Точки разрыва функции и их виды. Классификация точек разрыва функции

Устранимый разрыв.

Определение . Точка a называется точкой устранимого разрыва функции y=f(x) , если предел функции f(x) в этой точке существует, но в точке a функция f(x) либо не определена, либо имеет частное значение f(a) , отличное от предела f(x) в этой точке.

Пример . Например, функция

имеет в точке x=0 устранимый разрыв. Действительно, предельное значение этой функции в точке х=0 равно 1. Частное же значение равно 2.

Если функция f(x) имеет в точке a устранимый разрыв, то этот разрыв можно устранить, не изменяя при этом значений функции в точках, отличных от a . Для этого достаточно положить значение функции в точке a равным ее предельному значению в этой точке. Так, в рассмотренном выше примере достаточно положить f(0)=1 и тогда , т.е. функция f(x) станет непрерывной в точке x=0 .

Разрыв первого рода.

Определение . Точка a называется точкой разрыва, первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу правый и левый пределы

Приведем некоторые примеры.

Пример . Функция y=sgn x имеет в точке x=0 разрыв первого рода. Действительно, и, таким образом, эти пределы не равны между собой.

Пример . Функция , определенная всюду, кроме точки x=1 , имеет в точке x=1 разрыв первого рода. В самом деле, .

Разрыв второго рода.

Определение . Точка a называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов бесконечен.

Пример . Функция f(x)=tg x , очевидно, имеет разрыв второго рода в каждой из точек x k =π/2+π k , k=0, ± 1, ± 2,… , ибо в каждой такой точке

Пример . Функция имеет разрыв второго рода в точке x=0 , ибо в этой точке у нее не существует ни правого, ни левого пределов.

Непрерывность функции на отрезке

Определение . Функция, определенная на отрезке и непрерывная в каждой его точке, называется непрерывной на этом отрезке.

При этом под непрерывность в точке a понимается непрерывность справа, а под непрерывностью в точке b - непрерывность слева.

Будем говорить, что функция y=f(x) , определенная на множестве {x} достигает на нем своей верхней (нижней) грани , если существует такая точка x 0 ∈{x} , что f(x 0)=β (f(x 0)=α ).

Теорема [Вейерштрасса] . Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней грани и своей нижней грани.

Теорема [Больцано-Коши] . Если функция y=f(x) непрерывна на отрезке и f(a)=A , f(b)=B , то для любого C , заключенного между A и B , существует такая точка ξ∈ , что f(ξ)=C .

Другими словами, непрерывная на отрезке функция, принимая какие-либо два значения, принимает и любое лежащее между ними значение.

Следствие . Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка, в которой функция обращается в нуль.

Следствие . Пусть функция y=f(x) непрерывна на отрезке и , . Тогда функция f(x) принимает все значения из отрезка и только эти значения.

Таким образом, множество всех значений функции, заданной и непрерывной на некотором отрезке, представляет собой также отрезок.

Точка а называется точкой устранимого разрыва функции , если предел функции в этой точке существует, но в точке а функциялибо не определена, либо ее значениене равно пределу в этой точке

    Разрыв первого рода.

Точка а называется точкой разрыва первого рода функции , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы.

    Разрыв второго рода.

Точка а называется точкой разрыва второго рода функции Точка а называется точкой устранимого разрыва функции , если в этой точке функция не имеет по крайней мере одного из односторонних пределов или хотя бы один из односторонних пределов бесконечен.

25. Производная: определение, механический и геометрический смысл. Уравне-ние касательной к кривой.

Определение производной

Пусть функция определена на некотором промежутке Х. Придадим значению аргумента в точке произвольное приращение так, чтобы точка также принадлежала Х. Тогда соответствующее приращение функции составит .

Опр . Производной функции в точкеназывается предел отношения приращения функции в этой точке к приращению аргумента при(если этот предел существует).

Если в некоторой точке предел бесконечен, то говорят, что в этой точке функция имеет бесконечную производную. Если функция имеет производную в каждой точке множества Х, то производнаятакже является функцией от аргумента х, определенной на Х.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Опр. Касательной к графику функции в точке М называется предельное положение секущей МN, когда точка N стремится к точке М по кривой.

Уравнение пучка прямых, проходящих через точку , имеет вид

Угловой коэффициент секущей равен

Тогда угловой коэффициент касательной равен

Отсюда следует наглядный вывод о том, что . В этом и состоитгеометрический смысл производной .

    отсюда, v (t 0) = x’ (t 0) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени : a = v’ (t ).

Уравнение касательной к графику функции в точке имеет вид:

26. Основные правила дифференцирования. Производные основных элементар-ных функций.

Правила дифференцирования.

1. Производная постоянной равна нулю

2. Производная аргумента равна единице.

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций.

    Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго.

Следствие 1. Постоянный множитель можно выносить за знак производной.

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

Производные основных элементар-ных функций.

1. (C)” = 0, где C = const

2. (x a)” = ax a-1 , где a не равно 0

3. (a x)” = a x ln a, где a > 0

4. (e x)” = e x

5. (log a x)” =1/x ln a , где a > 0

6. (ln x)” =1/x

7. (sin x)” = cos x

8. (cos x)” = - sin x

9. (tg x)” =1/cos 2 x

10. (ctg x)” = -1/sin 2 x

11. (arcsin x)” = 1/~1-x 2

12. (arccos x)’ = -1/~1-x 2

13. (arctg x)” =1/1+x 2

14. (arcctg x)” = -1/1+x 2

27. Производная сложной функции. Производные высших порядков.

Нечётные функции

Нечётная степень где - произвольное целое число.

· Синус .

· Тангенс .

Чётные функции

Чётная степень где - произвольное целое число.

· Косинус .

· Абсолютная величина (модуль) .

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

· Говоря более формально, функция называется периодической, если существует такое число T≠0 (период), что на всей области определения функции выполняется равенство .

· Исходя из определения, для периодической функции справедливо также равенство , где - любое целое число.

· Все тригонометрические функции являются периодическими.

3) Нули (корни) функции - точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

· если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

· если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

Аси́мпто́та - прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x ) 0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x ) 0, функция f (x )убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

1.Найти производную функции: f (x ). 2.Найти точки, в которых производная равна нулю: f (x )=0 x 1, x 2 ,... 3.Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1 a ;b , а x 2 a ;b . 4.Найти значения функции в выбранных точках и на концах отрезка:f (x 1), f (x 2),..., f (x a ),f (x b ), 5.Выбор наибольшего и наименьшего значений функции из найденных. Замечание. Если на отрезке [a ; b ] имеются точки разрыва, то необходимо в них вычислить односторонние пределы, а затем их значения учесть в выборе наибольшего и наименьшего значений функции.

7) Нахождение интервалов выпуклости и вогнутости . Это делается с помощью исследования знака второй производной f (x ). Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя f (x ) , мы решаем неравенство f (x ) 0. На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство f (x ) 0, мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).

Определение точек разрыва функции и их видов является продолжением темы непрерывности функции . Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности. Научимся находить точки разрыва функции и определять их виды. И помогут нам в этом наши верные друзья - левый и правый пределы, обобщённо называемые односторонними пределами. Если у кого-то есть страх перед односторонними пределами, то скоро развеем его.

Точки на графике, которые не соединены между собой, называются точками разрыва функции . График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.

Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва . Разрывы бывают первого рода и второго рода .

Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы , поэтому нелишне открыть в новом окне соответствующий урок. Но в связи с точками разрыва у нас появляется кое-что новое и важное - односторонние (левый и правый) пределы. Обобщённо они записываются (правый предел) и (левый предел). Как и в случае с пределом вообще, для того, чтобы найти предел функции, нужно в выражение функции вместо икса подставить то, к чему стремится икс. Но, возможно, спросите вы, чем же будут отличаться правый и левый пределы, если в случае правого к иксу хотя что-то и прибавляется, но это что-то - ноль, а в случае левого из икса что-то вычитается, но это что-то - тоже ноль? И будете правы. В большинстве случаев.

Но в практике поиска точек разрыва функции и определения их вида существует два типичных случая, когда правый и левый пределы не равны:

  • у функции существует два или более выражений, зависящих от участка числовой прямой, к которой принадлежит икс (эти выражения обычно записываются в фигурных скобках после f (x )= );
  • в результате подстановки того, к чему стремится икс, получается дробь, в знаменателе которой остаётся или плюс ноль (+0) или минус ноль (-0) и поэтому такая дробь означает либо плюс бесконечность, либо минус бесконечность, а это совсем разные вещи.

Точки разрыва первого рода

Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).

Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.

Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.

Точки разрыва второго рода

Точка разрыва второго рода: точка, в которой хотя бы один из пределов (левый или правый) - бесконечный (равен бесконечности).

Пример 3.

Решение. Из выражения степени при e видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

Один из пределов равен бесконечности, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика .

Пример 4. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при 2 видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке.

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.


Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» - некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа - кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.


Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Заметьте, что не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно - из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции

.

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I)

1)


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

- односторонние пределы конечны и равны, значит, существует общий предел.

3)

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой - обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами - будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно - функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4-х подобных примеров:

I) Исследуем на непрерывность точку

2) Вычислим односторонние пределы:

, значит, общий предел существует.

Случился тут небольшой курьёз. Дело в том, что я создал немало материалов о пределах функции , и несколько раз хотел, да несколько раз забывал об одном простом вопросе. И вот, невероятным усилием воли таки заставил себя не потерять мысль =) Скорее всего, некоторые читатели-«чайники» сомневаются: чему равен предел константы? Предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь, в правостороннем пределе - предел единицы равен самой единице.

- общий предел существует.

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция .

Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование:

I) Исследуем на непрерывность точку

2) Найдём односторонние пределы:

Обратите внимание на типовой приём вычисления одностороннего предела : в функцию вместо «икса» мы подставляем . В знаменателе никакого криминала: «добавка» «минус ноль» не играет роли, и получается «четыре». А вот в числителе происходит небольшой триллер: сначала в знаменателе показателя убиваем -1 и 1, в результате чего получается . Единица, делённая на , равна «минус бесконечности», следовательно: . И, наконец, «двойка» в бесконечно большой отрицательной степени равна нулю: . Или, если ещё подробнее: .

Вычислим правосторонний предел:

И здесь - вместо «икса» подставляем . В знаменателе «добавка» снова не играет роли: . В числителе проводятся аналогичные предыдущему пределу действия: уничтожаем противоположные числа и делим единицу на:

Правосторонний предел бесконечен, значит, функция терпит разрыв 2-го рода в точке .

II) Исследуем на непрерывность точку

1) Функция не определена в данной точке.

2) Вычислим левосторонний предел:

Метод такой же: подставляем в функцию вместо «икса» . В числителе ничего интересного - получается конечное положительно число . А в знаменателе раскрываем скобки, убираем «тройки», и решающую роль играет «добавка» .

По итогу, конечное положительное число, делённое на бесконечно малое положительное число , даёт «плюс бесконечность»: .

Правосторонний предел, как брат близнец, за тем лишь исключением, что в знаменателе выплывает бесконечно малое отрицательное число :

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке .

Таким образом, у нас две точки разрыва, и, очевидно, три ветки графика. Для каждой ветки целесообразно провести поточечное построение, т.е. взять несколько значений «икс» и подставить их в . Заметьте, что по условию допускается построениесхематического чертежа, и такое послабление естественно для ручной работы. Я строю графики с помощью проги, поэтому не имею подобных затруднений, вот достаточно точная картинка:

Прямые являются вертикальными асимптотами для графика данной функции.

Ответ : функция непрерывна на всей числовой прямой кроме точек , в которых она терпит разрывы 2-го рода.

Более простая функция для самостоятельного решения:

Пример 9

Исследовать на непрерывность функцию и выполнить схематический чертёж.

Примерный образец решения в конце, который подкрался незаметно.

До скорых встреч!

Решения и ответы:

Пример 3: Решение : преобразуем функцию: . Учитывая правило раскрытия модуля и тот факт, что , перепишем функцию в кусочном виде:


Исследуем функцию на непрерывность.

1) Функция не определена в точке .


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком. Скачок разрыва: (две единицы вверх).

Пример 5: Решение : каждая из трёх частей функции непрерывна на своём интервале.
I)
1)

2) Вычислим односторонние пределы:


, значит, общий предел существует.
3) - предел функции в точке равен значению данной функции в данной точке.
Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.
II) Исследуем на непрерывность точку

1) - функция определена в данной точке. функция терпит разрыв 2-го рода, в точке

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия - Область определения функции . Активное обсуждение данного понятия началось на первом же уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает области определения основных функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, логарифма, синуса, косинуса. Они определены на . За тангенсы, арксинусы, так и быть, прощаю =) Более редкие графики запоминаются далеко не сразу.

Область определения - вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения - это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: - значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения - там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статье Графики и свойства элементарных функций .