разделена на слои: Тропосфера Тропосфера находится на поверхности Земли примерно на 9 км в полярных регионах и приблизительно на 17 км на экваторе, при средней высоте около 12 км. Это в тропосфере существует вся жизнь на Земле. В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Стратосфера Стратосфера, отделенная от тропосферы тропопаузой, простирается до 50-55 км и является местом, где вы найдете озоновый слой. Стратосфера заканчивается в стратопаузу, с другой стороны которой начинается мезосфера. Мезосфера Мезосфера - это самый высокий слой, в котором образуются серебристые облака, чуть ниже мезопаузы, которая находится на расстоянии от 80 до 85 км. В пределах мезосферы также находится большинство метеоров, которые начинают светиться и сгорают при попадании в атмосферу Земли. За пределами мезопаузы начинается термосфера. Термосфера Высота термосферы находится на высоте от 90 до 800 км. Температура в термосфере может достигать 1773 K (1500 °C, 2700 °F), однако, атмосфера на этой высоте очень тонкая. В термосфере находятся полярные сияния, ионосфера и Международная Космическая станция. Экзосфера И, наконец экзосфера, которая простирается примерно до 10 000км. Большинство искусственных спутников Земли вращаются внутри экзосферы. Не уникальна ли атмосфера Земли? МАРС

Атмосфера Марса, как и Венеры, состоит в основном из углекислого газа, с небольшим количеством аргона, а также, азота. Слои легко запомнить - это нижняя атмосфера, средняя атмосфера, верхняя атмосфера и экзосфера. Упомянув об экстремальном тепличном эффекте, присутствующем на Венере, как следствие высокого уровня диоксида углерода, может показаться странным, что температура поверхности Марса достигает максимума 35С. Это потому, что атмосфера Марса значительно тоньше, чем у Венеры, поэтому, хотя доля углекислого газа сопоставима, фактическая концентрация гораздо ниже. ЮПИТЕР

Юпитер-первая из газовых гигантов и самая большая планета в Солнечной системе, имеет слои, тропосферу, стратосферу, термосферу и экзосферу, похожие на Землю, хотя и нет мезосферы. Тропосфера Юпитера - видимая часть, которую мы связываем с Юпитером, состоит в основном из водорода и гелия, с небольшим количеством метана, аммиака, сероводорода и воды, с облаками кристаллов аммиака. Поскольку Юпитер не имеет твердой поверхности, более низкие уровни тропосферы постепенно конденсируются в жидкий водород и гелий. Без твердой поверхности общепринятая поверхность Юпитера основана на том, где атмосферное давление составляет 100 кПа. Более того, слои этой атмосферы характеризуются давлением больше, чем высотой. Тропосфера Юпитера составляет почти 143 000 км. Это больше, чем 22 Земли. САТУРН

Подобно Юпитеру, Сатурн также является газовым гигантом, хотя и не столь гигантским. Менее известна атмосфера Сатурна, хотя, опять же, она во многом похожа на атмосферу Юпитера. В основном водород, с гораздо меньшим количеством гелия. Облака Сатурна также состоят из кристаллов аммиака. Сера, присутствующая в атмосфере, придает аммиачным облакам бледно-желтый оттенок. Эта видимая облачная часть Сатурна составляет более 120 000 км. Это больше чем 20 планет Земля. УРАН

Атмосфера Урана, как и Юпитера и Сатурна, в основном водород и гелий. Тем не менее, несколько более высокие уровни метана, особенно в верхней атмосфере, вызывают большее поглощение красного света от солнца, в свою очередь, заставляя планету казаться сине-голубого цвета. Уран имеет самую холодную атмосферу в Солнечной системе, приблизительно-224C, и его атмосфера содержит гораздо больше водяного льда, чем Юпитер и Сатурн, как следствие этого. НЕПТУН


4,6 миллиардов лет назад в нашей Галактике из облаков звёздной материи начали образовываться сгущения. Всё, более уплотняясь и сгущаясь, газы нагревались, излучая тепло. С увеличением плотности и температуры начались ядерные реакции, превращая водород в гелий. Таким образом, возник очень мощный источник энергии - Солнце.

Одновременно с увеличением температуры и объёма Солнца, в результате объединения фрагментов межзвёздной пыли в плоскости, перпендикулярной к оси вращения Звезды, создавались планеты и их спутники. Формирование Солнечной Системы завершилось около 4 миллиардов лет назад.



На данный момент Солнечная Система имеет восемь планет. Это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептон. Плутон — карликовая планета, крупнейший известный объект пояса Койпера (является большим поясом осколков, подобным поясу астероидов). После обнаружения в 1930 году считался девятой планетой. Положение изменилось в 2006 году с принятием формального определения планеты.




На самой ближайшей к Солнцу планете - Меркурии дождей не бывает никогда. Это обусловлено тем фактором, что атмосфера у планеты настолько разрежена, что ее просто невозможно зафиксировать. Да и откуда там взяться дождям, если дневная температура на поверхности планеты порой достигает 430º по Цельсию. Да уж, не хотелось бы там оказаться:)




А вот на Венере постоянно идут кислотные дожди, поскольку облака над этой планетой состоят не из живительной воды, а из смертоносной серной кислоты. Правда, поскольку температура на поверхности третьей по счету планеты достигает 480º по Цельсию, то капли кислоты испаряются раньше, чем долетят к планете. Небо над Венерой пронзают большие и страшные молнии, но света и грохота от них больше, чем дождя.




На Марсе, по мнению ученых, давным-давно природные условия были такими же, как и на Земле. Миллиарды лет назад атмосфера над планетой была намного плотнее, и вполне возможно, что обильные дожди наполняли эти реки. Но сейчас над планетой очень разреженная атмосфера, а фотографии, переданные спутниками-разведчиками, свидетельствуют о том, что поверхность планеты напоминает пустыни юго-запада США или Сухие долины в Антарктиде. Когда часть Марса укутывает зимняя пора, над красной планетой появляются тонкие облака, содержащие двуокись углерода, а иней покрывает мертвые скалы. Ранним утром в долинах бывают такие густые туманы, что кажется, что вот-вот пойдет дождь, но напрасны такие ожидания.

Кстати температура воздуха днём на Мрсе 20º по Цельсию. Правда ночью может опускаться до - 140:(




Юпитер - самая большая из планет и является гигантским газовым шаром! Этот шар почти полностью состоит из гелия и водорода, но не исключено, что глубоко внутри планеты находится маленькое твердое ядро, окутанное океаном из жидкого водорода. Тем не менее, Юпитер со всех сторон окружают цветные полосы облаков. Некоторые из этих облаков состоят даже из воды, но, как правило, в подавляющем большинстве их образуют застывшие кристаллики аммиака. Время от времени над планетой пролетают сильнейшие ураганы и бури, несущие за собой снегопады и дожди из аммиака. Вот где бы провести Магический цветок.