Термодинамика и статистическая физика. Динамические и статистические законы

Статистическая физика занимает видное место в современной науке и заслуживает специального рассмотрения. Она описывает образование из движений частиц параметров макросистем. Например, такие термодинамические параметры, как температура и давление, сводятся к импульсноэнергетическим признакам молекул. Делает она это посредством задания некоторого вероятностного распределения. Прилагательное «статистическая» восходит к латинскому слову status (русское - состояние). Одного этого слова недостаточно для выражения специфики статистической физики. Действительно, любая физическая наука изучает состояния физических процессов и тел. Статистическая же физика имеет дело с ансамблем состояний. Ансамбль в рассматриваемом случае предполагает множество состояний, но не любых, а соотносящихся с одним и тем же совокупным состоянием, обладающим интегративными признаками. Таким образом, статистическая физика включает иерархию двух уровней, которые часто называют микроскопическим и макроскопическим. Соответственно в ней рассматривается соотношение микро- и макросостояний. Упомянутые выше интегративные признаки конституируются лишь в случае, если число микросостояний достаточно большое. Для конкретных состояний оно обладает нижней и верхней границей, определение которых является специальной задачей.

Как уже отмечалось, характерная черта статистического подхода состоит в необходимости обращения к понятию вероятности. С помощью функций распределения рассчитываются статистические средние значения (математические ожидания) тех или иных признаков, которые присущи, по определению, как микро-, так и макроуровню. Связь между двумя уровнями приобретает особенно отчетливый вид. Вероятностной мерой макросостояний оказывается энтропия (S ). Согласно формуле Больцмана, она прямо пропорциональна статистическому весу, т.е. числу способов осуществления данного макроскопического состояния (Р ):

Наибольшей же энтропия является в состоянии равновесия статистической системы.

Статистический проект был разработан в рамках классической физики. Казалось, что он неприменим в квантовой физике. В действительности же ситуация оказалась принципиально другой: в квантовой области статистическая физика не ограничивается классическими представлениями и приобретает более универсальный характер. Но само содержание статистического метода существенно уточняется.

Решающее значение для судеб статистического метода в квантовой физике имеет характер волновой функции. Она определяет не величины физических параметров, а вероятностный закон их распределения. Л это означает, что выполнено главное условие статистической физики, т.е. задание вероятностного распределения. Его наличие является необходимым и, видимо, достаточным условием успешного распространения статистического подхода на всю сферу квантовой физики.

В области классической физики казалось, что статистический подход не обязателен, а если он используется, то лишь в связи с временным отсутствием методов, по-настоящему адекватных природе физических процессов. Динамические законы, посредством которых осуществляется однозначная предсказуемость, актуальнее статистических закономерностей.

Будущая физика дескать позволит объяснить статистические законы при помощи динамических. Но развитие квантовой физики преподнесло ученым явный сюрприз.

В действительности выяснилось первенство не динамических, а статистических законов. Именно статистические закономерности позволили объяснить динамические законы. Так называемое однозначное описание является просто фиксацией событий, которые происходят с наибольшей вероятностью. Актуален не однозначный лапласовский, а вероятностный детерминизм (см. парадокс 4 из параграфа 2.8).

Квантовая физика по самому своему существу является статистической теорией. Это обстоятельство свидетельствует о непреходящем значении статистической физики. В классической физике статистический подход не требует решения уравнений движения. Поэтому создается впечатление, что он по существу своему является не динамическим, а феноменологическим. Теория отвечает на вопрос «Как происходят процессы?», но не на вопрос «Почему они происходят именно так, а не по-иному?». Квантовая физика придает статистическому подходу динамический характер, феноменология приобретает вторичный характер.

Статистическая физика и термодинамика

Статистический и термодинамический методы исследования . Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический ) и термодинами­ческий . Первый лежит в основе молекулярной физики, второй - термодинамики.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460-370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822-1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах - фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Основные постулаты молекулярно-кинетической теории (МКТ)

1. Все тела в природе состоят из огромного количества мельчайших частиц (атомов и молекул).

2. Эти частицы находятся в непрерывном хаотическом (беспорядочном) движении.

3. Движение частиц связано с температурой тела, поэтому оно называется тепловым движением .

4. Частицы взаимодействуют друг с другом.

Доказательства справедливости МКТ: диффузия веществ, броуновское движение, теплопроводность.

Физические величины, использующиеся для описания процессов в молекулярной физике делят на два класса:

микропараметры – величины, описывающие поведения отдельных частиц (масса атома (молекулы), скорость, импульс, кинетическая энергия отдельных частиц);
макропараметры – величины, не сводимые к отдельным частицам, но характеризующие свойства вещества в целом. Значения макропараметров определяются результатом одновременного действия огромного количества частиц. Макропараметры – это температура, давление, концентрация и т. п.

Температура - одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы - термодина­мическую и Международную практическую , градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С).

В термодинамической шкале температура замерзания воды равна 273,15 К (при том же

давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической

шкале связаны соотношением

Т = 273,15 + t .

Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно. 0 К – это температура, при которой теоретически должно прекратиться всякое тепловое движение частиц вещества.

В молекулярной физике выводится связь между макропараметрами и микропараметрами. Например, давление идеального газа может быть выражено формулой:

position:relative; top:5.0pt"> - масса одной молекулы, - концентрация, font-size: 10.0pt">Из основного уравнения МКТ можно получить удобное для практического использования уравнение:

font-size: 10.0pt">Идеальный газ – это идеализированная модель газа, в которой считают, что:

1. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2. между молекулами отсутствуют силы взаимодействия (притяжения и отталкивания на расстоянии;

3. столкновения молекул между собой и со стенками сосуда абсолютно упругие.

Идеальный газ – это упрощенная теоретическая модель газа. Но, состояние многих газов при определенных условиях могут быть описаны этим уравнением.

Для описания состояния реальных газов в уравнение состояния необходимо ввести поправки. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше. где b - молярный объем, занимаемый самими молекулами.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е. где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, V m - молярный объем.

В итоге мы получим уравнение состояния реального газа или уравнение Ван-дер-Ваальса :

font-size:10.0pt;font-family:" times new roman> Физический смысл температуры: температура – это мера интенсивности теплового движения частиц веществ. Понятие температуры не применимо к отдельной молекуле. Лишь для достаточно большого количества молекул, создающих некое количество вещества, появляется смысл относить термин температуры.

Для идеального одноатомного газа можно записать уравнение:

font-size:10.0pt;font-family:" times new roman>Первое экспериментальное определение скоростей молекул выпо­лнено немецким физиком О. Штерном (1888-1970). Его опыты позволили также оценить распределение молекул по скоростям.

«Противостояние» между потенциальными энергиями связи молекул и энергиями теплового движения молекул (кинетическими молекулами) приводит к существованию различных агрегатных состояний вещества.

Термодинамика

Подсчитав количество молекул в данной системе и оценив их средние кинетическую и потенциальную энергии, можно оценить внутреннюю энергию данной системы U .

font-size:10.0pt;font-family:" times new roman>Для идеального одноатомного газа .

Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики , установленное в результате обобщения многовековых опытных данных:

В замкнутом цикле , поэтому font-size:10.0pt;font-family:" times new roman>КПД теплового двигателя: .

Из первого начала термодинамики следует, что КПД теплового двигателя не может быть больше 100%.

Постулируя существование различных форм энергии и связи между ними первое начало ТД ничего не говорит о направленности процессов в природе. В полном соответствии с первым началом можно мысленно сконструировать двигатель, в котором за счет уменьшения внутренней энергии вещества совершалась бы полезная работа. Например, вместо горючего в тепловом двигателе использовалась бы вода, и за счет охлаждения воды и превращения ее в лед совершалась бы работа. Но подобные самопроизвольные процессы в природе не происходят.

Все процессы в природе можно разделить на обратимые и необратимые.

Одной из основных проблем в классическом естествознании долгое время оставалась проблема объяснения физической природы необратимости реальных процессов. Суть проблемы заключается в том, что движение материальной точки, описываемое II законом Ньютона (F = ma), обратимо, тогда как большое число материальных точек ведет себя необратимо.

Если число исследуемых частиц невелико (например, две частицы на рисунке а)), то мы не сможем определить, куда направлена ось времени: слева направо или справа налево, так как любая последовательность кадров явлется одинаково возможной. Это и есть обратимое явление . Ситуация существенно меняется, если число частиц очень велико (рис. б)). В этом случае направление времени определяется однозначно: слева направо, так как невозможно представить, что равномерно распределенные частицы сами по себе, без каких-то внешних воздействий соберутся в углу «ящика». Такое поведение, когда состояние системы может изменяться только в определенной последовательности, называется необратимым . Все реальные процессы необратимы.

Примеры необратимых процессов: диффузия, теплопроводность, вязкое течение. Почти все реальные процессы в природе являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от прошлого к будущему. Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же, несмотря на обратимость поведения одной частицы, ансамбль из большого числа таких частиц ведет себя необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых выдающихся ученых XVIII–XIX вв.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Хотя общее количество энергии в изолированной системе сохраняется, ее качественный состав меняется необратимо .

1. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

2. В другой формулировке: «Теплота самопроизвольно может переходить только от более нагретого тела к менее нагретому».

3. Третья формулировка: «Энтропия в замкнутой системе может только увеличиваться».

Второе начало термодинамики запрещает существование вечного двигателя второго рода , т. е. машины, способной совершать работу за счет переноса тепла от холодного тела к горячему. Второй закон термодинамики указывает на существование двух различных форм энергии - теплоты как меры хаотического движения частиц и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло, но тепло нельзя полностью превратить в работу. Таким образом, неупорядоченную форму энергии нельзя без каких либо дополнительных действий превратить в упорядоченную.

Полное превращение механической работы в теплоту мы делаем каждый раз, нажимая на педаль тормоза в автомобиле. А вот без каких-либо дополнительных действий в замкнутом цикле работы двигателя перевести всю теплоту в работу нельзя. Часть тепловой энергии неизбежно расходуется на нагревание двигателя, плюс движущийся поршень постоянно совершает работу против сил трения (на это тоже расходуется запас механической энергии).

Но смысл второго начала термодинамики оказался еще глубже.

Еще одной формулировкой второго начала термодинамики является следующее утверждение: энтропия замкнутой системы является неубывающей функцией, то есть при любом реальном процессе она либо возрастает, либо остается неизменной.

Понятие энтропии, введенное в термодинамику Р. Клаузиусом, носило первоначально искусственный характер. Выдающийся французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, так как, по крайней мере в принципе, вполне поддается измерению».

По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой равно количеству тепла , полученному системой, деленному на абсолютную температуру:

font-size:10.0pt;font-family:" times new roman>В соответствии со вторым законом термодинамики в изолированных системах, т. е. системах, не обменивающихся с окружающей средой энергией, неупорядоченное состояние (хаос) не может самостоятельно перейти в порядок. Таким образом, в изолированных системах энтропия может только расти. Эта закономерность получила название принципа возрастания энтропии . Согласно этому принципу, любая система стремится к состоянию термодинамического равновесия, которое отождествляется с хаосом. Поскольку увеличение энтропии характеризует изменения во времени замкнутых систем, то энтропия выступает в качестве своеобразной стрелы времени .

Состояние с максимальной энтропией мы назвали неупорядоченным, а с малой энтропией - упорядоченным. Статистическая система, если она предоставлена самой себе, переходит из упорядоченного в неупорядоченное состояние с максимальной энтропией, соответствующей данным внешним и внутренним параметрам (давление, объем, температура, число частиц и т. д.).

Людвиг Больцман связал понятие энтропии с понятием термодинамической вероятности: font-size:10.0pt;font-family:" times new roman> Таким образом, любая изолированная система, предоставленная сама себе, с течением времени переходит от состояния упорядоченности в состояние максимального беспорядка (хаоса).

Из этого принципа вытекает пессимистическая гипотеза о тепловой смерти Вселенной, сформулированная Р. Клаузиусом и У. Кельвином, в соответствии с которой:

· энергия Вселенной всегда постоянна;

· энтропия Вселенной всегда возрастает.

Таким образом, все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующему состоянию наибольшего хаоса и дезорганизации . Все виды энергии деградируют, превратившись в тепло, и звезды закончат свое существование, отдав энергию в окружающее пространство. Установится постоянная температура лишь на насколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие планеты и звезды. Не будет ничего - ни источников энергии, ни жизни.

Такая мрачная перспектива предсказывалась физикой вплоть до 60-х годов ХХ столетия, хотя выводы термодинамики противоречили результатам исследований в биологии и социальных науках. Так, эволюционная теория Дарвина свидетельствовала, что живая природа развивается преимущественно в направлении усовершенствования и усложнения новых видов растений и животных. История, социология, экономика, другие социальные и гуманитарные науки так же показывали, что в обществе, несмотря на отдельные зигзаги развития, в целом наблюдается прогресс.

Опыт и практическая деятельность свидетельствовали, что понятие закрытой или изолированной системы является достаточно грубой абстракцией , упрощающей действительность, поскольку в природе трудно найти системы, не взаимодействующие с окружающей средой. Противоречие стало разрешаться, когда в термодинамике вместо понятия закрытой изолированной системы ввели фундаментальное понятие открытой системы, т. е. системы, обменивающейся с окружающей средой веществом, энергией и информацией.

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

где N -число молекул газа; N A - число Авогадро; m -масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

,

где i , N i , m i , i - соответственно количество вещества, число молекул, масса, молярная масса i -й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T -термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

    закон Бойля-Мариотта

(изотермический процесс - Т =const; m=const):

или для двух состояний газа:

где p 1 и V 1 - давление и объем газа в начальном состоянии; p 2 и V 2

    закон Гей-Люссака (изобарический процесс - p=const, m=const ):

или для двух состояний:

где V 1 и Т 1 - объем и температура газа в начальном состоянии; V 2 и Т 2 - те же величины в конечном состоянии;

    закон Шарля (изохорический процесс - V=const, m=const ):

или для двух состояний:

где р 1 и Т 1 - давление и температура газа в начальном состоянии; р 2 и Т 2 - те же величины в конечном состоянии;

    объединенный газовый закон (m=const ):

где р 1 , V 1 , Т 1 - давление, объем и температура газа в начальном состоянии; р 2 , V 2 , Т 2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р 1 + р 2 + ... +р n

где p i - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где m i - масса i -го компонента смеси; i = m i / i - количество вещества i -го компонента смеси; n - число компонентов смеси.

6. Массовая доля  i i -го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N -число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

  • температуру физического тела;
  • объем взаимодействующих элементов;
  • число элементарных частиц.

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.