Тригонометрия в жизни. Доклад тригонометрия в реальной жизни

(1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Тригонометрические вычисления применяются практически во всех областях геометрии , физики и инженерного дела . Большое значение имеет техника триангуляции , позволяющая измерять расстояния до недалёких звёзд в астрономии , между ориентирами в географии , контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки , акустика , оптика , анализ финансовых рынков, электроника , теория вероятностей , статистика , биология , медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика , химия , теория чисел (и, как следствие, криптография), сейсмология , метеорология , океанология , картография , многие разделы физики , топография и геодезия , архитектура , фонетика , экономика , электронная техника , машиностроение , компьютерная графика , кристаллография .

В Школе СССР имела статус учебного предмета.

Определение тригонометрических функций

Первоначально тригонометрические функции были связаны с соотношениями сторон в прямоугольном треугольнике . Их единственным аргументом является угол (один из острых углов этого треугольника).

  • Синус - отношение противолежащего катета к гипотенузе .
  • Косинус - отношение прилежащего катета к гипотенузе.
  • Тангенс - отношение противолежащего катета к прилежащему.
  • Котангенс - отношение прилежащего катета к противолежащему.
  • Секанс - отношение гипотенузы к прилежащему катету.
  • Косеканс - отношение гипотенузы к противолежащему катету.

Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось . Рассмотрим в прямоугольной системе координат окружность единичного радиуса (см. рисунок) и отложим от горизонтальной оси угол (если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A . Тогда:

Для острых углов новые определения совпадают с прежними.

Возможно также чисто аналитическое определение этих функций, которое не связано с геометрией и представляет каждую функцию её разложением в бесконечный ряд.

История

Древняя Греция

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.

Хотя в работах Евклида и Архимеда нет тригонометрии в строгом смысле этого слова, их теоремы представлены в геометрическом виде, эквивалентном специфическим тригонометрическим формулам. Теорема Архимеда для деления хорд эквивалентна формулам для синусов суммы и разности углов. Для компенсации отсутствия таблицы хорд математики времен Аристарха иногда использовали хорошо известную теорему, в современной записи - sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, совместно с другими теоремами.

Теорема Птолемея влечёт за собой эквивалентность четырёх формул суммы и разности для синуса и косинуса. Позднее Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, хотя, возможно, эти таблицы были выведены из работ Гиппарха. Ни таблицы Гиппарха, ни Птолемея не сохранились до настоящего дня, хотя свидетельства других древних авторов снимают сомнения об их существовании.

Средневековая Индия

Другие источники сообщают, что именно замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Индийские учёные пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражаются как

Индийцы также знали формулы для кратных углов , , где .

Тригонометрия необходима для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°.

Южноиндийские математики в 16 веке добивались больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа π. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 вв. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 г., а ряд арктангенса был найден Дж. Грегори в 1671 г. и Г. В. Лейбницем в 1673 г.

В 8 в. учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Тригонометрия" в других словарях:

    Тригонометрия … Орфографический словарь-справочник

    - (греч., от tri, gonia угол, и metron мера). Часть математики, занимающаяся измерением треугольников. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТРИГОНОМЕТРИЯ греч., от trigonon, треугольник, и metreo, меряю.… … Словарь иностранных слов русского языка

    Современная энциклопедия

    Тригонометрия - (от греческого trigonon треугольник и...метрия), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Отдельные задачи тригонометрии решались астрономами Древней Греции (3 в. до нашей эры);… … Иллюстрированный энциклопедический словарь

    - (от греч. trigonon треугольник и...метрия) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии … Большой Энциклопедический словарь

ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Геодезия

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Древняя астрономия

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания - 360 локтей.

Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры . Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin угла 3 . По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до Луны ; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла.

Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

В общем, можно сказать, что тригонометрия использовалась для:

· точного определения времени суток;

· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны;

· нахождения географических координат текущего места;

· вычисления расстояния между городами с известными географическими координатами.

Гномон- древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),

позволяющий по наименьшей

длине его тени (в полдень) определить угловую высоту солнца.

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Архитектура

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

Рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения

Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Медицина и биология .

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму

кривой, которая напоминает график функции y=tgx.

Измерительные работы

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №10

с углубленным изучением отдельных предметов

Проект выполнил:

Павлов Роман

ученик 10б класса

Руководитель:

учитель математики

Болдырева Н. А

г. Елец, 2012

1.Введение.

3. Мир тригонометрии.

· Тригонометрия в физике.

· Тригонометрия в планиметрии.

· Тригонометрия в искусстве и архитектуре.

· Тригонометрия в медицине и биологии.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые (с помощью компьютерной программы «Функции и графики»).

· Кривые в полярных координатах (Розетки).

· Кривые в декартовых координатах (Кривые Лиссажу).

· Математические орнаменты.

4. Заключение.

5. Список литературы.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология. Не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Объект исследования - тригонометрия

Предмет исследования - прикладная направленность тригонометрии; графики некоторых функций, с использованием тригонометрических формул.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках..

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

Гипотеза - предположения : Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Методы исследования - анализ математической литературы по данной теме; отбор конкретных задач прикладного характера по данной теме; компьютерное моделирование на основе компьютерной программы. Открытая математика «Функции и графики» (Физикон).

1. Введение

« Одно осталось ясно, что мир устроен

грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

2.История развития тригонометрии.

Слово тригонометрия составилось из двух греческих слов: τρίγονον (тригонон-треугольник) и и μετρειν (метрейн - измерять) в буквальном переводе означает измерение треугольников .

Именно эта задача - измерение треугольников или, как принято теперь говорить, решение треугольников, т. е. определение всех сторон и углов треугольника по трем его известным элементам (стороне и двум углам, двум сторонам и углу или трем сторонам)- с древнейших времен составляла основу практических приложений тригонометрии.

Как и всякая другая наука, тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач. Первые этапы развития тригонометрии тесно связаны с развитием астрономии . Большое влияние на развитие астрономии и тесно связанной с ней тригонометрии оказали потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил. Значительную роль в развитии тригонометрии сыграла потребность в составлении географических карт и тесно связанная с этим необходимость правильного определения больших расстояний на земной поверхности.

Основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого астронома Гиппарха (середина II века до н. э.). Тригонометрия как наука, в современном смысле этого слова не было не только у Гиппарха, но и у других ученых древности, так как они еще не имели понятия о функциях углов и даже не ставили в общем виде вопроса о зависимости между углами и сторонами треугольника. Но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. При этом основным средством получения нужных результатов было умение вычислять длины круговых хорд на основании известных соотношений между сторонами правильных трех-, четырех-, пяти - и десятиугольника и радиусом описанного круга.

Гиппарх составил первые таблицы хорд, т. е. таблицы, выражающие длину хорды для различных центральных углов в круге постоянного радиуса. Это были, по существу, таблицы двойных синусов половины центрального угла. Впрочем, оригинальные таблицы Гиппарха(как и почти все им написанное) до нас не дошли, и мы можем составить себе о них представление главным образом по сочинению « Великое построение» или (в арабском переводе) « Альмагест» знаменитого астронома Клавдия Птолемея , жившего в середине II века н. э.

Птолемей делил окружность на 360 градусов, а диаметр - на 120 частей. Он считал радиус равным 60 частям(60¢¢). Каждую из частей он делил на 60¢, каждую минуту на 60¢¢,секунду на 60 терций (60¢¢¢) и т. д., применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60° в виде 60 частей радиуса(60ч), а сторону вписанного квадрата или хорду в 90° приравнивал числу 84ч51¢10².Хорду в 120°- сторону вписанного равностороннего треугольника - он выражал числом 103ч55¢23² и т. д. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда a)2+(хорда|180-a|)2=(диаметру)2, что соответствует современной формуле sin2a+cos2a=1.

«Альмагест» содержит таблицу хорд через полградуса от 0° до 180°, которая с нашей современной точки зрения представляет таблицу синусов для углов от 0° до 90° через каждые четверть градуса.

В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея: «прямоугольник, построенный на диагоналях вписанного в круг четырехугольника, равен сумме прямоугольников, построенных на противолежащих сторонах» (т. е. произведение диагоналей равно сумме произведений противоположных сторон). Пользуясь этой теоремой, греки умели (с помощью теоремы Пифагора) по хордам двух углов вычислить хорду суммы (или хорду разности) этих углов или хорду половины данного угла, т. е. умели получать результаты, которые мы получаем теперь по формулам синуса суммы(или разности) двух углов или половины угла.

Новые шаги в развитии тригонометрии связаны с развитием математической культуры народов Индии, Средней Азии и Европы (V- XII) .

Важный шаг вперед в период с V по XII век был сделан индусами, которые в отличие от греков стали рассматривать и употреблять в вычислениях уже не целую хорду ММ¢(см. чертеж) соответствующего центрального угла, а только ее половину МР, т. е. то, что мы теперь называем линией синуса a- половины центрального угла.

Наряду с синусом индусы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. (Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в. из так называемого « синуса дополнения», т. е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus).

Им были известны также соотношения cosa=sin(90°-a) и sin2a+cos2a=r2 , а также формулы для синуса суммы и разности двух углов.

Следующий этап в развитии тригонометрии связан со странами

Средней Азии, Ближнего Востока, Закавказья(VII- XV в.)

Развиваясь в тесной связи с астрономией и географией,- среднеазиатская математика имела ярко выраженный « вычислительный характер» и была направлена на разрешение прикладных задач измерительной геометрии и тригонометрии, причем тригонометрия сформировалась в особую математическую дисциплину в значительной мере именно в трудах среднеазиатских ученых. Из числа сделанных ими важнейших успехов следует в первую очередь отметить введение всех шести тригонометрических линий: синуса, косинуса, тангенса, котангенса, секанса и косеканса, из которых лишь первые две были известны грекам и индусам.

https://pandia.ru/text/78/114/images/image004_97.gif" width="41" height="44"> =a×ctgj шеста определенной длины (а=12) для j=1°,2°,3°……

Абу-ль-Вафа из Хоросана, живший в Х веке (940-998) , составил аналогичную «таблицу тангенсов», т. е. вычислил длину тени b=a×=a×tgj, отбрасываемой горизонтальным шестом определенной длины (а=60) на вертикальную стену (см. чертеж).

Следует отметить, что сами термины « тангенс» (в буквальном переводе - «касающийся») и «котангенс» произошли из латинского языка и появились в Европе значительно позднее (XVI-XVIIвв.). Среднеазиатские же ученые называли соответствующие линии «тенями»: котангенс-«первой тенью», тангенс - «второй тенью».

Абу-ль-Вафа дал совершенно точное геометрическое определение линии тангенса в тригонометрическом круге и присоединил к линиям тангенса и котангенса линии секанса и косеканса. Он же выразил (словесно) алгебраические зависимости между всеми тригонометрическими функциями и, в частности, для случая, когда радиус круга равен единице. Этот чрезвычайно важный случай был рассмотрен европейскими учеными на 300 лет позднее. Наконец, Абу-ль-Вафа составил таблицу синусов через каждые 10¢.

В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси ().

Впервые в европейской науке стройное изложение тригонометрии дано в книге « О треугольниках разных родов» ,написанной Иоганном Мюллером , более известным в математике под именем Региомонтана(). Он обобщает в ней методы решения прямоугольных треугольников и дает таблицы синусов с точностью до 0,0000001. При этом замечательно то, что он полагал радиус круга равнымили, т. е. выразил значения тригонометрических функций в десятичных дробях, перейдя фактически от шестидесятиричной системы счисления к десятичной.

Английский ученый XIV века Брадвардин () первый в Европе ввел в тригонометрические вычисления котангенс под названием «прямой тени» и тангенс под названием «обратной тени».

На пороге XVIIв. В развитии тригонометрии намечается новое направление- аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. О свойствах периодичности тригонометрических функций знал еще Виет , первые математические исследования которого относились к тригонометрии.

Швейцарский математик Иоганн Бернулли () уже применял символы тригонометрических функций.

В первой половине XIXв. французский ученый Ж. Фурье доказал, что всякое периодическое движение может быть представлено в виде суммы простых гармонических колебаний.

Огромное значение в истории тригонометрии имело творчество знаменитого петербургского академика Леонарда Эйлера(), он придал всей тригонометрии современный вид.

В своем труде «Введение в анализ»(1748 г.) Эйлер разработал тригонометрию как науку о тригонометрических функциях, дал ей аналитическое изложение, выведя всю совокупность тригонометрических формул из немногих основных формул.

Эйлеру принадлежит окончательное решение вопроса о знаках тригонометрических функций во всех четвертях круга, вывод формул приведения для общих случаев.

Введя в математику новые функции - тригонометрические, стало целесообразным поставить вопрос о разложении этих функций в бесконечный ряд. Оказывается, такие разложения возможны:

Sinx=x-https://pandia.ru/text/78/114/images/image008_62.gif" width="224" height="47">

Эти ряды позволяют значительно облегчить составление таблиц тригонометрических величин и для нахождения их с любой степени точности.

Аналитическое построение теории тригонометрических функций, начатое Эйлером, было завершено в работах , Гаусса, Коши, Фурье и других.

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций…Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».

В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть-учение о тригонометрических функциях - является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть - решение треугольников - рассматривается как глава геометрии.

3.Мир тригонометрии.

3.1 Применение тригонометрии в различных науках.

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика , экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Тригонометрия в физике.

Гармонические колебания.

Когда какая-либо точка движется по прямой линии попеременно то в одну, то в другую сторону, то говорят, что точка совершает колебания.

Одним из простейших видов колебаний является движение по оси проекции точки М, которая равномерно вращается по окружности. Закон этих колебаний имеет вид x= Rcos(https://pandia.ru/text/78/114/images/image010_59.gif" width="19" height="41 src="> .

Обычно вместо этой частоты рассматривают циклическую частоту w=, показывающую угловую скорость вращения, выраженную в радианах в секунду. В этих обозначениях имеем: x= R cos(w t+ a). (2)

Число a называют начальной фазой колебания .

Изучение колебаний всякого рода важно уже по одному тому, что с колебательными движениями или волнами мы сталкиваемся весьма часто в окружающем нас мире и с большим успехом используем их (звуковые волны, электромагнитные волны).

Механические колебания.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или маятник. Возьмем, например, гирю, подвешенную на пружине (см. рис.) и толкнем ее вниз. Гиря начнет колебаться вниз и вверх..gif" align="left" width="132 height=155" height="155">.gif" width="72" height="59 src=">.jpg" align="left" width="202 height=146" height="146">График колебания (2) получается из графика колебания(1) сдвигом влево

на . Число a называют начальной фазой.

https://pandia.ru/text/78/114/images/image020_33.gif" width="29" height="45 src=">), где l -длина маятника, а j0-начальный угол отклонения. Чем длиннее маятник, тем медленнее он качается.(Это хорошо видно на рис.1-7 прилож. VIII). На рис.8-16 ,приложения VIII хорошо видно, как изменение начального отклонения влияет на амплитуду колебаний маятника, период при этом не меняется. Измеряя период колебания маятника известной длины, можно вычислять ускорение земного тяготения g в различных точках земной поверхности.

Разряд конденсатора.

Не только многие механические колебания происходят по синусоидальному закону. И в электрических цепях возникают синусоидальные колебания. Так в цепи, изображенной в правом верхнем углу модели, заряд на обкладках конденсатора изменяется по закону q = CU + (q0 – CU) cos ωt, где С- емкость конденсатора, U –напряжение на источнике тока, L –индуктивность катушки, https://pandia.ru/text/78/114/images/image022_30.jpg" align="left" width="348" height="253 src=">Благодаря модели конденсатора, имеющейся в программе « Функции и графики» можно устанавливать параметры колебательного контура и строить, соответствующие графики g(t)и I(t). На графиках 1-4 хорошо видно как влияет напряжение на изменение силы тока и заряда конденсатора, при этом видно, что при положительном напряжении заряд также принимает положительные значения. На рис.5-8 приложения IX показано, что при изменении емкости конденсатора(при изменении индуктивности катушки на рис. 9-14 приложения IX) и сохранении неизменными остальных параметров меняется период колебаний, т. е. меняется частота колебаний силы тока в цепи и меняется частота заряда конденсатора..(см. приложение IX).

Как соединить две трубы.

Приведенные примеры могут создать впечатление, что синусоиды встречаются только в связи с колебаниями. Однако это не так. Например, синусоиды используются при соединении двух цилиндрических труб под углом друг к другу. Чтобы соединить две трубы таким образом, надо срезать их наискосок.

Если развернуть срезанную наискосок трубу, то она окажется ограниченной сверху синусоидой. В этом можно убедиться, обернув свечку бумагой, срезав ее наискосок и развернув бумагу. Поэтому, чтобы получить ровный срез трубы, можно сначала обрезать металлический лист сверху по синусоиде и свернуть его в трубу.

Теория радуги.

Впервые теория радуги была дана в 1637 году Рене Декартом . Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n1=1, n2≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется, силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

Задачи по тригонометрии с практическим содержанием.

https://pandia.ru/text/78/114/images/image026_24.gif" width="25" height="41">.

Определение коэффициента трения.

Тело веса Р положено на наклонную плоскость с углом наклона a. Тело под действием своего собственного веса прошло ускоренно путь S в t секунд. Определить коэффициент трения k.

Сила давления тела на наклонную плоскость =kPcosa.

Сила, которая тянет тело вниз равна F=Psina-kPcosa=P(sina-kcosa).(1)

Если тело движется по наклонной плоскости, то ускорение а=https://pandia.ru/text/78/114/images/image029_22.gif" width="20" height="41">==gF ;следовательно, .(2)

Из равенств (1) и (2) следует, что g(sina-kcosa)=https://pandia.ru/text/78/114/images/image032_21.gif" width="129" height="48">=gtga-.

Тригонометрия в планиметрии.

Основные формулы при решении задач по геометрии с применением тригонометрии :

sin²α=1/(1+ctg²α)=tg²α/(1+tg²α); cos²α=1/(1+tg²α)=ctg²α/(1+ctg²α);

sin(α±β)=sinα*cosβ±cosα*sinβ; cos(α±β)=cosα*cos+sinα*sinβ.

Соотношение сторон и углов в прямоугольном треугольнике:

1) Катет прямоугольного треугольника равен произведению другого катета на тангенс противолежащего угла.

2) Катет прямоугольного треугольника равен произведению гипотенузы на синус прилежащего угла.

3) Катет прямоугольного треугольника равен произведению гипотенузы на косинус прилежащего угла.

4) Катет прямоугольного треугольника равен произведению другого катета на котангенс прилежащего угла.

Задача1: На боковых сторонах АВ и С D равнобокой трапеции ABCD взяты точки М и N таким образом, что прямая MN параллельна основаниям трапеции. Известно, что в каждую из образовавшихся малых трапеций MBCN и AMND можно вписать окружность, причем радиусы этих окружностей равны r и R соответственно. Найти основания AD и BC.

Дано: ABCD-трапеция, AB=CD, MєAB, NєCD, MN||AD, в трапеции MBCN и AMND можно вписать окружность с радиусом r и R соответственно.

Найти: AD и BC.

Решение:

Пусть O1 и O2 – центры вписанных в малые трапеции окружностей. Прямая О1К||CD.

В ∆ O1O2K cosα =O2K/O1O2 = (R-r)/(R+r).

Т. к. ∆O2FD прямоугольный, то O2DF = α/2 => FD=R*ctg(α/2). Т. к. AD=2DF=2R*ctg(α/2),

аналогично BC = 2r* tg(α/2).

cos α = (1-tg²α/2)/(1+tg²(α/2)) => (R-r)/(R+r)= (1-tg²(α/2))/(1+tg²(α/2)) => (1-r/R)/(1+r/R)= (1-tg²α/2)/(1+tg²(α/2)) => tg (α/2)=√(r/R) => ctg(α/2)= √(R/r), тогда AD=2R*ctg(α/2), BC=2r*tg(α/2), находим ответ.

Ответ : AD=2R√(R/r), BC=2r√(r/R).

Задача2 : В треугольнике ABC известны стороны b, c и угол между медианой и высотой, исходящими из вершины A. Вычислить площадь треугольника ABC.

Дано: ∆ ABC, AD-высота, AE-медиана, DAE=α, AB=c, AC=b.

Найти: S∆ABC.

Решение:

Пусть CE=EB=x, AE=y, AED=γ. По теореме косинусов в ∆AEC b²=x²+y²-2xy*cosγ(1); а в ∆ACE по теореме косинусов c²=x²+y²+2xy*cosγ(2). Вычитая из 1 равенства 2 получим c²-b²=4xy*cosγ(3).

Т. К. S∆ABC=2S∆ACE=xy*sinγ(4), тогда разделив 3 равенство на 4 получим: (c²-b²)/S=4*ctgγ, но ctgγ=tgαб, следовательно S∆ABC= (с²-b²)/4*tgα.

Ответ: (с²- )/4*tg α .

Тригонометрия в искусстве и архитектуре.

Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

Ситуация меняется (рис2), так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.

https://pandia.ru/text/78/114/images/image037_18.gif" width="162" height="101">.gif" width="108 height=132" height="132">

Тригонометрия в медицине и биологии.

Модель биоритмов

Модель биоритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Формула сердца

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии , состоявшейся в Нидерландах. Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

3.2 Графические представления о превращении «мало интересных» тригонометрических функций в оригинальные кривые.

Кривые в полярных координатах.

с. 16ис. 19Розетки.

В полярных координатах выбираются единичный отрезок e, полюс О и полярная ось Ох. Положение любой точки М определяется полярным радиусом ОМ и полярным углом j, образованным лучом ОМ и лучом Ох. Число r, выражающее длину ОМ через е (ОМ=rе) и численное значение угла j, выраженного в градусах или в радианах, называются полярными координатами точки М.

Для любой точки, отличной от точки О, можно считать 0≤j<2p и r>0. однако при построении кривых, соответствующих уравнениям вида r=f(j), переменному j естественно придавать любые значения (в том числе и отрицательные, и превышающие 2p), а r может оказаться как положительным, так и отрицательным.

Для того чтобы найти точку (j, r), проведем из точки О луч, образующий с осью Ох угол j , и отложим на нем (при r>0) или на его продолжении в противоположную сторону (при r>0) отрезок ½ r ½е.

Все значительно упростится, если предварительно построить координатную сетку, состоящую из концентрических окружностей с радиусами е,2е,3е и т. д.(с центром в полюсе О) и лучей, для которых j=0°,10°,20°,…,340°,350°; эти лучи будут пригодны и при j<0°, и при j>360°; например, при j=740° и при j=-340° мы попадем на луч, для которого j=20°.

Исследованию данных графиков помогает компьютерная программа « Функции и графики» . Пользуясь, возможностями этой программы исследуем некоторые интересные графики тригонометрических функций.

1 .Рассмотрим кривые, заданные уравнениями: r= a+ sin3 j

I. r=sin3j (трилистник ) (рис.1)

II. r=1/2+sin3j (рис.2), III. r=1+ sin3j (рис.3), r=3/2+ sin3j (рис.4) .

У кривой IV наименьшее значение r=0,5 и лепестки имеют незаконченный вид. Таким образом при а >1 лепестки трилистника имеют незаконченный вид.

2.Рассмотрим кривые при а=0; 1/2; 1;3/2

При а=0 (рис.1),при а=1/2 (рис.2), при а=1 (рис.3) лепестки имеют законченный вид, при а=3/2 будет пять незаконченных лепестков., (рис.4).

3.В общем случае у кривой r=https://pandia.ru/text/78/114/images/image042_15.gif" width="45 height=41" height="41">), т. к. в этом секторе 0°≤≤180°..gif" width="20" height="41">.gif" width="16" height="41"> для одного лепестка потребуется «сектор», превышающий 360°.

На рис1-4 показан вид лепестков при =https://pandia.ru/text/78/114/images/image044_13.gif" width="16" height="41 src=">.gif" width="16" height="41 src=">.

4.Уравнения, найденные немецким математиком-натуралистом Хабенихтом для геометрических форм, встречающихся в мире растений. Например, уравнениям r=4(1+cos3j) и r=4(1+cos3j)+4sin23j соответствуют кривые, изображенные на рис.1.2 .

Кривые в декартовых координатах.

Кривые Лиссажу.

Много интересных кривых можно построить и в декартовых координатах. Особенно интересно выглядят кривые, уравнения которых даны в параметрическом виде:

Где t-вспомогательное переменное(параметр). Например, рассмотрим кривые Лиссажу, характеризуемые в общем случае уравнениями:

Если за параметр t взять время, то фигуры Лиссажу будут представлять собой результат сложения двух гармонических колебательных движений, совершаемых во взаимно перпендикулярных направлениях. В общем случае кривая располагается внутри прямоугольника со сторонами 2а и2в.

Рассмотрим это на следующих примерах

I. x=sin3t; y=sin 5t (рис.1)

II. x=sin 3t; y=cos 5t (рис.2)

III. x=sin 3t; y=sin 4t.(рис.3)

Кривые могут быть замкнутыми и незамкнутыми.

Например, замена уравнений I уравнениями: x=sin 3t; y=sin5(t+3) превращает незамкнутую кривую в кривую замкнутую.(рис.4)

Интересны и своеобразны линии, соответствующие уравнениям вида

у =arcsin(sin k(x- a )).

Из уравнения y=arcsin(sinx) следует:

1) и 2)siny=sinx.

При этим двум условиям удовлетворяет функция у=х. Графиком ее в интервале (-;https://pandia.ru/text/78/114/images/image053_13.gif" width="77" height="41"> будем иметь у=p-х, так как sin(p-x)=sinx и в этом интервале

. Здесь график изобразится отрезком ВС.

Так как sinx –периодическая функция с периодом 2p, то ломаная АВС, построенная в интервале(,) повторится на других участках.

Уравнению y=arcsin(sinkx) будет соответствовать ломаная линия с периодом https://pandia.ru/text/78/114/images/image058_13.gif" width="79 height=48" height="48">

удовлетворяют координаты точек, которые лежат одновременно выше синусоиды (для них у>sinx) и ниже кривой y=-sinx, т. е. « область решений» системы будет состоять из закрашенных на рис.1 областей.

2.Рассмотрим неравенства

1) (y-sinx)(y+sinx)<0.

Для решения данного неравенства сначала строим графики функций: y=sinx; y=-sinx.

Затем закрашиваем области, где y>sinx и одновременно y<-sinx; затем закрашиваем области, где y< sinx и одновременно y>-sinx.

Этому неравенству будут удовлетворять области, закрашенные на рис.2

2)(y2-arcsin2(sinx))(y2-arcsin2(sin(x+ )))<0

Перейдем к следующему неравенству:

(y-arcsin(sinx))(y+arcsin(sinx)){ y-arcsin(sin(x+ ))}{y+arcsin(sin(x+ ))}<0

Для решения данного неравенства сначала строим графики функций: y=±arcsin(sinx); y=±arcsin(sin(x+)) .

Составим таблицу возможных вариантов решений.

1 множитель

имеет знак

2 множитель

имеет знак

3 множитель

имеет знак

4 множитель

имеет знак

Затем рассматриваем и закрашиваем решения следующих систем.

)| и |y|>|sin(x-)|.

2) Второй множитель меньше нуля, т..gif" width="17" height="41">)|.

3) Третий множитель меньше нуля, т.е. |y|<|sin(x-)|, другие множители положительны, т. е. |y|>|sinx| и |y|>|sin(x+Учебные дисциплины" href="/text/category/uchebnie_distciplini/" rel="bookmark">учебных дисциплинах , технике, в быту.

Использование моделирующей программы « Функции и графики» значительно расширило возможности проведения исследований, позволило материализовать знания при рассмотрении приложений тригонометрии в физике. Благодаря этой программе проведены лабораторные компьютерные исследования механических колебаний на примере колебаний маятника, рассмотрены колебания в электрической цепи. Использование компьютерной программы позволило исследовать интересные математические кривые, задаваемые с помощью тригонометрических уравнений и построением графиков в полярных и декартовых координатах. Графическое решение тригонометрических неравенств привело к рассмотрению интересных математических орнаментов.

5.Список использованной литературы.

1. ., Атанасов математических задач с практическим содержанием: Кн. для учителя.-М.:Просвещение,с.

2. .Виленкин в природе и технике: Кн. для внеклассного чтения IX-X кл.-М.:Просвещение,5с(Мир знаний).

3. Доморяд игры и развлечения. Гос. изд. физ-мат. лит. М,9стр.

4. .Кожуров тригонометрии для техникумов. Гос. изд. технико-теоретической лит. М.,1956

5. Кн. для внеклассного чтения по математике в старших классах. Гос. учебно-пед. изд. Мин. Просв. РФ, М.,с.

6. ,Тараканова тригонометрии. 10 кл..-М.:Дрофа,с.

7. О тригонометрии и не только о ней: пособие для учащихся 9-11 кл.. –М.:Просвещение,1996-80с.

8. Шапиро задач с практическим содержанием в преподавании математики. Кн. для учителя.-М.:Просвещение,1990-96с.

исследование, начало которого напоминает маленькую волну, после чего наблюдается систолический подъем. Маленькая волна, как правило, показывает сокращение предсердия. С началом подъема совпадает начало изгнания крови в аорту. На этой же ленте можно увидеть еще одну максимально высокую вершину, которая сигнализирует о закрытии полулунных клапанов. Форма данного отрезка максимального подъема может быть достаточно многообразной, что приводит к различным результатам данного исследования. После максимального подъема следует спуск кривой, который продолжается до самого конца. Данный отрезок верхушечной кардиограммы сопровождается открытием митрального клапана. После этого – незначительный подъем волны. Он указывает на время быстрого наполнения. Весь остальной отрезок кривой обозначается как время пассивного наполнения желудочка. Такое исследование правого желудочка способна указать на возможные патологические отклонения.

Тригонометрия в медицине и биологии

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси,медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.


1)Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

2)Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tg(x)
5.Вывод

В результате выполнения исследовательской работы:

· Я познакомился с историей возникновения тригонометрии.

· Систематизировал методы решения тригонометрических уравнений.

· Узнал о применениях тригонометрии в архитектуре, биологии, медицине.