Термоядерные реакции реактор кратко. Ядерные реакции

В ходе урока все желающие смогут получить представление о теме «Термоядерная реакция». Вы узнаете, что представляет собой термоядерная реакция, или реакция синтеза. Узнаете, какие элементы и при каких условиях могут вступить в данный вид реакции, и познакомитесь с разработками использования термоядерной реакции в мирных целях.

Термоядерными реакциями (или просто термоядом) называют реакции слияния легких ядер в одно целое новое ядро, в результате которого выделяется большое количество энергии. Оказывается, большая энергия выделяется не только в результате деления тяжелых ядер, еще больше энергии выделяется, когда легкие ядра сливаются вместе, соединяются. Этот процесс называют синтезом . А сами реакции - термоядерным синтезом, термоядерными реакциями.

Какие же элементы участвуют в этих реакциях? Это в первую очередь изотопы водорода и изотопы гелия. Для примера можно привести следующую реакцию:

Два изотопа водорода (дейтерий и тритий), соединяясь вместе, дают ядро гелия, еще образуется нейтрон. Когда протекает такая реакция, выделяется огромная энергия Е = 17,6 МэВ.

Не забывайте, что это всего лишь на одну реакцию. И еще одна реакция. Два ядра дейтерия, сливаясь вместе, образуют ядро гелия:

В этом случае выделяется тоже большое количество.

Обращаю ваше внимание: чтобы такие реакции протекали, нужны определенные условия. В первую очередь нужно сблизить ядра указанных изотопов. Ядра имеют положительный заряд, в данном случае действуют кулоновские силы, которые расталкивают эти заряды. Значит, нужно преодолеть эти кулоновские силы, чтобы приблизить одно ядро к другому. Это возможно только в том случае, если сами ядра обладают большой кинетической энергией, когда скорость у этих ядер довольно велика. Чтобы добиться этого, нужно создать такие условия, когда ядра изотопов будут обладать этой скоростью, а это возможно только при очень высоких температурах. Только так мы сможем разогнать изотопы до скоростей, которые позволят им сблизиться на расстояние приблизительно 10 -14 м.

Рис. 1. Расстояние, на которое нужно сблизить ядра для наступления термоядерной реакции

Это расстояние как раз то, с которого начинают действовать ядерные силы. Значение необходимой температуры составляет порядка t ° = 10 7 - 10 8 ° C . Достигнуть такой температуры можно, когда произведен ядерный взрыв. Таким образом, чтобы произвести термоядерную реакцию, мы сначала должны произвести реакцию деления тяжелых ядер. Именно в этом случае мы добьемся высокой температуры, а уже потом данная температура даст возможность сблизить ядра изотопов до расстояния, когда они могут соединиться. Как вы понимаете, именно в этом заложен принцип так называемой водородной бомбы.

Рис. 2. Взрыв водородной бомбы

Нас, как мирных людей, интересует в первую очередь использование термоядерной реакции в мирных целях для создания тех же самых электростанций, но уже новейшего типа.

В настоящее время ведутся разработки по тому, как создать управляемый термоядерный синтез. Для этого используются различные методы, один из них: использование лазеров для получения высоких энергий и температур. С помощью лазеров их разгоняют до высоких скоростей, и в этом случае может протекать термоядерная реакция.

В результате термоядерной реакции выделяется огромное количество тепла, то место в реакторе, в котором будут находиться взаимодействующие друг с другом изотопы, нужно хорошо изолировать, чтобы вещество, которое будет находиться при высокой температуре, не взаимодействовало с окружающей средой, со стенками того объекта, где оно находится. Для такой изоляции используется магнитное поле. При высокой температуре ядра, электроны, которые находятся вместе, представляют собой новый вид материи - плазму. Плазма - это частично или полностью ионизированный газ, а раз газ ионизирован, то он чувствителен к магнитному полю. Плазма - электропроводящая, при помощи магнитных полей можно придавать ей определенную форму и удерживать в определенном объеме. Тем не менее, техническое решение управления термоядерной реакцией остается пока неразрешенным.

Рис. 3. ТОКАМАК - тороидальная установка для магнитного удержания плазмы

В заключение хотелось бы еще отметить: термоядерные реакции играют важную роль в эволюции нашей вселенной. В первую очередь отметим, что термоядерные реакции протекают на Солнце. Можно сказать, что именно энергия термоядерных реакций - это та энергия, которая сформировала нынешний облик нашей вселенной.

Список дополнительной литературы

1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980

2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: Просвещение

3. Китайгородский А.И. Физика для всех. Книга 4. Фотоны и ядра. М.: Наука

4. Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика. 11 класс: учебник для углублённого изучения физики. М.: Дрофа

Задание к уроку .

1. В результате термоядерной реакции соединения двух протонов образуется дейтрон и нейтрино. Какая ещё появляется частица?

2. Найти частоту γ -излучения, образующегося при термоядерной реакции:

Если α -частица приобретает энергию 19.7 МэВ

Атом - это строительный элемент Вселенной. Существует всего около сотни атомов различных типов. Большинство элементов стабильны (например, кислород и азот атмосферы; углерод, кислород и водород - основные составляющие нашего тела и всех других живых организмов). Другие элементы, главным образом очень тяжелые, нестабильны, и это означает, что они спонтанно распадаются, порождая другие элементы. Это преобразование называется ядерной реакцией.

Ядерные реакции - превращения атомных ядер при взаимодействии с элементарными частицами, г-квантами или друг с другом.

Ядерные реакции разделяют на два вида: ядерное деление и термоядерный синтез.

Ядерная реакция деления -- процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным.

Самопроизвольное (спонтанное) - это деление ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.

Самопроизвольное деление впервые было обнаружено для природного урана. Как и любой другой вид радиоактивного распада, спонтанное деление характеризуется периодом полураспада (периодом деления). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет для 93Np237 до нескольких десятых долей секунды для трансурановых элементов).

Вынужденное деление ядер может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, б-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления. Для атомной энергетики большее значение играет деление, вызванное нейтронами. Реакция деления тяжелых ядер осуществлена впервые на уране U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации. Эту энергию ядро урана получает, захватывая нейтрон. Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка радиоактивны и испускают 2 или 3 вторичных нейтрона.

Рис. 4

Вторичные нейтроны поглощаются соседними ядрами урана, что вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением колоссальной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Ядерная реакция характеризуется тепловым эффектом, который представляет собой разность масс покоя вступающих в ядерную реакцию и образующихся в результате реакции ядер, т.е. энергетический эффект ядерной реакции определяется в основном разницей масс конечных и исходных ядер. На основании эквивалентности энергии и массы можно вычислить энергию, выделяющуюся или затраченную при протекании ядерной реакции, если точно знать массу всех ядер и частиц, участвующих в реакции. Согласно закону Эйнштейна:

  • ?Е=?mс2
  • ?E = (mA + mx - mB - my)c2

где mА и mх - массы соответственно ядра мишени и бомбардирующего ядра(частицы);

mB и my - массы и образующихся в результате реакции ядер.

Чем больше энергии выделяется при образовании ядра, тем оно прочнее. Энергией связи ядра называют количество энергии, требуемой для разложения ядра атома на составные части - нуклоны (протоны и нейтроны).

Примером неуправляемой цепной реакции деления может послужить взрыв атомной бомбы, управляемая ядерная реакция осуществляется в ядерных реакторах.

Термоядерный синтез - это реакция, обратная делению атомов, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Осуществление управляемого термоядерного синтеза даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии, который основан на столкновении ядер изотопов водорода, а водород - самое распространенное вещество во Вселенной.

Процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

2D + 3T > 4He (3,5 МэВ) + 1n (14,1 МэВ)

Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. Дейтерий содержится в морской воде. Его запасы общедоступны и очень велики: на долю дейтерия приходится около 0,016% общего числа атомов водорода, входящих в состав воды, в то время как мировой океан покрывает 71% площади поверхности Земли. Реакция с участием трития является более привлекательной, т. к. сопровождается большим выделением энергии и протекает со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

Реакция c так называемым лунным изотопом 3Не имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией.

2D + 3He > 4He (3,7 МэВ) + 1p (14,7 МэВ)

Преимущества:

  • 1. 3He не радиоактивен.
  • 2. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
  • 3. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии.

Природная изотопная распространённость в атмосфере 3He составляет 0,000137 %. Большая часть 3He на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

Гелий-3 является побочным продуктом реакций, протекающих на Солнце. В результате, на Луне, у которой нет атмосферы, этого ценного вещества находится до 10 миллионов тонн (по минимальным оценкам -- 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 миллионов тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного грунта. Содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 миллионов тонн грунта. Температура, при которой возможно осуществление реакции термоядерного синтеза достигает величины порядка 108 - 109 К. При этой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. Таким образом, сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфигурации в течение времени, для протекания ядерных реакций.

Термоядерная энергетика имеет важные преимущества перед атомными станциями: в ней используется абсолютно нерадиоактивные дейтерий и изотоп гелия-3 и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. В природных условиях термоядерные реакции протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

Все химические элементы нашей планеты и Вселенной в целом образовались в результате термоядерных реакций, которые происходят в ядрах звезд. Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются горением C, O, Si и последующих элементов - вплоть до Fe и Ni. Каждому этапу звездной эволюции соответствуют определенные термоядерные реакции. Первыми в цепи таких ядерных реакций стоят водородные термоядерные реакции. Они протекают двумя путями в зависимости от начальной температуры в центре звезды. Первый путь - водородный цикл, второй путь - CNO-цикл.

Водородный цикл:

  • 1H + 1H = 2D + e+ + v +1,44 МэВ
  • 2D + 1H = 3He + г +5,49 МэВ

I: 3He + 3He = 4He + 21H + 12,86 МэВ

или 3He + 4He = 7Be + г + 1,59 МэВ

7Be + e- = 7Li + v + 0,862 МэВ или 7Be + 1H = 8B + г +0,137 МэВ

II: 7Li + 1H = 2 4He + 17,348 МэВ 8B = 8Be* + e+ + v + 15,08МэВ

III. 8Be* = 2 4He + 2,99 МэВ

Водородный цикл начинается реакцией столкновения двух протонов (1H, или р) с образованием ядра дейтерия (2D). Дейтерий реагирует с протоном, образуя лёгкий (лунный) изотоп гелия 3Не с испусканием гамма-фотона (г). Лунный изотоп 3Не может реагировать двумя различными путями: два ядра 3Не при столкновении образуют 4Не с отщеплением двух протонов либо 3Не соединяется с 4Не и даёт 7Ве. Последний в свою очередь захватывает либо электрон (е-), либо протон и возникает ещё одно разветвление протон - протонной цепочки реакций. В результате водородный цикл может заканчиваться тремя различными путями I, II и III. Для реализации ветви I первые две реакции В. ц. должны осуществиться дважды, поскольку в этом случае исчезают сразу два ядра 3Не. В ветви III испускаются особенно энергичные нейтрино при распаде ядра бора 8В с образованием неустойчивого ядра бериллия в возбуждённом состоянии (8Ве*), который почти мгновенно распадается на два ядра 4Не. CNO-цикл -- это совокупность трёх сцепленных друг с другом или, точнее, частично перекрывающихся циклов: CN, NO I, NO II. Синтез гелия из водорода в реакциях этого цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в звездном веществе.

Основной путь реакции CN-цикла:

  • 12C + p = 13N + г +1,95 МэВ
  • 13N = 13C + e+ + н +1,37 МэВ
  • 13C + p = 14N + г +7,54 МэВ (2,7·106 лет)
  • 14N + p = 15O + г +7,29 МэВ (3,2·108 лет)
  • 15O = 15N + e+ + н +2,76 МэВ (82 секунды)
  • 15N + p = 12C + 4He +4,96 МэВ (1,12·105 лет)

Суть этого цикла состоит в непрямом синтезе б-частицы из четырёх протонов при их последовательных захватах ядрами, начиная с 12C.

В реакции с захватом протона ядром 15N возможен ещё один исход -- образование ядра 16О и рождается новый цикл NO I-цикл.

Он имеет в точности ту же структуру, что и CN-цикл:

  • 14N + 1H = 15O + г +7,29 МэВ
  • 15O = 15N + e+ + н +2,76 МэВ
  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 14N + 4He +1,19 МэВ

NO I-цикл повышает темп энерговыделения в CN-цикле, увеличивая число ядер-катализаторов CN-цикла.

Последняя реакция этого цикла также может иметь другой исход, порождая ещё один NO II-цикл:

  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 18F + г +5,61 МэВ
  • 18O + 1H = 15N + 4He +3, 98 МэВ

Таким образом, циклы CN, NO I и NO II образуют тройной CNO-цикл.

Имеется ещё один очень медленный четвёртый цикл, OF-цикл, но его роль в выработке энергии ничтожно мала. Однако этот цикл является весьма важным, при объяснении происхождения 19F.

  • 17O + 1H = 18F + г + 5.61 МэВ
  • 18F = 18O + e+ + н + 1.656 МэВ
  • 18O + 1H = 19F + г + 7.994 МэВ
  • 19F + 1H = 16O + 4He + 8.114 МэВ
  • 16O + 1H = 17F + г + 0.60 МэВ
  • 17F = 17O + e+ + н + 2.76 МэВ

При взрывном горении водорода в поверхностных слоях звёзд, например, при вспышках сверхновых, могут развиваться очень высокие температуры, и характер CNO-цикла резко меняется. Он превращается в так называемый горячий CNO-цикл, в котором реакции идут очень быстро и запутанно.

Химические элементы тяжелее 4He начинают синтезироваться лишь после полного выгорания водорода в центральной области звезды:

4He + 4He + 4He > 12C + г + 7,367 МэВ

Реакции горения углерода:

  • 12C + 12C = 20Ne + 4He +4,617 МэВ
  • 12C + 12C = 23Na + 1H -2,241 МэВ
  • 12C + 12C = 23Mg + 1n +2,599 МэВ
  • 23Mg = 23Na + e+ + н + 8, 51 МэВ
  • 12C + 12C = 24Mg + г +13,933 МэВ
  • 12C + 12C = 16O + 24He -0,113 МэВ
  • 24Mg + 1H = 25Al + г

При достижении температуры 5·109 K в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni.

В ходе урока все желающие смогут получить представление о теме «Термоядерная реакция». Вы узнаете, что представляет собой термоядерная реакция, или реакция синтеза. Узнаете, какие элементы и при каких условиях могут вступить в данный вид реакции, и познакомитесь с разработками использования термоядерной реакции в мирных целях.

Термоядерными реакциями (или просто термоядом) называют реакции слияния легких ядер в одно целое новое ядро, в результате которого выделяется большое количество энергии. Оказывается, большая энергия выделяется не только в результате деления тяжелых ядер, еще больше энергии выделяется, когда легкие ядра сливаются вместе, соединяются. Этот процесс называют синтезом . А сами реакции - термоядерным синтезом, термоядерными реакциями.

Какие же элементы участвуют в этих реакциях? Это в первую очередь изотопы водорода и изотопы гелия. Для примера можно привести следующую реакцию:

Два изотопа водорода (дейтерий и тритий), соединяясь вместе, дают ядро гелия, еще образуется нейтрон. Когда протекает такая реакция, выделяется огромная энергия Е = 17,6 МэВ.

Не забывайте, что это всего лишь на одну реакцию. И еще одна реакция. Два ядра дейтерия, сливаясь вместе, образуют ядро гелия:

В этом случае выделяется тоже большое количество.

Обращаю ваше внимание: чтобы такие реакции протекали, нужны определенные условия. В первую очередь нужно сблизить ядра указанных изотопов. Ядра имеют положительный заряд, в данном случае действуют кулоновские силы, которые расталкивают эти заряды. Значит, нужно преодолеть эти кулоновские силы, чтобы приблизить одно ядро к другому. Это возможно только в том случае, если сами ядра обладают большой кинетической энергией, когда скорость у этих ядер довольно велика. Чтобы добиться этого, нужно создать такие условия, когда ядра изотопов будут обладать этой скоростью, а это возможно только при очень высоких температурах. Только так мы сможем разогнать изотопы до скоростей, которые позволят им сблизиться на расстояние приблизительно 10 -14 м.

Рис. 1. Расстояние, на которое нужно сблизить ядра для наступления термоядерной реакции

Это расстояние как раз то, с которого начинают действовать ядерные силы. Значение необходимой температуры составляет порядка t ° = 10 7 - 10 8 ° C . Достигнуть такой температуры можно, когда произведен ядерный взрыв. Таким образом, чтобы произвести термоядерную реакцию, мы сначала должны произвести реакцию деления тяжелых ядер. Именно в этом случае мы добьемся высокой температуры, а уже потом данная температура даст возможность сблизить ядра изотопов до расстояния, когда они могут соединиться. Как вы понимаете, именно в этом заложен принцип так называемой водородной бомбы.

Рис. 2. Взрыв водородной бомбы

Нас, как мирных людей, интересует в первую очередь использование термоядерной реакции в мирных целях для создания тех же самых электростанций, но уже новейшего типа.

В настоящее время ведутся разработки по тому, как создать управляемый термоядерный синтез. Для этого используются различные методы, один из них: использование лазеров для получения высоких энергий и температур. С помощью лазеров их разгоняют до высоких скоростей, и в этом случае может протекать термоядерная реакция.

В результате термоядерной реакции выделяется огромное количество тепла, то место в реакторе, в котором будут находиться взаимодействующие друг с другом изотопы, нужно хорошо изолировать, чтобы вещество, которое будет находиться при высокой температуре, не взаимодействовало с окружающей средой, со стенками того объекта, где оно находится. Для такой изоляции используется магнитное поле. При высокой температуре ядра, электроны, которые находятся вместе, представляют собой новый вид материи - плазму. Плазма - это частично или полностью ионизированный газ, а раз газ ионизирован, то он чувствителен к магнитному полю. Плазма - электропроводящая, при помощи магнитных полей можно придавать ей определенную форму и удерживать в определенном объеме. Тем не менее, техническое решение управления термоядерной реакцией остается пока неразрешенным.

Рис. 3. ТОКАМАК - тороидальная установка для магнитного удержания плазмы

В заключение хотелось бы еще отметить: термоядерные реакции играют важную роль в эволюции нашей вселенной. В первую очередь отметим, что термоядерные реакции протекают на Солнце. Можно сказать, что именно энергия термоядерных реакций - это та энергия, которая сформировала нынешний облик нашей вселенной.

Список дополнительной литературы

1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980

2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: Просвещение

3. Китайгородский А.И. Физика для всех. Книга 4. Фотоны и ядра. М.: Наука

4. Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика. 11 класс: учебник для углублённого изучения физики. М.: Дрофа

Задание к уроку .

1. В результате термоядерной реакции соединения двух протонов образуется дейтрон и нейтрино. Какая ещё появляется частица?

2. Найти частоту γ -излучения, образующегося при термоядерной реакции:

Если α -частица приобретает энергию 19.7 МэВ

Термоядерные реакции
Thermonuclear reactions

Термоядерные реакции − реакции слияния (синтеза) лёгких ядер, протекающие при высоких температурах. Эти реакции обычно идут с выделением энергии, поскольку в образовавшемся в результате слияния более тяжёлом ядре нуклоны связаны сильнее, т.е. имеют, в среднем, бoльшую энергию связи, чем в исходных сливающихся ядрах. Избыточная суммарная энергия связи нуклонов при этом освобождается в виде кинетической энергии продуктов реакции. Название “термоядерные реакции” отражает тот факт, что эти реакции идут при высоких температурах (> 10 7 –10 8 К), поскольку для слияния лёгкие ядра должны сблизиться до расстояний, равных радиусу действия ядерных сил притяжения, т.е. до расстояний ≈10 -13 см. А вне зоны действия этих сил положительно заряженные ядра испытывают кулоновское отталкивание. Преодолеть это отталкивание могут лишь ядра, летящие навстречу друг другу с большими скоростями, т.е. входящие в состав сильно нагретых сред, либо специально ускоренные.
Ниже приведены несколько основных реакций слияния ядер и указаны для них значения энерговыделения Q. d означает дейтрон − ядро 2 Н, t означает тритон − ядро 3 Н.

d + d → 3 He + n + 4.0 МэВ,
d + d → t + p + 3.25 МэВ,
t + d → 4 He + n + 17.6 МэВ,
3 He + d → 4 He + p + 18.3 МэВ.

Реакция слияния ядер начинается тогда, когда сталкивающиеся ядра находятся в области их взаимного ядерного притяжения. Чтобы так сблизиться, сталкивающиеся ядра должны преодолеть их взаимное дальнодействующее электростатическое отталкивание, т.е. кулоновский барьер. Скорость реакции слияния крайне мала при энергиях ниже нескольких кэВ, но она быстро растет с ростом кинетичской энергии ядер, вступающих в реакцию. Соответствующие эффективные сечения реакций в зависимости от энергии дейтрона приведены на рис. 1.

Рис. 1. Зависимость эффективных сечений реакции слияния
от энергии дейтрона.

Самоподдерживающиеся термоядерные реакции являются эффективным источником ядерной энергии. Однако осуществить их на Земле сложно, так как для этого нужно удерживать высокие концентрации ядер при огромных температурах. Необходимые условия для протекания самоподдерживающихся термоядерных реакций имеются в звёздах, где они являются главным источником энергии. Так внутри Солнца, где находятся ядра водорода при плотности ≈100 г/см 3 и температуре 10 7 К, идёт цепочка термоядерных реакций превращения четырёх протонов (ядер водорода) в ядро гелия-4 (4 Не). При каждом таком превращении выделяется энергия 26.7 МэВ. Эта цепочка реакций (называемая протон-протонной) начинается с реакции (1) и приведена на рисунке.

Протон-протонная цепочка.

На Земле самоподдерживающиеся термоядерные реакции с выделением огромной энергии осуществлялись в течение очень короткого времени (10 -7 –10 -6 сек) при взрывах водородных бомб. Одной из основных термоядерных реакций, обеспечивающих энерговыделение при таких взрывах, является реакция слияния двух тяжёлых изотопов водорода (дейтерия и трития) в ядро гелия с испусканием нейтрона.

Термоядерная реакция относится к разряду ядерных, но, в отличие от последних, в ней происходит процесс образования, а не разрушения.
На сегодняшний день разработала два варианта проведения термоядерного синтеза – взрывной термоядерный синтез и управляемый термоядерный синтез.

Кулоновский барьер или почему люди еще не взлетели на воздух

Атомные ядра несут положительный заряд. Это означает, что при их сближении начинает действовать сила отталкивания, которая обратно пропорциональна квадрату расстояния между ядрами. Однако на определенном расстоянии, которое равно 0,000 000 000 001 см, начинает действовать сильное взаимодействие, приводящие к слиянию атомных ядер.

В результате выделяется колоссальное количество энергии. То расстояние, которое препятствует слиянию ядер, называется кулоновским барьером, или потенциальным барьером. Условие, при котором это происходит - высокая температура, порядка 1 миллиарда градусов Цельсия. При этом любое вещество превращается в плазму. Основным веществами для осуществления термоядерной реакции являются и тритий.

Взрывной термоядерный синтез

Такой способ проведения термоядерной реакции возник намного раньше управляемого и впервые был применен в водородной бомбе. Основным взрывающимся веществом является дейтерид лития.

Бомба состоит из триггера – плутониевого заряда с усилителем и контейнера с термоядерным горючим. Сначала взрывается триггер с испусканием импульса мягкого рентгеновского излучения. Оболочка второй ступени вместе с пластиковым наполнителем поглощают эти излучения, нагреваясь до высокотемпературной плазмы, которая находится под высоким давлением.

Создается реактивная тяга, которая сдавливает объем второй ступени, уменьшая межъядерной расстояние в тысячи раз. При этом термоядерная реакция не происходит. Завершающим этапом является ядерный взрыв плутониевого стержня, который и запускает ядерную реакцию. Дейтерид лития с нейтронами с образованием трития.

Управляемый термоядерный синтез

Управляемый термоядерный синтез возможен потому, что применяются особые типы реакторов. Топливом служит дейтерий, тритий, гелия, литий, бор-11.

Реакторы:
1) Реактор, основанный на создании квазистационарной системы, в которой плазма удерживается магнитным полем.
2) Реактор на основе импульсной системы. В этих реакторах небольшие мишени, содержащие дейтерий и тритий, кратковременно нагревают сверхмощным потоком частиц или лазером.