Типы переменных звёзд. Переменная звезда

Пульсирующие звезды расширяются и сжимаются, становясь больше и меньше, горячее и холоднее, ярче и тусклее. Физические свойства этих звезд таковы, что они просто переходят из одного состояния в другое и обратно, как будто совершают некие колебания или пульсируют, совсем как бьющиеся в небе сердца.


Переменные звезды-цефеиды

Американский астроном Генриетта Ливитт обнаружила, что у цефеид существует зависимость между периодом изменения блеска и светимостью (period-luminosity relation). Этот термин означает, что, чем дольше период изменения блеска (интервал между последовательными пиками блеска), тем выше средний истинный блеск звезды. Поэтому, если измерять видимую звездную величину переменной звезды-цефеиды по мере ее изменения с течением дней и недель и затем определить период изменения блеска, то можно легко вычислить истинный блеск звезды.


Зачем это нужно? А затем, что, зная истинный блеск звезды, можно определить расстояние до нее. Ведь чем дальше звезда, тем более тусклой она выглядит, но это все та же звезда с тем же истинным блеском.

Удаленные тусклые звезды подчиняются закону обратных квадратов (inverse square law). Это значит, что если звезда в 2 раза дальше, то она выглядит в 4 раза более тусклой. А если звезда в 3 раза дальше, то она выглядит в 9 раз тусклее. Если же звезда в 10 раз дальше, то она выглядит в 100 раз более тусклой.


Недавно в СМИ появились сообщениях о том, что с помощью космического телескопа "Хаббл" удалось определить масштабы и возраст Вселенной. На самом деле это результат исследования с помощью телескопа "Хаббл" переменных звезд-цефеид. Эти цефеиды находятся в далеких галактиках. Но, наблюдая за изменением их блеска и используя зависимость между периодом изменения блеска и светимостью, астрономы определили расстояние до этих галактик.


Звезды типа RR Лиры

Звезды типа RR Лиры подобны цефеидам, но они не такие большие и яркие. Некоторые из них расположены в шаровом звездном скоплении в нашей галактике Млечный Путь, и у них тоже существует зависимость между периодом изменения блеска и светимостью.

Шаровые скопления - это огромные сферические образования, заполненные старыми звездами, рожденными еще в период формирования Млечного Пути. Это участки космоса шириной всего лишь 60-100 световых лет, в которых "упаковано" от нескольких сотен тысяч до миллиона звезд. Наблюдая за изменением блеска звезд типа RR Лиры, астрономы могут оценить расстояние до таких звезд. А если эти звезды находятся в шаровых скоплениях, то можно определить расстояние до этих шаровых скоплений.

Почему так важно знать расстояние до звездного скопления? А вот почему. Все звезды, расположенные в одном скоплении, образовались одновременно из общего облака. И все они расположены примерно на одинаковом расстоянии от Земли, поскольку находятся в одном и том же скоплении. Поэтому, когда ученые строят H-R-диаграмму для звезд из скопления, в ней не будет ошибок, вызванных разницей расстояний до различных звезд. А если мы знаем расстояние до звездного скопления, то все нанесенные на диаграмму значения звездных величин можно преобразовать в светимость, т. е. в интенсивность излучения звездой энергии в секунду. И эти значения можно непосредственно сравнить с теоретическими данными. Именно этим и занимаются астрофизики.


Долгопериодические переменные звезды

В то время как астрофизики обрабатывают информацию, полученную от цефеид и переменных звезд типа RR Лиры, астрономы-любители наслаждаются наблюдением долгопериодических переменных звезд, так называемых переменных звезд типа Мира Кита. Мира - это другое название звезды Омикрон Ки

Переменные звезды типа Миры Кита пульсируют, как цефеиды, но у них намного большие периоды изменения блеска, в среднем 10 месяцев и больше, и, кроме того, у них больше амплитуда изменения блеска. Когда блеск Миры Кита достигает максимального значения, ее можно увидеть невооруженным глазом, а когда блеск минимален, необходим телескоп. Изменение блеска долгопериодических звезд также происходит гораздо нерегулярнее, чем у цефеид. Максимальная звездная величина, которой достигает некоторая звезда, может очень сильно меняться от одного периода к другому. Наблюдения таких звезд, проводить которые совсем нетрудно, позволяют ученым получить важную научную информацию. И вы тоже можете внести свой вклад в исследование переменных звезд (более подробно я расскажу об этом в последнем разделе данной главы).

Оценка 1 Оценка 2 Оценка 3 Оценка 4 Оценка 5

Переменная звезда - та, блеск (яркость) которой меняется со временем из-за физических процессов внутри или около звезды. Эту истинную переменность звезд стоит отличать от их мерцания и другой переменности, вызванной непостоянством земной атмосферы.

Но при наблюдениях с Земли не так-то просто отделить собственные колебания яркости звезды от вызванных влиянием атмосферы. Поэтому точность фотометрии, т. е. измерений потока излучения от звезд, до 1990-х годов была невысока: не лучше 0,1 m (звездной величины). И число переменных звезд не превышало 30000.

Космические телескопы, и прежде всего телескоп Hipparcos, к концу XX века совершили революцию в исследовании переменности звезд: фотометрия миллионов звезд с точностью лучше 0,01" показала, что почти все звезды в той или иной мере являются переменными. Например, наше Солнце меняет яркость примерно на 0,001m в течение 11-летнего солнечного цикла. Но мы, как и астрономы-профессионалы, для удобства будем рассматривать как переменные только звезды с существенной амплитудой переменности. Сведения о них собираются и систематизируются в Общем каталоге переменных звезд (ОКПЗ) Государственным астрономическим институтом им. П. К. Штернберга (ГАИШ) в Москве.

Переменные звезды долгое время обозначались одной или двумя большими латинскими буквами
перед названием созвездия, например, BW Cam - переменная в созвездии Жирафа. А когда такие сочетания букв были исчерпаны, их стали обозначать большой буквой V (от слова variable - «переменная») с последующим номером, например, V838 Моn - переменная в созвездии Единорога.

Все переменные звезды с заметной амплитудой колебаний яркости можно разделить на четыре большие категории. Здесь причина переменности наблюдаемого нами потока излучения - частичные или полные затмения одной звезды в паре другой звездой. Вторая категория - пульсирующие переменные звезды. К ним, кстати, относится большинство известных ныне переменных звезд с существенной амплитудой. Здесь причина переменности - пульсации звезды, т. е. изменения ее размера, плотности, яркости, цвета, температуры, спектра и других характеристик. Причины пульсаций различны, но все они вытекают из физических свойств вещества звезды. Третья категория - эруптивные, т.е. взрывающиеся, или вспыхивающие, переменные звезды. Это нестабильные звезды, как правило, на грани перехода с одной стадии эволюции на другую. Четвертая категория - вращающиеся переменные звезды с неодинаковой яркостью поверхности. Можно сказать, что это звезды с пятнами или полосами разной яркости. К ним относится и Солнце, но его пятна ничтожны по сравнению с гигантскими пятнами некоторых звезд.

Затменно-переменные звезды

Угасания звезды Алголь (Ветта Персея) были замечены еще в древности, а объяснены в 1783 году Джоном Гудрайком. Примерно каждые 69 часов звезда на 10 часов меркнет - это видно невооруженным глазом. Поэтому Алголь - в таблице переменных звезд в Практикуме № 40. За «подмигиванием» звезды скрывается тесная пара «вальсирующих» Алголя, в которой одна периодически заслоняет другую. Конечно, мы наблюдаем затмения в этой паре только потому, что обе звезды и Земля находятся примерно на одной прямой (отклонение меньше 8°). И это значит, что вообще-то в паре Алголя затмения не полные: как Луна на нашем небе иногда частично заслоняет Солнце, так и здесь одна звезда частично заслоняет другую - частные затмения. При этом общий свет двух звезд пары гаснет на 1,З m. Если бы плоскость орбиты звезд наклонилась к линии «звезда-Земля» на 27°, то затмения нами не наблюдались бы, и Алголь не считался бы переменной звездой. А если бы угол сократился до 3°, затмения стали бы полными, и тогда мы увидели бы гораздо более глубокие угасания Алголя - более чем на З m (т. е. на полчаса Алголь становился бы не виден глазу). По старинным летописям астрономы выяснили, что такое бывало. Как медленно покачивается из стороны в сторону ось быстро вращающегося волчка, так и плоскость орбиты Алголя поворачивается с периодом около 20 ООО лет. В начале нашей эры Алголь не был переменной звездой. Вот почему его «подмигивания», хорошо заметные глазу, не упоминают древние астрономы Гиппарх и Птолемей, хотя они изучили небо при составлении своих звездных каталогов. С 161 по 1482 год нашей эры затмения были, как и сейчас, частичными. А в 1482-1768 годах - полными. Что и привлекло внимание Джона Гудрайка и других астрономов XVIII века. Частичные затмения продолжатся до 3044 года.

Пульсирующие переменные звезды

Звезда б Цефея и ей подобные пульсируют: то раздуваются и, соответственно, охлаждаются и тускнеют, то сжимаются, нагреваются и становятся ярче. Кстати, это напоминает работу автомобильного двигателя: недра звезды выступают в роли горючего, а оболочка - в роли поршня. Горючее превращается в газ, давление которого толкает поршень. Как и в двигателе, процесс имеет несколько этапов. В общем случае энергия звезды, рвущаяся к поверхности из глубин, в неком слое на промежуточной глубине расходуется на распад молекул на атомы или на ионизацию вещества - то есть накапливается в этом слое и до поверхности не доходит. Когда все вещество в упомянутом слое превратится в атомы или ионизируется, энергия глубин больше не задерживается в нем, прорывается к внешним слоям звезды и идет на ее расширение. Расширение оболочки охлаждает и особый слой, где запасалась энергия. Фактически краткое время, пока звезда имеет максимальный размер и яркость, она выпускает в космическое пространство энергию, запасенную в этом особом слое. Он остывает: атомы соединяются в молекулы, или ионы - в атомы. Остывшая звезда сжимается под воздействием притяжения собственных частиц, и цикл повторяется. Помним, что любая звезда находится в равновесии двух сил: взаимного притяжения собственных частиц и давления горячего вещества из глубин. Пульсации - по сути, борьба этих сил, идущая с переменным успехом.

Ближайшая к Земле цефеида, звезда типа Цефея - Полярная звезда. К тому же она является тройной системой. Близкая звезда-спутник летает вокруг центральной звезды с периодом около 30 лет. Но, кроме одного наблюдения, выполненного телескопом «Хаббл», Полярная и ее звезда-спутник всегда наблюдались совместно, а орбитальные характеристики вычислялись по изменениям их общей яркости. Однако все осложняется тем, что Полярная меняет яркость из-за пульсаций, да еще и имеет некие странные долгопериодические изменения яркости: за XX век амплитуда ее переменности уменьшилась с 8 % почти до нуля (в XXI веке Полярная почти не пульсирует!) при том, что в среднем за последний век она стала ярче на 15 %. Выходит, главные открытия по физике Полярной звезды и всех цефеид еще впереди. И хотя Полярная не отмечена в Практикуме № 40, но поглядывайте на нее - вдруг явно вспыхнет или погаснет у вас на глазах. Кстати, как Полярная, многие пульсирующие звезды с гигантскими оболочками пульсируют неправильно. Отсюда - большое разнообразие непериодических и полупериодических гигантов.

Звезды производят алмазы. И об их добыче уже можно задуматься, потому что эти драгоценности интенсивно рассеиваются звездами в пространство вместе с остальной пылью. Особенно интенсивно пыль, газ, включая молекулы и органические вещества, теряют сильно раздувшиеся звезды-гиганты и сверхгиганты. На периферии их прохладных оболочек притяжение звезды столь мало, что частицы вещества запросто покидают звезду Напоминаем, что такая звезда в итоге должна сбросить свою оболочку в виде планетарной туманности и стать белым карликом. Поэтому звезды на грани такого превращения исключительно интересны: они особенно сильно пульсируют и меняют яркость с большой амплитудой; являются самыми красными, даже невероятно красно-бордовыми из-за сильного поглощения света запыленной оболочкой; в спектре демонстрируют удивительные вещества оболочки, например, фуллерены, кристаллы из 60 и более атомов углерода; и обречены пребывать в этом состоянии столь недолго, что можно дождаться радикальных изменений у нас на глазах. Для десятка таких звезд астрономы ждут вспышки и сброса оболочки уже в этом столетии!

Звезда Омикрон Кита каждые 332 дня появляется на небе среди ярчайших звезд (звездная величина 2 m), а затем исчезает для глаза (10 m, в телескоп «Галилей-200» видна на пределе). Астроном Давид Фабрициус в 1596 году назвал ее Mira, что по-латински значит «удивительная». Астрономы удивлялись ей до XXI века! Для объяснения переменности Миры и ей подобных звезд (они называются мириды), вроде бы не годились оба механизма: затмевающий спутник у нее не наблюдался, а чтобы объяснить столь невиданные перепады яркости, нужны пульсации в сотни раз. Представьте, что Солнце каждый год то раздувалось бы на половину Солнечной системы, то сжималось бы до своего нынешнего размера. Звезде просто неоткуда взять столько энергии, да и вряд ли она пережила бы такие пульсации!

Ситуация стала проясняться, когда обнаружился очень тусклый спутник Миры - белый карлик. Но он расположен так далеко от основной звезды, что напрямую не может влиять на нее. В 2007 году ультрафиолетовый телескоп GALEX обнаружил, что Мира летит в пространстве с огромной скоростью более 100 км/с и оставляет позади себя исполинский хвост газа и пыли длиной в 13 световых лет. Этот хвост дотягивается не только до спутника звезды, но и до соседних звезд. Пришлось пересмотреть и потери вещества: Мира каждый год теряет массу, равную массе Луны. В этом потоке много черной сажи - углерода и его соединений. Ну в точности - дымящий паровоз на полном ходу! А звезда-спутник Миры, «вагончик паровоза», собирает часть этой копоти на себя. Настолько много, что слой копоти на «вагончике» во много раз превышает вес самого вагончика и, кстати, делает его еще менее заметным: искали его 200 лет. В результате, спутник Миры, летая вокруг нее, управляет потоком ее вещества: пропускает или задерживает и, таким образом, проявляет или заволакивает Миру. Когда проявляет - ее звездная величина взлетает до 2m. Кстати, сажа, графит и алмаз - это все один и тот же углерод. Алмазы, кристаллизующиеся в ядре Миры, можно поискать в дыму этого «космического паровоза». Похожую роль выполняет и невидимый пока спутник звезды R Скульптора (рис. 5): теряемое звездой вещество он превращает в видимую нами спираль.

Световое эхо

RS Кормы (RS Pup) - цефеида, меняющая яркость в 5 раз с периодом 41,4 дня. При взгляде на ее окрестности кажется, что от нее разлетаются облака газа (рис. 6). На самом деле в разных фазах пульсации звезды ею по-разному подсвечиваются окружающие ее неподвижные облака пыли. Они состоят из нескольких слоев и поэтому выглядят как светящиеся кольца вокруг звезды. Суть возникающего здесь эффекта светового эха состоит в том, что наблюдатель видит свет звезды, пришедший к нему разными путями: напрямую и отразившись от разных участков пылевого облака. Для большого облака (как в случае RS Кормы) роль играет скорость света: свет, отраженный близкой к звезде частью облака, приходит к нам заметно позже, чем напрямую. А свет, отраженный далекой частью облака, приходит еще позже. Из-за этого далекие от звезды части облака «загораются» для нас позже, и, таким образом, возникает видимость распространяющихся светлых колец. Особенно впечатляюще световое эхо звезды V838 Единорога.

Недавно астрономы воспользовались световым эхом для того, чтобы в прямом смысле слова увидеть далекое прошлое. Вспышку сверхновой SN1572 увидели в 1572 году - это свет пришел по прямой. А в 2008 году очень слабое отражение той вспышки было замечено как световое эхо на облаках Млечного Пути. Вспышку сверхновой Кассиопея А около 1660 года вообще на Земле не заметили из-за заслонивших ее космических облаков. Но световое эхо, отражение той вспышки на других космических облаках увидели в 2010 году.

Эруптивные переменные звезды

Редкие сильные вспышки присущи разным звездам. Например, перетекание вещества с обычной звезды на белый карлик может вызывать повторяющиеся мощные взрывы, которые по традиции называются новыми звездами. Вспыхивают молодые звезды типа Т Тельца. Возможны и вспышки при разрушении планеты около молодой звезды.

Вращающиеся переменные звезды

В 1984 году космический телескоп IRAS обнаружил у звезды Веги пылевой диск. Такие характерны для очень юных звезд, возрастом менее 100 млн лет, вокруг которых из газопылевого диска формируются планеты. Вега старше - около 450 млн лет. В поисках разгадки ученые обнаружили, что Вега очень быстро вращается: на ее экваторе скорость 280 км/с. Для сравнения - скорость вращения Солнца в 140 раз меньше - всего 2 км/с. При такой скорости Вега - вовсе не шар, а сильно сплющенный эллипсоид, поэтому экватор Веги заметно дальше от ее центра и потому холоднее полюсов. Температура связана с яркостью. Поэтому экватор Веги - темная полоса, а полюса - светлые шапки.
Мы все время видели один из полюсов и не подозревали, что волчок-то полосатый. Если однажды Вега повернется к нам так, что будет попеременно наблюдаться то полюсами, то боками, она станет переменной звездой.

Световое эхо - эффект, возникающий в астрономии, когда свет от вспышки светила приходит к наблюдателю, отражаясь от «экранов» вдали от светила, позже, чем свет, пришедший по прямой. При этом в некоторых случаях возникает видимость удаления отражающего свет «экрана» от светила-источника со скоростью выше скорости света.

Кроме того, скорость вращения Веги на экваторе равна скорости отрыва вещества от звезды центробежными силами. Иногда сгустки вещества действительно отрываются от Веги и присоединяются к окружающему ее диску. Поэтому, хотя звездный ветер и сдувает вещество диска в космос, но диск постоянно пополняется новым веществом от звезды. Конечно, диск около звезды должен вращаться, иначе он упадет на звезду. Из-за вращения разные части диска в разное время слегка заслоняют нам саму Вегу. Так возникают небольшие колебания ее яркости, обнаруженные недавно.

Газопылевые диски вокруг звезд иногда играют столь важную роль, что не ясно, к какой категории отнести некоторые переменные звезды.

Please enable JavaScript to view the

Продолжаю серию статей «астрономический справочник». И сегодня рассмотрю ещё одну важную тему, которая пригодится вам при чтении статей из раздела - переменные звёзды . По прошествии времени звёзды могут менять свою яркость (блеск), такие звёзды называются переменными. Переменные звёзды меняют свой блеск из-за физических изменений состояния самой звезды, а также из-за затмений, если речь идёт о двойных (кратных) системах - это затменно-переменные звёзды.

Бывают следующие типы физических переменных звёзд:

  • пульсирующие - характеризуются непрерывными и плавными изменениями блеска: цефеиды, мириды, типа RR Лиры, неправильные, полуправильные;
  • эруптивные - характеризуются неправильными, быстрыми и сильными изменениями блеска, вызванными процессами, носящими взрывообразный (эруптивный) характер: новые звёзды, сверхновые.

Переменные звёзды имеют специальные обозначения. Эти звёзды в каждом созвездии обозначают последовательностью букв латинского алфавита: R, S, Т, …, Z, RR, RS, …, RZ, SS, ST, …. ZZ, АА, …, AZ, QQ, …, QZ с добавлением названия соответствующего созвездия (RR Lyr). Таким образом можно обозначить 334 переменных звезды в каждом созвездии. Если количество превышает 334, то следующие обозначаются V 335, V 336 и т. д.

Затменно-переменные звёзды

Затменно-переменные звёзды - тесные пары звёзд, которые нельзя разделить даже в самые мощные телескопы, видимая звёздная величина меняется из-за периодически наступающих для наблюдателя с Земли затмений одного компонента системы другим. Звезда с большей светимостью - главная, с меньшей - спутник. Самыми популярными примерами являются: β Персея (Алголь) и β Лиры.

Из-за перекрытия одной звезды другой суммарная звёздная величина изменяется периодически.

Кривая блеска - график, который изображает изменение потока излучения звезды в зависимости от времени. Когда звезда имеет максимальную яркость, то это эпоха максимума , минимальную (или наибольшую ) - эпохой минимума . Разность между максимумом и минимумом звёздных величин называется амплитуда , а временной интервал между двумя максимумами (минимумами) - периодом переменности .

График изменения потока излучения звезды от времени

Исходя из данных графика можно определить относительные размеры компонентов, получить общее представление об их форме. Минимальные значение (впадины) на графике могут отличаться по значению звёздной величины в зависимости от того, какая из звёзд перекрыла своего компонента: главная спутника или спутник главную.

На сегодня известно около 4000 затменных звёзд разных типов. Минимальный известный астрономами период обращения звёзд - чуть меньше часа, максимальный - 57 лет.

Физические переменные звёзды

Цефеиды

Цефеиды - пульсирующие гиганты F и G, которые получили своё название в честь звезды δ (дельта) Цефея. Период пульсации колеблется в диапазоне от 1,5 до 50 суток. Амплитуда (разница между максимумом и минимумом) блеска цефеид может достигать 1,5 m . Типичным представителем цефеид является Полярная звезда.

При изменении блеска изменяются температура фотосферы, показатели цвета, радиус фотосферы. Пульсация звезды происходит когда непрозрачность наружных слоёв звезды задерживает некоторую часть излучения внутренних слоёв. Это связано с веществом гелий, который вначале ионизируется, а затем охлаждается и рекомбинируется.

График изменения блеска η Aql (эта Орла) и δ Cep (дельта Цефея)

В нашей галактике Млечный Путь на сегодня насчитывается больше 700 цефеид.

В свою очередь цефеиды делятся ещё на 3 группы:

  1. Дельта цефеиды (Cδ) - классические цефеиды.
  2. Цефеиды типа W Девы (CW) - расположены не в плоскости галактики. Как правило встречаются в . Интересно то, что максимальной температуры они достигают в промежутках между максимумом и минимумом светимости.
  3. Дзета цефеиды (Cζ) - малоамплитудные цефеиды. Обладают симметричными кривыми блеска.

Звёзды типа RR Лиры

В отдельный тип относятся звёзды типа RR Лиры . Это гиганты спектрального класса A. Период переменности для этих звёзд 0,2 - 1,2 суток. Они очень быстро меняют блеск, при этом амплитуда достигает одной звёздной величины. С изменением блеска изменяется показатель цвета, что связано с изменением температуры фотосферы. При максимуме звезда светлеет (белеет), т.е. становится горячее. Также изменяется радиус звезды (лучевые скорости).

Подавляющее большинство звёзд этого типа сосредоточено в шаровых звёздных скоплениях. Ниже на (спектр-светимость) показано примерное расположение цефеид и звёзд типа RR Лиры:

Изображение взято с сайта Википедия

Мириды

Мириды по-другому называют долгопериодическими переменными звёздами . Это звёзды типа ω (омега) Кита. Амплитуда изменения блеска достигает 10-й (!) звёздной величины. Период переменности сильно разнится и лежит в интервале 90 - 730 суток.

К миридам относятся спектрального класса M (и дополнительных S и N - ещё более холодных).

Переменность блеска возникает из-за колебаний температуры. К миридам относятся звёзды, у которых в спектрах появляются эмиссионные линии.

Неправильные переменные

Это звёзды, у которых происходит непредсказуемое изменение блеска. Их сложно наблюдать и приходится затрачивать больше времени на определение их характеристик. Представителем это типа звёзд является μ (мю) Цефея.

Амплитуда изменения блеска не превышает одну звёздную величину. Моменты максимумов или минимумов нельзя определить по формулам, или посчитать их периодичность. Кривая изменения блеска может иметь период до 4500 суток. В книге по астрономии нашел график звезды μ Цефея, яркость которого вычислялась с 1916 по 1928 года:

Если получается определить среднее значение цикла и наблюдается некоторая периодичность, их называют полуправильными , в ином случае - неправильными .

Эруптивные переменные

Переменная карликовая звезда, которая проявляет свою переменность в виде повторяющихся вспышек, объясняющихся различного рода выбросами вещества (эрупций) называется эруптивной переменной. Эруптивные звёзды могут быть как молодыми, так и старыми.

Молодые звёзды

Звёзды, которые не завершили процесс гравитационного сжатия называются молодыми . Например, T Тельца. К молодым звёздам относятся карлики спектральных классов F и G с эмиссионными линиями в спектре. Много молодых звёзд можно обнаружить в туманности Ориона (в созвездии Ориона), где идёт процесс активного звёздообразования. Установить закономерность изменения таких звёзд невозможно. Амплитуда изменения блеска может достигать 3 m .

Хаотическую переменность объясняют тем, что вокруг молодых звёзд наблюдаются небольшие яркие туманности, что говорит о существовании у них обширных газовых оболочек.

Отдельно выделяют вспыхивающие звёзды типа UV Кита . Это карлики спектральных классов K и M. Они отличаются очень быстрым возрастанием светимости во время вспышек. Менее чем за одну минуту поток излучения может увеличиться в несколько раз. Однако, есть большая группа вспыхивающих звёзд, у которых вспышки длятся продолжительное время, превышающее несколько минут. В скоплении Плеяды все звёзды относятся к таким звёздам.

На сегодня обнаружено всего около 80 вспыхивающих звёзд, имеющих небольшую светимость и их можно наблюдать на небольшом удалении от Солнца.

В общем-то и всё, что вам необходимо знать и понимать о переменных звёздах . И теперь, встречая непонятные названия или обозначения типа переменной звезды, вы всегда сможете обратиться к этой статье, чтобы узнать что есть что.

Спасибо что уделили своё время на чтение этой важной темы. Если есть вопросы, не стесняйтесь, пишите в комментариях, будем вместе разбираться.



Звезды, светимость которых меняется за относительно короткие промежутки времени, называются физическими переменными звездами . Изменения светимости этого типа звезд вызваны физическими процессами, которые происходят в их недрах. По характеру переменности различают пульсирующие переменные и эруптивные переменные. В отдельный вид выделяют также новые и сверхновые звезды, которые являются частным случаем эруптивных переменных. Все переменные звезды имеют специальные обозначения, кроме тех, которые были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаны последовательностью букв латинского алфавита (например, R, S, Т, RR, RS, ZZ, AA, QZ) с добавлением названия соответствующего созвездия (например, RR Lyr). Следующие переменные обозначаются V 335, V 336 и т.д. (например, V 335 Cyg).

Физические переменные звезды


Звезды, которые характеризуются особой формой кривой блеска, отображающей плавное периодическое изменение видимой звездной величины и изменение светимости звезды в несколько раз (обычно от 2 до 6), называют физическими переменными звездами или цефеидами . Данный класс звезд был назван именем одной из типичных его представительниц – звезды δ (дельта) Цефея. Цефеиды можно отнести к гигантам и сверхгигантам спектральных классов F и G. Благодаря этому обстоятельству имеется возможность наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы - Галактики. Одна из важнейших характеристик цефеид - период. Для каждой отдельно взятой звезды он постоянен с большой степенью точности, но у разных цефеид периоды различны (от суток до нескольких десятков суток). У цефеид одновременно с видимой звездной величиной меняется и спектр. Это означает, что вместе с изменением светимости цефеид происходит и изменение температуры их атмосфер в среднем на 1500°. По смещению спектральных линий в спектрах цефеид обнаружено периодическое изменение их лучевых скоростей. Кроме того, периодически меняется и радиус звезды. Такие звезды как δ Цефея относятся к молодым объектам, которые располагаются преимущественно вблизи основной плоскости нашей звездной системы - Галактики. Цефеиды встречаются и в , но отличаются большим возрастом и несколько меньшей светимостью. Эти звезды, достигшие стадии цефеид, менее массивные, поэтому эволюционируют медленнее. Их называют звездами типа W Девы. Такие наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Таким образом, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.


Рис. Цефеиды


Задолго до того, как удалось выяснить природу пульсаций цефеид , было установлено существование зависимости между их периодом и светимостью. При наблюдении цефеид в Малом Магеллановом Облаке – одной из ближайших к нам звездных систем - было замечено, что чем меньше видимая звездная величина цефеиды (т.е. чем ярче она кажется), тем больше период изменения ее блеска. Эта зависимость оказалась линейной. Из того, что все принадлежали одной и той же системе, следовало, что расстояния до них практически одинаковы. Следовательно, обнаруженная зависимость одновременно оказалась зависимостью между периодом Р и абсолютной звездной величиной М (или светимостью L) для цефеид. Существование зависимости между периодом и абсолютной звездной величиной цефеид играет значительно важную роль в астрономии: благодаря ей определяют расстояния до очень далеких объектов, когда другие методы не могут быть применены.

Кроме цефеид, существуют также другие типы пульсирующих переменных звезд . Самыми известными среди них являются звезды типа RR Лиры, которые ранее назывались короткопериодическими цефеидами из-за своего сходства с обычными цефеидами. Звезды типа RR Лиры - гиганты спектрального класса А, светимость которых превышающей светимость Солнца более чем в 100 раз. Периоды звезд типа RR Лиры заключены в пределах от 0,2 до 1,2 суток, а амплитуда изменения блеска достигает одной звездной величины. Другим интересным типом пульсирующих переменных является небольшая группа звезд типа β Цефея (или типа β Большого Пса), принадлежащих преимущественно к гигантам ранних спектральных подклассов В. По характеру переменности и форме кривой блеска эти звезды напоминают звезды типа RR Лиры, отличаясь от них исключительно малой амплитудой изменения звездной величины. Периоды заключены в пределах от 3 до 6 часов, причем, как и у цефеид, наблюдается зависимость периода от светимости.



Кроме пульсирующих звезд с правильным изменением светимости существует также несколько типов звезд, характер кривой блеска которых меняется. Среди них можно выделить звезды типа RV Тельца , изменения светимости которых характеризуются чередованием глубоких и мелких минимумов, происходящим с периодом от 30 до 150 дней и с амплитудой от 0,8 до 3,5 звездных величин. Звезды типа RV Тельца принадлежат к спектральным классам F, G или К. Звезды типа m Цефея принадлежат к спектральному классу М и называются красными полуправильными переменными . Они отличаются иногда очень сильными неправильностями изменения светимости, происходящими за время от нескольких десятков до нескольких сотен суток. Рядом с полуправильными переменными на диаграмме спектр – светимость располагаются звезды класса М, в которых не удается обнаружить повторяемости изменения светимости (неправильные переменные). Ниже их находятся звезды с эмиссионными линиями в спектре плавно меняющие свою светимость за очень большие промежутки времени (от 70 до 1300 дней) и в очень больших пределах. Замечательной представительницей звезд этого типа является о (омикрон) Кита, или, как иначе называемая Мира. Этот класс звезд называют долгопериодическими переменными типа Миры Кита . Длина периода у долгопериодических переменных звезд колеблется около среднего значения в пределах от 10% в обе стороны.


Среди звезд-карликов с меньшей светимостью также имеются переменные различных типов, общее число которых примерно в 10 раз меньше количества пульсирующих гигантов. Эти звезды проявляют свою переменность в виде периодически повторяющихся вспышек, природа которых объясняется различного рода выбросами вещества, или эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными . Стоит отметить, что среди них есть звезды самой различной природы, как находящиеся на ранних этапах своей эволюции, так и завершающие свой жизненный путь. Самыми молодыми звездами, по-видимому, еще не завершившими процесса гравитационного сжатия, следует считать переменные типа τ (тау) Тельца . Это карлики спектральных классов чаще всего F - G, в большом количестве обнаруженные, например, в туманности Ориона. Очень похожи на них звезды типа RW Возничего, принадлежащие спектральным классам от В до М. У всех этих звезд изменение светимости происходит настолько неправильно, что нельзя установить никакой закономерности.



Эруптивные переменные звезды особого типа, у которых хотя бы один раз наблюдалась вспышка (внезапное резкое увеличение светимости) не менее чем на 7-8 звездных величин, называются новыми . Обычно во время вспышки новой звезды видимая звездная величина уменьшается на 10m-13m, что соответствует росту светимости в десятки и сотни тысяч раз. После вспышки новые звезды являются очень горячими карликами. В максимальной фазе вспышки они напоминают сверхгиганты классов А - F. Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной. Возрастание светимости у повторных новых звезд несколько меньше, чем у типичных новых. Всего в настоящее время известно около 300 новых звезд, из них около 150 появились в нашей Галактике и свыше 100 - в туманности Андромеды. У известных семи повторных новых в сумме наблюдалось около 20 вспышек. Многие (возможно даже все) новые и повторные новые являются тесными двойными системами. После вспышки новые звезды часто обнаруживают слабую переменность. Изменение светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких-либо внешних факторов.

Сверхновые

Сверхновыми называются звезды, которые вспыхивают так же, как новые и достигают абсолютной звездной величины от -18m до -19m и даже -21m в максимуме. У сверхновых происходит возрастание светимости более чем в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, в тысячи раз больше, чем для новых. Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка. По описаниям более ранних наблюдений, выполненных невооруженным глазом, установлено несколько случаев вспышек сверхновых в нашей Галактике. Самой интересной из них является Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся "звезды-гостьи", которая казалась ярче Венеры и была видна даже днем. Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром. По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд. Большой интерес представляют быстро расширяющиеся , которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд I типа. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о ее расширении со скоростью около 1000 км/сек. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г.


Пульсары

В августе 1967 г. в английском городе Кембридж было зафиксировано космическое радиоизлучение, которое исходило от точечных источников в виде следующих друг за другом четких импульсов. Продолжительность отдельного импульса у таких источников может составлять от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и правильность их повторений позволяют с большой точностью определить периоды пульсаций этих объектов, которые названы пульсарами . Период одного из пульсаров равен примерно 1,34 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков, что говорит о сравнительной близости объектов, заведомо принадлежащих нашей Галактике.

Самый известный пульсар , который принято обозначать номером NP 0531, в точности совпадает с одной из звезд в центре Крабовидной туманности. Наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения. Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары – это нейтронные звезды, В этом случае при массе порядка 2 масс Солнца они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о "поверхности", так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу. Нейтронные звезды могут служить источниками энергичных частиц, все время поступающих в связанные с ними туманности, подобные Крабовидной.


фото: Радиоизлучение крабовидной туманности


Переменные звезды - это звезды, меняющие блеск на глазах людей и их поколений. Эволюционные изменения блеска подавляющего большинства звезд, как правило, слишком незначительны и происходят слишком медленно, чтобы быть замеченными за какой-нибудь четырех-трехтысячелетний период исторического развития человечества Однако "звезды-гостьи" древних китайцев, звезда дьявола (Алголь) древних арабов, Удивительная (Мира) в созвездии Кита, поразившая воображение астрономов конца эпохи Возрождения, сверхновые Тихо Браге и Кеплера уже давно разнообразием своего поведения свидетельствовали о разнообразии причин, вызывающих изменения их блеска И уже давно астрономы занимаются классификацией переменных звезд стремясь вместить в краткий символ того или иного типа переменности блеска все многообразие физических характеристик и причин изменения блеска данной конкретной звезды.

С течением времени проблемы, связанные с классификацией переменных звезд, становятся все сложнее. Постепенно выясняется взаимосвязь различных типов переменности блеска. Нередко возникает необходимость отнесения одного и того же объекта сразу к нескольким типам переменности, поскольку они определяются разными физическими причинами.

Повышение точности наблюдений и совершенствование методов их анализа привели к обнаружению множества микропеременных звезд и выяснению закономерностей изменения их фотометрических и спектральных характеристик. В настоящее время ясно, что не существует нижнего предела амплитуды изменений блеска переменных, подлежащих регистрации; все дело в надежности регистрации таких изменений в их достоверности.

Переменность в далеком ультрафиолетовом и рентгеновском излучении, в далеком инфракрасном и радиодиапазоне оказывается характерным свойством переменных звезд разных типов. Лишь трудности отождествления объектов, наблюдаемых в этих областях спектра, с оптическими объектами накладывают пока ограничения на включение их в каталоги переменных звезд.

В связи с подготовкой к новому (четвертому) изданию Общего каталога переменных звезд мы столкнулись с необходимостью существенного уточнения классификации переменных, принятой в третьем издании каталога (Кукаркин и др., 1969) и трех дополнениях к нему. Так, например, обнаружение хромосферной активности ряда звезд требует отражения этого явления в классификации. Своеобразны проявления оптической переменности источников рентгеновского излучения. Нуждается в совершенствовании классификация затменно-двойных систем и т. п.

Ниже будет изложена представляющаяся нам наиболее рациональной система классификации переменных звезд, основанная на развитии общепринятых принципов классификации этих объектов и на анализе предложений, сделанных рядом специалистов.

Исходя из основных причин, определяющих наблюдаемую с Земли переменность блеска тех или иных объектов, принято делить переменные на следующие классы: эруптивные, пульсирующие и затменно-двойные. В настоящее время необходимо ввести еще один класс - вращающиеся переменные (Ефремов, 1975; Перси, 1978). При этом подразумевается, что поверхность таких звезд может быть покрыта пятнами-участками с пониженной или повышенной поверхностной яркостью, и при несовпадении оси вращения звезды с направлением к наблюдателю средняя поверхностная яркость ее полусферы, обращенной к Земле, может меняться вследствие вращения звезды,

Представляется также целесообразным выделить из класса эруптивных переменных в отдельный класс взрывные переменные -сверхновые и Новые звезды.

Каждый из этих классов объединяет объекты совершенно различной природы, относящиеся к разным типам переменности блеска. В то же время одни и те же объекты одновременно могут быть и пульсирующими и эруптивными и входить в состав затменно-двойных систем, т.е. менять блеск почти по всем возможным причинам или любым комбинациям последних.

2.

Для того чтобы разобраться в различных типах переменных звезд, целесообразно рассмотреть их положение на диаграмме M V , B-V, причем раздельно в зависимости от возраста (t) самих переменных (см., рис.1). Прерывистой линией всюду на рис. 1 нанесено положение начальной главной последовательности. Области, занимаемые переменными разных типов, обведены сплошными линиями. Они указаны схематически. Границы их не следует принимать слишком серьезно. Они могут перекрываться и занимать гораздо большие площади. Не следует также слишком строго воспринимать возрастные характеристики переменных, отмеченные на рис. 1а, 1b и 1с.

Рис. 1.

На рис. 1а показано положение самых молодых переменных звезд (0<t <10 7 лет). Среди них встречаются как эруптивные (орионовы переменные Ina , Inb , InT , переменные типов S Dor и FU Ori , вспыхивающие переменные типа UV Кита , связанные с туманностями), так и пульсирующие переменные (неправильные Lc и полуправильные SRc сверхгиганты поздних спектральных классов). Все эти объекты наблюдаются в самых молодых и возникающих звездных скоплениях, в ОВ- и Т-ассоциациях. Некоторые типы (FU Ori , S Dor ) характеризуют, по-видимому, кратковременные этапы развития орионовых переменных. Рассмотрим эти типы более подробно. Приводимые ниже сокращенные обозначения типов не следует неосмотрительно менять, во избежание путаницы в дальнейшем, в связи с большим числом уже выделенных типов.

S Dor - эруптивные звезды высокой светимости спектральных классов Bpeq-Fpeq, показывающие неправильные (иногда циклические) изменения блеска в пределах от 1 до 3 m . Это одни из самых ярких голубых звезд галактики, в которой они наблюдаются. К переменным этого типа относятся Р Cyg и Car.

In - орионовы переменные. Неправильные эруптивные переменные, связанные с диффузными туманностями и расположенные на диаграмме M V , B-V в районе главной последовательности и в области субгигантов. На рис. 1а показана область, занимаемая ими в минимуме блеска. В результате дальнейшей эволюции эти звезды превращаются в звезды главной последовательности постоянного блеска. Пределы изменения блеска могут достигать нескольких величин. Делятся на подтипы:

Ina - орионовы переменные спектральных классов В-А (Т Ori).

Inb - орионовы переменные спектральных классов F-M или Fe-Me (АН Ori).

InT - орионовы переменные типа Т Тельца. Спектральные классы Fe-Me. Специфический признак типа - флюоресцентные эмиссионные линии Fe I 4046, 4132 (аномально интенсивные у этих звезд), эмиссионные линии , и линия поглощения Li I 6707. Если связь с туманностью незаметна, буква n в символе типа может быть опущена.

В спектрах некоторых орионовых переменных (YY Ori) наблюдается "обратный Р Cyg эффект", - наличие темных компонент с длинноволновой стороны эмиссионных линий, - свидетельствующий о падении вещества на поверхность этих звезд. В этом случае символ типа может сопровождаться символом YY.

UVn -связанные с диффузными туманностями вспыхивающие эруптивные переменные, подобные переменным типа UV Кита (см, ниже). Это разновидность орионовых переменных подтипа Inb , на неправильные изменения блеска которых накладываются вспышки.

FU - эруптивные новоподобные переменные типа FU Ori спектральных классов Ae-Fpe, связанные с диффузными туманностями; показывают длящееся несколько месяцев постепенное возрастание блеска на 6 m , после чего наступает почти полное постоянство блеска в максимуме, сохраняющееся на протяжении десятилетий, и постепенное развитие эмиссий в спектре. Область, занимаемая этими переменными на рис. 1а, соответствует максимуму их блеска.

Lc - неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M (TZ Cas) с амплитудой порядка 1 m .

SRc - полуправильные пульсирующие переменные сверхгиганты спектрального класса М ( Сер). Амплитуды-порядка 1 m , периоды изменения блеска - от 30 до нескольких тысяч дней.

В связи с рис. 1а следует рассмотреть еще две категории объектов, а именно: сверхновые и пульсары.

Сверхновые (SN) - звезды, в результате взрыва быстро увеличивающие свой блеск на 20 и более величин, а затем медленно ослабевающие. Спектр при вспышке характеризуется наличием очень широких эмиссионных полос. В результате взрыва структура звезды полностью меняется. На месте сверхновой остается расширяющаяся эмиссионная туманность и (не всегда наблюдаемая) быстро вращающаяся нейтронная звезда с сильным магнитным полем, излучающая в радио, оптическом и рентгеновском диапазонах длин волн, - пульсар (PSR), период изменения блеска которого (от нескольких сотых секунды до нескольких секунд) равен периоду его вращения.

3.

На рис. 1b показано положение переменных звезд, возраст которых заключен в пределах от 10 7 до 10 9 лет.

В процессе эволюционного отклонения от начальной главной последовательности звезды спектральных классов B- F начинают проявлять переменность блеска. В основном, эти явления вызываются радиальной и нерадиальной пульсацией близких к поверхности слоев звезды, вращением звезд с пятнами, а также процессами образования и исчезновения эмиссионных экваториальных колец или дисков у быстро вращающихся В-звезд. При радиальных пульсациях форма звезды остается сферической, происходит периодическое расширение и сжатие поверхности звезды. В случае нерадиальных пульсаций форма звез. ды периодически отклоняется от сферической, причем даже соседние участки ее поверхности могут находиться в противоположных фазах колебаний.

В настоящее время можно выделить следующие типы переменности звезд этих спектральных классов.

Cyg - нерадиально пульсирующие сверхгиганты спектральных классов Beq-Aeq Ia, изменения блеска которых с амплитудой порядка 0. m 1 нередко кажутся неправильными, ибо вызываются наложением многих колебаний с близкими периодами. Наблюдаются циклы от не. скольких дней до нескольких десятков дней. Возможно, эти переменные являются последующей стадией развития звезд типа S Dor.

Сер - пульсирующие переменные спектральных классов O8-В6 I-V с периодами изменения блеска и лучевых скоростей, заключенными в пределах 0. d 1-0. d 6, и пределами изменения блеска от 0. m 01 до 0. m 3. Максимум блеска соответствует минимальному радиусу звезды. В основном, у этих звезд наблюдаются радиальные пульсации, однако сейчас многие исследователи находят возможным выделять среди них переменные, подобные 53 Per (V469 Per), характеризующиеся нерадиальными пульсациями (см., например, Унно и др., 1979).

К переменным типа Сер примыкает выделенная Джакате (1979) группа переменных, которые можно назвать переменными типа Cen. Это звезды спектральных классов В2-ВЗ IV-V, периоды и амплитуды изменения блеска которых на порядок меньше по сравнению с наблюдаемыми у звезд типа Сер, т.е. заключены в пределах 0. d 02-0. d 04 и 0. m 15-0. m 025 соответственно.

Следующим хорошо известным типом пульсирующих переменных главной последовательности является тип Sct. Обычно к нему относят звезды спектральных классов A2-F5 III- V с амплитудами изменения блеска от 0. m 003 (в основном 0. m 02) до 0. d 8 и периодами от 0. d 02 до 0. d 4. Форма кривых блеска сильно меняется. Наблюдаются как радиальные, так и нерадиальные пульсации; могут наступать и кратковременные прекращения изменений блеска. Кривая изменения лучевых скоростей является почти зеркальным отображением кривой измененения блеска, причем максимум скорости приближения к наблюдателю практически совпадает с максимумом блеска звезды.

В начале пятидесятых годов Струве (1955) выдвинул гипотезу о существовании гипотетической последовательности Майя, заполняющей пробел между пульсирующими переменными типов Сер и Sct. Струве проводил эту последовательность между двумя звездами - членом скопления Плеяды Майей (B7III) и UMi (A3II-III). До сих пор различные исследователи (см., например, Бердсли, Жижка, 1977; Брегер, 1979) продолжают возвращаться к обсуждению этого вопроса.

Переменность блеска Майи еще не доказана. Нам представляется, что последовательности Майя вообще не существует. По выражению Брегер а (1979), в море звезд с малоамплитудной нерадиальной пульсацией звезды типов Сер и Sct образуют два острова переменных с большой амплитудой, поддерживаемой дополнительным возбуждением радиальных пульсаций.

В связи с этим уместно остановиться на вопросе о переменности блеска Lyr (AOV), до недавнего времени использовавшейся в качестве одного из основных фотометрических и спектрофотометрических стандартов. О переменности блеска этой звезды, открытой еще Гутником и Прагером (1915) и подтвержденной Фэзом (1935), вспомнили лишь недавно после появления статьи Вишневского и Джонсона (1979). Звезда не включалась в каталоги переменных звезд, потому что многие наблюдатели находили ее постоянной. Однако еще Гутник (1930), сопоставив фотоэлектрические наблюдения Lyr 1915 г. с наблюдениями ее лучевой скорости, выполненными в 1929 г., показал, что обнаруженные изменения блеска синхронны с изменениями лучевой скорости, происходящими с периодом близким к 0. d 07, причем максимумы блеска звезды совпадают с минимумами ее лучевой скорости. Фэз (1935) и Нейбауэр(1935) провели одновременные (с точностью до минуты) наблюдения блеска и лучевой скорости Lyr, подтвердив выводы Гутника (см. рис.2). Только что Джонсон (1980) сообщил о переменности блеска Lyr на основании своих фотоэлектрических наблюдений, проводившихся им с 1950 г. на протяжении 30 лет.


Рис. 2.

Фазовые соотношения блеска и лучевой скорости Lyr во время их изменений таковы же, как и у звезд типа Sct, амплитуда и период также укладываются в соответствующие пределы. На диаграмме с 1 , b-y, воспроизведенной нами на рис.3 из работы Кубяка (1979), Lyr располагается вне основной области, занятой переменными типа Cep и Sct (точки). Однако недалеко от нее расположена и Ser - переменная этого типа. Таким образом, можно думать, что Lyr (A0V), равно как и UMi (A3II-III) и CrB (A0IV) можно отнести к переменным типа Sct, принимая в качестве интервала спектральных классов, присущих последним, интервал А0-F5III-V.

Очевидно, у звезд, находящихся на краю полосы нестабильности, занятой переменными типа Sct, стабильность пульсаций нарушается. У некоторых звезд они могут возникать и исчезать. Переменность блеска наступает спорадически и иногда полностью прекращается.

Следующей за пульсациями причиной изменения блеска звезд, находящихся в районе главной последовательности, является вращение звезд с неоднородной поверхностной яркостью. Эта неоднородность может быть вызвана или наличием пятен или вообще температурной и химической неоднородностью звездной атмосферы под действием магнитного поля, ось которого не совпадает с осью вращения звезды.

Вращением по отношению к земному наблюдателю обусловлена переменность звезд типа CVn - пекулярных звезд главной последовательности спектральных классов В8р-А7р с сильными переменными магнитными полями. В их спектрах аномально усилены линии кремния, марганца, стронция, хрома и редкоземельных элементов, меняющие интенсивность с периодом, равным периоду изменения магнитного поля и блеска (0. d 5-160 d). Амплитуды изменения блеска обычно заключены в пределах 0. m 01-0. m 1.

Звезды спектральных классов В0р-В7р с переменной интенсивностью линий He I, Si III и некоторых линий металлов (SX Ari, Ori E = V1030 Ori) иногда называют гелиевыми переменными. Мы будем называть их переменными типа SX Ari. Эти звезды, обладающие также и переменными магнитными полями, являются высокотемпературными аналогами переменных типа CVn. Их можно было бы объединить в один тип с переменными типа ( CVn, так как причина переменности блеска и спектра (вращение звезды) у переменных звезд обоих типов одинакова.


Рис. 3.

У некоторых переменных типа CVa (например, UU Com, спектрального класса A3pV) обнаружены и короткопериодические пульсации с периодами 0. d 02-0. d 1 и амплитудой порядка 0. m 01, свидетельствующие о том, что одновременно эти звезды могут быть и переменными типа Sct.

К вращающимся переменным относятся и переменные типа BY Dra -эмиссионные звезды - карлики спектральных классов dKe-dMe, показывающие квазипериодические изменения блеска с периодами от долей дня до 120 и амплитудами от нескольких сотых до 0. m 5. Переменность блеска в этом случае вызывается, по-видимому, осевым вращением звезд с изменяющейся с течением времени степенью неоднородности поверхностной яркости (пятнами) и хромосферной активностью. У некоторых из них наблюдаются также вспышки, подобные вспышкам звезд типа UV Кита (см. ниже), и в таком случае их можно относить также к последнему типу, считая одновременно и эруптивными.

Переменные типа UV Cet - эруптивные звезды спектральных классов dKe-dMe, иногда испытывающие вспышки с амплитудой от нескольких десятых до 6 m . Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через несколько минут или десятков минут.

На рис.1b показана область, занимаемая этими переменными в минимуме блеска. Верхняя левая граница области соответствует переменным, наблюдаемым в скоплении Плеяды (t=5 . 10 7 лет). С течением времени эта граница смещается вправо, к более поздним спектральным классам; в скоплении Гиады (t=5 . 10 8 лет) она проходит уже в районе М V =+10 m , B-V=+1. m 6.

По-видимому, не случайно наше Солнце (кружок с точкой на рис.1b, с) расположено в самой спокойной области диаграммы (М V , В-V) - рядом с ним в районе главной последовательности нет одиночных физических переменных звезд, иначе мы чувствовали бы себя не очень уютно.

Процесс ухода с главной последовательности сопровождается у быстро вращающихся В-звезд истечением вещества в их экваториальной зоне и образованием экваториальных колец или дисков, что приводит к превращению их в эмиссионные неправильные переменные типа Cas спектрального класса BeIII-V, относящиеся к классу эруптивных. Амплитуды изменения их блеска могут достигать 1. m 5.

Уйдя с главной последовательности. В-звезды проходят область нестабильности цефеид, превращаясь в радиально пульсирующие переменные типа Сер. Это цефеиды плоской составляющей Галактики, подчиняющиеся известной зависимости период-светимость. Спектральные классы их в максимуме блеска F5-F8, в минимуме G-K, причем

тем более поздние, чем больше периоды изменения блеска, заключающиеся в пределах от 1 d до 135 d . Амплитуды изменения блеска-от (0. m 1 до 2 m . Как и у звезд типа Sct, максимум блеска совпадает с максимумом скорости приближения поверхностных слоев звезды к наблюдателю.

С этими звездами могут быть связаны полуправильные переменные гиганты и сверхгиганты спектральных классов F-K, иногда эмиссионные, которые принято обозначать символом SRd (SX Her, SV UMa). Амплитуды изменения их блеска заключены в пределах от 0. m 01 до 4 m , периоды-от 30 d до 1100 d .

В процессе дальнейшей эволюции переменные высокой светимости попадают в область красных сверхгигантов, превращаясь в уже описанные переменные типов Lc и SRc, а переменные меньшей светимости (но ярче М V =+1 m) превращаются в неправильные (Lb) и полуправильные (SRab) переменные поздних спектральных классов с амплитудами порядка 1 m .

Lb - медленно меняющиеся неправильные переменные спектральных классов К, М, С, S, как правило, гиганты (СО Cyg).

SRa - полуправильные гиганты поздних спектральных классов (М, С, S) с хорошо выраженной периодичностью и, как правило, небольшими (меньше 2. m 5) амплитудами изменения блеска. Периоды заключены в пределах от 35 до 1200 d . Амплитуды и формы кривых изменения блеска обычно меняются.

SRb - полуправильные гиганты поздних спектральных классов (М, С, SV с плохо выраженной периодичностью (средний цикл-от 20 d до 2300 d) или со сменой периодических изменений медленными неправильными колебаниями или даже интервалами постоянства блеска.

4.

На рис. 1с показано положение переменных звезд, возраст которых превышает 10 9 лет. Сплошными кривыми намечены основные последовательности старых скоплений-рассеянного (NGC 188) с нормальным содержанием тяжелых элементов и шарового (М15) с пониженным содержанием тяжелых элементов.

На этой стадии эволюции все звезды, расположенные на диаграмме M V , B-V в области с M V ярче +3 m , являются мало массивными объектами с массой меньшей 1.3 массы Солнца. Особенности переменности блеска многих из них связаны с расширением внешних слоев и сбрасыванием оболочек, т.е. с потерей массы. В этом случае в концах ветвей красных гигантов старых рассеянных и шаровых скоплений, по-видимому, появляются переменные типов SRab, Lb и Миры Кита (М), характерные как для старой составляющей диска, так и для сферической составляющей Галактики.

М - переменные типа Миры Кита, радиально пульсирующие долгопериодические переменные с характерными эмиссионными спектрами поздних классов (Me, Ce, Se), с амплитудами изменения блеска, превышающими 2. m 5 (до 5-6 m), с хорошо выраженной периодичностью и периодами, заключенными в пределах от 80 до 1000 d . На рис. 1с показана область, занятая переменными типа Миры Кита спектральных классов Me в максимуме их блеска.

В мало массивных старых рассеянных скоплениях переменные этого типа практически не наблюдаются, по-видимому, в связи с кратковременностью стадии такой переменности и потому, что эти скопления успевают распасться, прежде чем их члены начинают становиться звездами типа Миры Кита. Поэтому переменные типа Миры Кита, в основном, встречаются лишь в галактическом поле и в массивных старых шаровых скоплениях.

Звезды очень старых шаровых скоплений, попадающие после гелиевой вспышки в пробел Шварцшильда на горизонтальной ветви, становятся переменными типа RR Лиры.

RR - переменные типа RR Лиры, радиально пульсирующие гиганты спектральных классов A-F с периодами, заключенными в пределах от 0. d 2 до 1. d 2, и амплитудами изменения блеска, не превышающими 2 m . По форме кривой блеска и величине периода их принято делить на подтипы RRab и RRc.

RRab - переменные с резко асимметричной кривой блеска (крутой восходящей ветвью) и периодами от 0. d 4 до 1. d 2 (RR Lyr).

RRc - переменные с почти симметричными, часто синусоидальными, кривыми блеска и средним периодом около 0. d 3 (TVBoo).

В ходе дальнейшей эволюции звезд горизонтальной ветви по направлению к асимптотической ветви и вдоль нее возникают радиально пульсирующие переменные типов BL Her, W Vir и RV Tau.

BLH - переменные типа BL Her, пульсирующие переменные сферической составляющей или старой составляющей диска с периодами от 1 до 8 . Характеризуются наличием горба на нисходящей ветви кривой блеска.

CW - переменные типа W Vir, пульсирующие переменные сферической составляющей или старой составляющей диска с периодами от 12 до 35 d . Характеризуются зависимостью период-светимость, отличающейся от аналогичной зависимости для переменных типа Сер. Кривые блеска также отличаются от кривых блеска переменных типа Сер соответствующих периодов наличием горбов на нисходящей ветви.

По традиции переменные типов Сер, W Vir и BL Her нередко называют цефеидами (а переменные типа RR Лиры - короткопериодическими цефеидами), так как часто по виду кривой блеска невозможно отличить переменные этих типов друг от друга, хотя в принципе это совершенно разные объекты, находящиеся на различных этапах эволюции.

RV - переменные типа RV Таи, сверхгиганты спектральных классов F-G в максимуме блеска; кривые блеска характеризуются наличием двойных волн с чередующимися главными и вторичными минимумами, глубина которых может меняться так, что главные минимумы могут превращаться во вторичные и наоборот; общая амплитуда изменения блеска может достигать 3-4 m ; периоды между двумя соседними главными минимумами, называемые формальными, заключены в пределах от 30 до 150 d . Делятся на подтипы RVa и RVb.

RVa - переменные типа RV Таи, средняя величина которых не меняется (AC Her).

RVb - переменные типа RV Tau, у которых наблюдается периодическое изменение средней величины с периодом от 600 d до 1500 d (DF Cyg).

В том же районе диаграммы M V , B-V на рис. 1с расположены переменные типа R СгВ - бедные водородом, босатые углеродом и гелием звезды высокой светимости спектральных классов Bpe-R, одновременно являющиеся эруптивными и пульсирующими. Характеризуются медленными непериодическими ослаблениями блеска с амплитудой от 1 до 9 m , продолжающимися от нескольких десятков до сотен дней. На эти изменения накладываются циклические пульсации с амплитудой в несколько десятых звездной величины и периодами от 30 до 100 d (Фист, 1975; Жиляев и др., 1978).

К переменным типа R СгВ примыкают (возможно, связанные с ними

эволюционно) переменные типа PV Tel - гелиевые сверхгиганты спектральных классов Вр, характеризующиеся слабыми линиями водорода, усиленными линиями гелия и углерода, пульсирующие с периодами от 0. d 1 до 1 или меняющие блеск на протяжении интервалов времени порядка года. Амплитуда изменения их блеска-порядка 0. m 1.

Столь же высокой светимостью и еще более высокой температурой поверхности характеризуются звезды, которые можно назвать эруптивными переменными типа WR. Это или одиночные звезды типа Воль. фа-Райе (если такие существуют) или, во всяком случае, не являющиеся затменными двойные системы, в состав которых входят компоненты типа Вольфа-Райе, характеризующиеся неправильными изменениями блеска порядка 0. m 1, вызванными, по-видимому, физическими причинами, в частности, нестационарностью истечения вещества с поверхности этих звезд.

Здесь же расположены ядра планетарных туманностей (PN), показывающие (подобно V605 Aql) огромные монотонные изменения блеска до 10 m , которые мы пока не выделяем в особый тип переменности, предпочитая относить к уникальным объектам.

На рис. 1с представлены еще два типа пульсирующих переменных: SX Phe и ZZ Cet.

Переменные типа SX Phe - сходные с переменными типа Sct пульсирующие субкарлики сферической составляющей или старой составляющей диска спектральных классов A2-F5; у этих объктов одновременно наблюдается несколько периодов колебаний от 0. d 04 до 0. d 06 (нерадиальные пульсации) с переменной амплитудой изменений блеска, которая может достигать 0. m 7.

ZZ - переменные типа ZZ Cet, пульсирующие белые карлики, меняющие блеск с периодами от 30 секунд до 25 минут и амплитудами от 0. m 001 до 0. d 2. Иногда наблюдаются вспышки на 0 m , могущие, правда, объясняться наличием тесного компонента типа UV Cet. Пульсации нерадиальные, у звезды обычно наблюдается несколько близких периодов.

5.

До сих пор мы рассматривали, в основном, одиночные переменные звезды, эволюционирующие нормально в результате действия собственных источников энергии и изменения внутренней структуры и химического состава, хотя, несомненно, некоторые из них могут быть компонентами двойных систем.

Перейдем теперь к рассмотрению типов переменности, ассоциированных с тесными двойными системами, т.е. системами, компоненты которых оказывают сильнейшее взаимное влияние на эволюцию друг друга. В этом случае в первую очередь необходимо остановиться на классификации затменно-двойных систем.

Общепринятая классификация затменно-двойных систем по форме кривых изменения их блеска хорошо известна. По этой классификации затменно-двойные со сферическими или слегка эллипсоидальными компонентами, обладающие кривыми блеска, позволяющими фиксировать моменты начала и конца затмений, относятся к переменным типа Алголя (ЕА). Затменно-двойные с эллипсоидальными компонентами и кривыми блеска, не позволяющими фиксировать моменты начала и конца затмений из-за непрерывного изменения суммарного блеска системы между затмениями, относят к типам Lyr или W UMa. При этом обычно переменными типа Lyr (ЕВ) называют переменные с периодами больше 1 d и хорошо выраженным вторичным минимумом, глубина которого существенно меньше глубины главного минимума. Переменные с периодами меньше 1 d и очень незначительным различием или равенством глубин главного и вторичного минимумов блеска принято называть переменными типа W UMa (EW).

К сожалению, эта классификация не позволяет надежно судить о физических и возрастных характеристиках компонентов этих систем. Между тем уже сейчас развиты системы классификации тесных двойных систем, позволяющие решать эти вопросы.

Нормальная эволюция одиночной звезды главной последовательности означает, что, увеличивая свои размеры, она совершает переход с главной последовательности в область гигантов или сверхгигантов. Если же звезда оказывается компонентом тесной двойной системы, то нормальный ход ее эволюции нарушается.

Гравитационное поле вращающейся тесной двойной системы определяет положение так называемой внутренней критической эквипотенциальной поверхности Роша, сечение которой плоскостью, проходящей через центры масс обоих компонентов (А, В) и перпендикулярной к их орбитальной плоскости, изображено на рис. 4. Форма сечения и положение точки L 1 , называемой первой либрационной точкой Лагранжа, зависят от отношения масс компонентов; L 1 расположена ближе к менее массивному компоненту В. Размеры внутренней критической поверхности Роша определяют верхние возможные границы размеров динамически устойчивых компонентов двойной системы.


Рис. 4.

Если более массивный компонент А, эволюционируя быстрее, заполнит свою внутреннюю критическую поверхность (система из разделенной превратится в полуразделенную), то создадутся благоприятные условия для перехода вещества этого компонента через точку L 1 к менее массивному компоненту В. Начнется обмен масс между компонентами, в результате которого может произойти, как говорят, перемена ролей компонентов: менее массивный компонент станет более массивным и наоборот.

Газовый поток, текущий из точки L 1 к менее массивному компоненту может также образовать вокруг него в плоскости орбиты диск, поглощающий падающее на него вещество и называемый аккреционным диском.

В основу принимаемой нами классификации затменно-двойных систем положена классификация Свечникова (1969), опирающаяся на классификации Копала (1959) и Крата (1962) и изложенная также Свечниковым и Снежко (1974). Она основана на положении компонентов двойных систем на диаграмме (M V , B-V) и степени заполнения ими своих внутренних критических поверхностей Роша.

Рассмотрим основные типы затменных двойных систем с принятыми нами символами их сокращенных обозначений (рис. 1d). Следует подчеркнуть, что на рис. 1d, в отличие от рис. 1а, b, с, не указан ориентировочный возраст систем. Он может быть любым. Особенно это касается систем типа WR.

DM - разделенные системы главной последовательности (detached main sequence), оба компонента которых являются членами главной последовательности и не достигают своих внутренних критических поверхностей Роша.

DS - разделенные системы с субгигантом, в которых субгигант также еще не достигает своей внутренней критической поверхности.

AR - разделенные системы типа AR Lac, оба компонента которых - субгиганты, не достигающие своих внутренних критических поверхностей.

SD - полуразделенные (semi-detached) системы, в которых поверхность менее массивного компонента-субгиганта близка к его внутренней критической поверхности.

КЕ - контактные системы ранних (О-A3) спектральных классов, оба компонента которых близки по размерам к своим внутренним критическим поверхностям.

KW - контактные системы типа W UMa, с эллипсоидальными компонентами спектральных классов А5-К, главные из которых являются членами главной последовательности, а спутники располагаются левее и ниже ее на диаграмме M V , B-V.

DW - системы, сходные по своим физическим характеристикам с контактными системами типа W UMa, но не являющиеся контактными.

GS - системы, у которых один или оба компонента являются гигантами или сверхгигантами; в первом случае один из компонентов может быть членом главной последовательности.

Для массовой классификации затменно-двойных систем описанных выше типов Свечников и Истомин (1979) предложили пользоваться разработанными ими простыми критериями, показав, что в 90% случаев знание глубины главного минимума А 1 , разности глубин главного и вторичного минимумов А и периода изменения блеска системы позволяет достаточно уверенно отнести переменную к одному из указанных выше типов.

Кроме того, необходимо ввести еще несколько типов затменных систем, а именно:

WR - системы, среди компонентов которых содержатся звезды типа Вольфа-Райе (V444 Cyg).

PN - системы, компонентами которых являются ядра планетарных туманностей (UU Sge),

WD - системы, среди компонентов которых содержатся белые карлики,

RS - системы типа RS CVn (Плавец, Сметанова, 1959; Холл, 1972). Существенной особенностью этих систем является наличие в спектре сильных эмиссионных линий Н и К Ca II, а также небольших неправильных изменений блеска вне затмений, объясняющихся повышенной хромосферной активностью солнечного типа. Многие из систем типа RS CVn являются в то же время системами типов DS и AR.

Многие считают целесообразным сохранить и прежнюю классификацию затменных двойных, основанную на форме кривых блеска. Она проста, привычна и удобна для наблюдателей. Тип EW практически однозначно определяет принадлежность системы к типу KW, однако типы ЕА и ЕВ уже не позволяют судить о физических характеристиках компонентов, а сама Lyr вообще является пекулярной системой, в которой, по мнению Крущевского (1967), еще идет процесс перетекания массы от более массивного компонента к менее массивному.

Поэтому мы считаем возможным сочетание обеих систем классификации затменно-двойных и использование, например, следующей символики для обозначения их типов, в которой первая группа символов характеризует форму кривой блеска, а последующие -физические особенности компонентов: E/DM, EA/DS/RS, EB/KE, EW/KW, EA/DW EB/WR, EA/AR/RS, E/PN и т.п.

Рассматривая тесные двойные системы, не являющиеся затменными, но тем не менее показывающие переменность блеска, необходимо выделить два типа переменности: уже известный тип вращающихся эллипсоидальных переменных (Ell), т.е. двойных систем с эллипсоидальными компонентами, видимый суммарный блеск которых меняется с периодом, равным периоду орбитального обращения, вследствие изменения площади излучающей поверхности, обращенной к наблюдателю, и новый тип эруптивных переменных RS CVn (RS), являющийся аналогом типа E/RS затменных систем. К типу RS CVn можно относить не показывающие затмений двойные системы с эмиссией Н и К Са II в спектре, компоненты которых обладают повышенной хромосферной активностью, вызывающей переменность их блеска (UX Ari).

6.

Следующая характерная разновидность переменных, являющихся тесными двойными системами, это Новые звезды (N) - тесные двойные с периодами орбитального движения от 0. d 05 (WZ Sge) до 230 d (T CrB), одним из компонентов которых является карликовая горячая звезда. Новые звезды внезапно увеличивают свой блеск на 6-16 m а затем постепенно в течение нескольких лет или десятков лет возвращаются к первоначальному состоянию. Примерное положение горячих (вспыхивающих) компонентов Новых показано на рис. Id, Холодные компоненты, в зависимости от светимости горячих, являются гигантами, субгигантами или карликами спектральных классов К-М.

Спектры Новых близ максимума блеска сначала похожи на спектры поглощения A-F звезд высокой светимости. Затем в них появляются широкие эмиссионные линии водорода, гелия и других элементов о абсорбционными компонентами, свидетельствующими о наличии быстро расширяющейся оболочки. По мере ослабления блеска в спектре появляются запрещенные эмиссионные линии, характерные для спектров газовых туманностей, возбуждаемых горячей звездой. В минимуме блеска спектры Новых, как правило, непрерывны или сходны со спектрами звезд типа Вольфа-Райе. Признаки холодных компонентов обнаруживаются в спектрах лишь наиболее массивных систем.

У некоторых Новых после вспышки обнаруживаются пульсации горячих компонентов с периодами порядка 100 секунд и амплитудами около 0. m 05. Некоторые Новые, естественно, оказываются также затменными системами.

По характеру изменения блеска Новые делятся на быстрые (Na), медленные (Nb), очень медленные (Nc) и повторные (Nr).

Na - быстрые Новые, характеризующиеся быстрым подъемом блеска и уменьшающие блеск после достижения максимума на 3 m за 100 или меньше дней (GK Per).

Mb - медленные Новые, уменьшающие блеск после достижения максимума на 3 m за 150 и более дней (RR Pic).

Nc - Новые с очень медленным развитием, свыше десяти лет остающиеся в максимуме блеска и ослабевающие очень медленно. Единственный представитель-RT Ser. He исключено, что в действительности должны относиться к другому типу переменности.

Nr - повторные Новые Отличаются от типичных Новых тем, что у них зарегистрирована не одна, а две или несколько вспышек, разделенных интервалами от 10 до 80 лет (T CrB).

Недостаточно изученные объекты, сходные с Новыми по характеру изменений блеска или по спектральным особенностям, принято называть новоподобными (N1), К ним относятся не только переменные, показывающие новоподобные вспышки, но и объекты, у которых вспышки никогда не наблюдались, однако спектры их похожи на спектры бывших Новых, а небольшие изменения блеска напоминают те, которые свойственны бывшим Новым в минимуме блеска. Нередко, после надлежащего исследования, отдельных представителей этой весьма разнородной группы объектов удается отнести к тому или иному типу переменных звезд,.

Столь же разнородной группой являются переменные типа Z&nbap;And (симбиотические переменные) - тесные двойные, состоящие из горячей звезды и звезды позднего спектрального класса, суммарный блеск которых испытывает неправильные изменения с амплитудой до 4 m .

Новой разновидностью переменных звезд, несомненно, заслуживающий выделения ее в отдельный тип, являются переменные типа RR Tel. Это новонодобные симбиотические эруптивные переменные, блеск которых после возрастания на 4-6 m показывает значительные изменения, но до сих пор не вернулся к первоначальному уровню; до вспышки эти объекты могут показывать долгопериодические изменения блеска с амплитудой в одну-две величины; характерная особенность этих переменных - эмиссионный спектр высокого возбуждения, сходный со спектрами планетарных туманностей, звезд типа Вольфа-Райе и симбиотических переменных. Некоторые исследователи считают, что эти объекты, возможно, являются возникающими планетарными туманностями.

Еще одна хорошо выраженная разновидность эруптивных переменных, являющихся тесными двойными системами,-переменные типа U Gem (UG), нередко называемые карликовыми Новыми (см., например, Робинсон, Назер, 1979). Они состоят из звезды-карлика или субгиганта спектрального класса К-М, заполняющей объем своей внутренней критической поверхности Роша, и белого карлика, окруженного аккреционным диском. Орбитальные периоды заключены в пределах от 0. d 05 до 0. d 5. Спектр системы в минимуме блеска непрерывный с широкими эмиссионными линиями водорода и гелия. В максимуме блеска эти линии почти исчезают или превращаются в неглубокие линии поглощения. На рис. 1d показана область, занятая горячими компонентами переменных типа U Gem.

До сих пор нет полной ясности в решении вопроса о том, какой из компонентов звезд этого типа испытывает вспышку. Некоторые из этих систем являются затменными, причем можно полагать, что причиной уменьшения блеска при затмении является затмение горячего пятна, образованного в аккреционном диске падающим на него газовым потоком, исходящим от звезды класса К-М.

По характеру изменения блеска переменные типа U Gem можно разделить на три подтипа: SS Cyg, Z Cam и SU UMa. Второй из них до сих пор считался самостоятельным типом. По предложению Н.Н.Самуся, однако, целесообразно объединить эти подтипы в один тип - U Gem, чтобы избежать необходимости применения к ним термина "карликовые Новые". Сама U Gem при этом будет относиться к подтипу SS Cyg, а символика типов может быть следующей: UG(SS), UG(Z) , UG(SU).

Переменные типа UG(SS) увеличивают свой блеск за 1-2 d на2-6 d и через несколько дней возвращаются к первоначальному блеску. Промежутки между соседними вспышками меняются, но для каждой звезды характерен свой средний цикл, соответствующий средней амплитуде изменения ее блеска. Чем больше цикл, тем больше амплитуда. Значения циклов заключены в пределах от 10 до нескольких тысяч дней.

Переменные типа UG(Z) также показывают циклические вспышки, но в отличие от переменных типа UG(SS) иногда после вспышки не возвращаются к первоначальному блеску, а в течение нескольких циклов сохраняют величину, промежуточную между максимальной и минимальной. Значения циклов заключены в пределах от 10 до 40 d , амплитуды изменения блеска - от 2 до 5 m .

Переменные типа UG(SU), впервые выделенного Бреном и Пти (1952), характеризуются наличием двух видов вспышек - нормальных сверхмаксимумов. Нормальные, короткие вспышки похожи на вспышки звезд типа UG(SS). Сверхмаксимумы ярче нормальных на 2 m , более чем в пять раз продолжительнее (шире) и наступают более чем в три раза реже нормальных (Фогт, 1980). Во время сверхмаксимумов - на кривой блеска наблюдаются накладывающиеся на нее периодические колебания (superhamps) с периодом, близким к орбитальному, и амплитудами около 0. m 2-0. m 3. Орбитальные периоды меньше 0. d 1, спектральный класс спутников - dM.

7.

В случае, если горячим компонентом в тесной двойной системе является нейтронная звезда с магнитным полем, то вещество, истекающее от спутника, направляется этим полем в область магнитных полюсов вращающейся нейтронной звезды. В этих полюсах образуются горячие пятна и возникает сильное направленное рентгеновское излучение. Если оно при вращении нейтронной звезды пересекает положение наблюдателя, система воспринимается им как рентгеновский пульсар, который может быть и оптическим. В свою очередь рентгеновское излучение, нагревающее атмосферу более холодного спутника нейтронной звезды, переизлучается в виде оптического высокотемпературного излучения (эффект отражения), делая более ранним и спектральный класс соответствующего участка поверхности спутника. Это приводит к весьма своеобразной картине оптической переменности тесных двойных, являющихся источниками сильного рентгеновского излучения (слабое рентгеновское излучение, по-видимому, есть у всех звезд, включая Солнце).

В связи с этим представляется целесообразным ввести несколько новых типов переменности блеска, связанных с наличием сильного рентгеновского излучения. Символические обозначения типов частично предложены Е.А. Карицкой. В обсуждении принципов выделения этих типов участвовали также Н.Н.Самусь и Н.Е. Курочкин.

ХВ - рентгеновские (X) вспыхивающие (bursters). Тесные двойные системы, показывающие рентгеновские и оптические вспышки продолжительностью от нескольких секунд до десяти минут с амплитудой порядка 0. m 1V (V801 Ara, V926 Sco).

XN1a - рентгеновские новоподобные (XNI), главный компонент которых является сверхгигантом раннего спектрального класса, а спутник-горячим компактным объектом (белым карликом или нейтронной звездой). При вспышке главного компонента выброшенная им масса падает на компактный объект, вызывая с значительным запозданием появление рентгеновского излучения. Амплитуда-порядка 1-2 m V (V725 Таи).

XN1b - рентгеновские новоподобные (XN1), содержащие наряду с горячим компактным объектом карлик или субгигант спектрального класса К-М. Системы, быстро увеличивающие свой блеск на 4-9 m V одновременно в оптическом и рентгеновском диапазонах длин волн без выброса оболочки. Продолжительность вспышки-до нескольких месяцев (V616 Mon).

Обычные Новые не показывают заметного рентгеновского излучения при вспышке (например, V1500 Cyg). Но вспышки переменных типа U Gem могут сопровождаться таким излучением (оно уже обнаружено при вспышках U Gem и SS Cyg). В связи с этим могут возникнуть трудности при отнесении звезды к типу XN1bили UG, которые пока не представляются нам непреодолимыми.

XFL - рентгеновские флуктуирующие (F) системы; главный компонент - эллипсоидальный (L) сверхгигант раннего спектрального клас са. Наряду с изменением блеска с амплитудой порядка 0. m 1, обусловленным вращением эллипсоидального компонента с периодом в несколько дней (орбитальным), наблюдаются флуктуации рентгеновского и оптического излучения с периодом порядка десятков миллисекунд (Cyg X-l = V1357 Cyg).

XPL - рентгеновские системы с пульсаром (Р); главный компонент - эллипсоидальный (L) сверхгигант раннего спектрального класса. Эффект отражения очень мал, и переменность блеска в основном обусловлена вращением эллипсоидального главного компонента. Периоды изменения блеска заключены в пределах от 1 d до 10 d , период пульсара в системе - от 1 секунды до 100 минут., Амплитуда изменений блеска не превышает нескольких десятых звездной величины (Vel X-1 = GP Vel).

XPRE - рентгеновские двойные с пульсаром (Р), характеризующиеся наличием эффекта отражения (R) и затмениями (Е). Состоят из компонента спектрального класса dB-dF и горячего компактного компонента. Когда главный компонент системы подвергается рентгеновскому облучению, средний блеск системы максимален, в периоды малой активности рентгеновского источника - минимален. Полная амплитуда изменений блеска может достигать 2-3 m . Вторичный минимум на кривой изменения блеска, носящей затменный характер, может исчезать и вновь появляться (HZ Her).

ХМ - рентгеновские двойные, состоящие из карлика спектрального класса dK-dM и горячего компактного объекта с сильным магнитным полем (М). Аккреция вещества на магнитные полюса компактного объекта сопровождается появлением круговой поляризации излучения; поэтому эти системы часто называются полярами. Обычно амплитуда изменения блеска порядка 1 m , но средний блеск при облучении главного компонента рентгеновским излучением может возрастать на 3 m . Полная амплитуда изменения блеска может достигать 4-5 m . Карликовая разновидность систем типа XPRE (AM Her, AN UMa).

XI - рентгеновские неправильные (I). Тесные двойные системы, со стоящие из горячего компактного объекта и карлика спектрального класса dG-dM; характеризуются неправильными изменениями блеска с характерным временем порядка минут и часов и амплитудой порядка 1 m (V818 Sco).

8.

Рассмотренная система классификации охватывает далеко не все известные нам разновидности переменных звезд. Многие звезды и впредь будут считаться уникальными.

Уникальные объекты - это, видимо, кратковременные переходные стадии от одних типов переменности к другим или начальные и конечные стадии этих типов. На наших глазах FG Sge - центральная звезда планетарной туманности - пересекла полосу нестабильности цефеид, начав пульсировать с возрастающим периодом; RU Cam - углеродная переменная типа W Vir катастрофически уменьшила амплитуду изменений блеска с 1. m 2 до 0. m 1; удивительная переменная V725 Sgr увеличила период с 16 d до 21 d , а затем почти перестала пульсировать.

Все эти и другие подобные им объекты заслуживают непрерывного слежения за ними. К сожалению, об этом забывают.

На каждые несколько переменных, которые удается объединить в новый тип, поверив в то, что они обладают общностью каких-то признаков пока появляется такое количество новых переменных, не похожих ни на одну другую, что число уникальных объектов в каталоге не уменьшается.

Литература

Бердсли, Жижка, 1977- Beardsley W.R.. Zizka E.R., Revista Mexicana Astron. Astrof. 3 , 109.

Брегер, 1979- Breger М., PASP 91, 5. Брен, Пти, 1952-Brun A., Petit М., BAF 12, 1.

Вишневский, Джонсон, 1979 - Wisniewski W.Z., Johnson H.L., Sky and Telescope 57, No. 1, 4.

Гутник, 1930 - Guthnick P., Sitzungsberichten der Preuss. Akad. Der Wissenschaften, Phys.-math. Klasse 1930.I.

Гутник, Прагер, 1915 - Guthnick P., Prager R., AN 201, 443.

Джакате, 1979 - Jakate Sh.M., AJ 84, No. 7, 1042.

Джонсон, 1980 - Johnson H.L., Revista Mexicana Astron. Astrof. 5, 25.

Ефремов Ю.Н., 1975 - "Переменные звезды", М., Знание, стр.9-10.

Жиляев и др., 1978 - Жиляев Б.Е., Орлов М,Я., Пугач А.Ф., Родригес М.Г., Тоточава А.Г., "Звезды типа R Северной Короны", Киев, Наукова думка, 128 с.

Копал, 1959-Kopal Zd., Close binarysystems, ed. Chapman and Hall, London.

Крат В.А. 1962 - в кн. "Курс астрофизики и звездной астрономии", М., Физматгиз, т.2, гл. V, с.129-134.

Крушевский, 1967 - Kruszewski A., Acta Astronomica 17, 297.

Кубяк, 1979 - Kubiak М., Acta Astronomica 29 , 220.

Кукаркин и др., 1969 - Кукаркин Б.В., Холопов П,Н., Ефремов Ю.Н., Кукаркина Н.П., Курочкин Н.Е., Медведева Г.И., Перова Н.Б., Федорович В.П., Фролов М.С., Общий каталог переменных звезд, т. 1, третье издание, М.

Нейбауэр, 1935 - Neubauer F.J., Lick Obs. Bull. 17 , 109.

Перси, 1978 - Регсу J.R., JRAS Can. 72 , 162.

Плавец, Сметанова, 1959 - Plavec М., Smetanova М., ВАС 10, 192.

Робинсон, Назер, 1979 - Robinson E.L., Nather R.E., ApJ Suppl.Ser. 38 , 461.

Свечников М.А., 1969 - Каталог орбитальных элементов, масс и светимостей тесных двойных звезд. Уч.зап. УрГУ, сер. астрон., вып. 5.

Свечников М.А., Истомин Л.Ф., 1979, АЦ №1083.

Свечников М.А., Снежко Л.И., 1974-в кн. "Явления нестационарности и звездная эволюция", М., Наука, гл. 5, с. 181-260.

Струве, 1955 - Struve О., Sky and Telescope 14, 461.

Унно и др., 1979 - Unno W., Osaki Y., Ando H., Shibahash; H., Nonradial oscillations of stars, Univ. of Tokyo Press.

Фист, 1975 - Feast M.W., The R Coronae Borealis type variables, IAU Symp. No. 67, Variable stars and stellar evolution, D.Reidel Publ. Corp., Dordrecht - Holland/Boston - U.S.A., p. 129-141.

Фогт. 1980 - Vogt N., AsAp 88, 66.

Фэз, 1935 - Fath E.A., Lick Obs. Bull. 17, 115.

Холл, 1972 - Hall D.S., PASP 84, 323.