Законы ньютона формулировка кратко. Первый закон ньютона

Объект находится в состоянии равновесия или прямолинейном движении с постоянной скоростью если не подвергается внешнему воздействию.

Говоря более простым (утрированным) языком - если вы "не трогаете" (не прилагаете силу) какой-либо предмет (тело), то оно никогда не изменит своего состояния, т.е.. либо будет покоиться, либо равномерно двигаться вдоль прямой. Не следует путать первый закон Ньютона с идеей вечного двигателя!

Дело в том, что полностью избавиться от действия внешних сил невозможно нигде во Вселенной! На любой объект, находящейся в любой точке космоса, оказывают воздействие (пусть очень малое) масса других объектов Вселенной. Поэтому, на любое движение всегда влияют внешние силы, отсюда - вечное движение невозможно.

Инерция и масса

Инерция - стремление объекта сохранять свое состояние покоя, либо движение с постоянной скоростью вдоль прямой.

Инерция вызвана массой объекта. Чем больше масса объекта, тем большей инерцией он обладает, тем бОльшую силу необходимо приложить к объекту, чтобы изменить его состояние.

Примеров тому масса. Попробуйте пнуть ногой футбольный мяч и пудовую гирю. Почувствуйте, так сказать, разницу.

Что такое инерция очень хорошо знают водители транспортных средств. Так остановить легковую машину гораздо "проще" (у нее будет меньший тормозной путь), чем груженый самосвал. Причиной тому - инерция.

В разных системах измерения масса измеряется в разных единицах: СИ - килограмм (кг); СГС - грамм (г).

Не следует путать массу с весом тела!

Вес - это сила, которую оказывает сила притяжения Земли.

Масса - это мера инерции, которая есть всегда.

Теперь понимаете, почему объект в космосе не имеет веса, но обладает массой.

Реферат на тему:

Законы Ньютона



План:

    Введение
  • 1 Первый закон Ньютона
    • 1.1 Современная формулировка
    • 1.2 Историческая формулировка
  • 2 Второй закон Ньютона
    • 2.1 Современная формулировка
    • 2.2 Историческая формулировка
  • 3 Третий закон Ньютона
    • 3.1 Современная формулировка
    • 3.2 Историческая формулировка
  • 4 Выводы
  • 5 Комментарии к законам Ньютона
    • 5.1 Сила инерции
    • 5.2 Законы Ньютона и Лагранжева механика
    • 5.3 Решение уравнений движения
  • 6 Исторический очерк
  • Примечания
    Литература

Введение

Зако́ны Ньюто́на - три эмпирических закона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы исходя из известных силовых взаимодействий на составляющие её тела. Впервые в полной мере сформулированы английским учёным Исааком Ньютоном в книге «Математические начала натуральной философии».


1. Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции . Инерция - это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность - это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.


1.1. Современная формулировка

В современной физике первый закон Ньютона принято формулировать в следующем виде

Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).


1.2. Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» надо заменить на «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.


2. Второй закон Ньютона

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

2.1. Современная формулировка

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где - ускорение материальной точки;
- сила, приложенная к материальной точке;
m - масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

Где - импульс точки,

где - скорость точки;

t - время;
- производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.


2.2. Историческая формулировка

Исходная формулировка Ньютона:

Интересно, что если добавить требование инерциальной системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.

3. Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе - на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.


3.1. Современная формулировка

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.

3.2. Историческая формулировка

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость» .


4. Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса . Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.


5. Комментарии к законам Ньютона

5.1. Сила инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную «силу инерции», и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: «сила инерции» - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.


5.2. Законы Ньютона и Лагранжева механика

Законы Ньютона - не самый глубокий уровень формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона. Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.


5.3. Решение уравнений движения

Уравнение является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.


6. Исторический очерк

Страница «Начал» Ньютона с аксиомами механики

Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии» в следующем виде.

1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Оригинальный текст (лат.)

LEX I
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

LEX II
Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

LEX III
Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

- «Начала», страница 12

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

, Сорокопут Ньютона , Начала Ньютона , Остров Ньютона , Алгоритм Ньютона , Бином Ньютона , Шкала Ньютона .