Тепловой эффект какой реакции равен теплоте образования. Тепловой эффект химической реакции и его практическое применение

(Страница подготовлена с использованием материалов сайта http://www.hemi.nsu.ru/ucheb211.htm )

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию . Когда химическая связь образуется, энергия выделяется .

Атомы не соединялись бы между собой, если бы это не вело к "выигрышу" (то есть высвобождению) энергии. Этот выигрыш может быть большим или малым, но он обязательно есть при образовании молекул из атомов.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше , чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты.

Реакция даже может идти со взрывом - так много энергии заключено в этом превращении. Такие реакции называются экзотермическими от латинского "экзо" - наружу (имея в виду выделяющуюся энергию).

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании.


Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции . Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений:

2 H 2(г) + O 2(г) = 2 H 2 О (ж) + 572 кДж

или

H 2(г) + 1/2 O 2(г) = H 2 О (ж) + 286 кДж

Оба уравнения одинаково правильны и оба выражают тепловой эффект экзотермической реакции образования воды из водорода и кислорода. Первое - на 1 моль использованного кислорода, а второе - на 1 моль сгоревшего водорода или на 1 моль образовавшейся воды.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции – теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

C 2 H 2 +2,5 O 2 =2 CO 2 + H 2 O + 1300 кДж

Ацетилен теплота сгорания ацетилена

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (?Е) можно показать графически.


Графическое изображение теплового эффекта: а) экзотермической реакции горения водорода; б) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).

Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями .

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH 4 путем прямого соединения углерода с водородом:

С + 2H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4(г) + 2O 2(г) = СO 2(г) + 2H 2 О (ж) + 890 кДж

б) С (тв) + O 2(г) = СO 2(г) + 394 кДж

в) 2H 2(г) + O2 (г) = 2H 2 О (ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4(г) - С (тв) - 2H 2(г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С (тв) + 2H 2(г) = CH 4(г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.

Основные законы термохимии

Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией .

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа , формулируется следующим образом:

Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2H 2(г) + O 2(г) = 2H 2 О (ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О (ж) + 572 кДж = 2H 2(г) + O 2(г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом :

Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.

Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись:

"калорийность 320 ккал/100 г".

Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внутренней энергии систем. Термохимия – это раздел химии, который занимается изучением изменения количества теплоты в ходе протекания процесса. Одним из основоположников термохимии является русский ученый Г. И. Гесс.

Тепловым эффектом химической реакции называется теплота, которая выделяется или поглощается в ходе химической реакции. Стандартным тепловым эффектом химической реакции называется теплота, которая выделяется или поглощается в ходе химической реакции при стандартных условиях. Все химические процессы можно разделить на две группы: экзотермические и эндотермические.

Экзотермические – это реакции, при которых происходит выделение теплоты в окружающую среду. При этом запас внутренней энергии исходных веществ (U 1) больше, чем образующихся продуктов (U 2). Следовательно, ∆U< 0, а это приводит к образованию термодинамически устойчивых веществ.

Эндотермические это реакции, при которых происходит поглощение теплоты из окружающей среды. При этом запас внутренней энергии исходных веществ (U 1) меньше, чем образующихся продуктов (U 2). Следовательно, ∆U > 0, а это приводит к образованию термодинамически неустойчивых веществ. В отличие от термодинамики, в термохимии выделяемую теплоту считают положительной, а поглощаемую – отрицательной. Теплота в термохимии обозначается Q. Единица измерения теплоты – Дж/моль или кДж/моль. В зависимости от условий протекания процесса, различают изохорный и изобарный тепловые эффекты.

Изохорным (Q V) тепловым эффектом называют количество теплоты, которое выделяется или поглощается в ходе данного процесса при постоянном объеме (V = const) и равенстве температур конечного и начального состояния (Т 1 = Т 2).

Изобарным (Q р) тепловым эффектом называют количество теплоты, которое выделяется или поглощается в ходе данного процесса при постоянном давлении (р = const) и равенстве температур конечного и начального состояния (Т 1 = Т 2).

Для жидких и твердых систем изменение объема мало и можно принять, что Q р » Q V . Для газообразных систем

Q р = Q V – ∆nRТ, (4.3)

где ∆n – изменение числа молей газообразных участников реакции

∆n = ån прод. реакции – ån исх. веществ. (4.4)

Во всех случаях преобразование части внутренней (химической) энергии в тепловую (или другие виды) и наоборот, тепловой в химическую происходит в строгом соответствии с законом сохранения энергии и первым законом термодинамики.

В термохимии принято использовать термохимические уравнения это уравнения химических реакций, в которых в левой части равенства приведены исходные вещества, а в правой – продукты реакции плюс (или минус), тепловой эффект, а также показано агрегатное состояние веществ и их кристаллические формы. Например,


С графит + О 2 = СО 2 (г) + 393,77 кДж

Н 2 + 1/2О 2 = Н 2 О (ж) + 289,95 кДж

С (алмаз) + 2S (ромб) = CS 2 (г) – 87,9 кДж

С термохимическими уравнениями можно производить все алгебраические действия: складывать, вычитать, умножать, переносить члены и т.д.

Тепловые эффекты многих химических и физических процессов определяют опытным путем (калориметрия) или рассчитывают теоретически, используя величины теплот образования (разложения) и теплот сгорания тех или иных химических соединений.

Теплотой образования данного соединения называется количество выделяющейся или поглотившейся теплоты при образовании 1 моля его из простых веществ в кДж. Теплоты образования простых веществ, находящихся при стандартных условиях в устойчивом состоянии, принимают за нуль. В реакциях

К (тв) + 1/2Сl (г) = КС1 (тв) + 442,13 кДж

С (тв) + 1/2Н 2(г) + 1/2N (г) = HCN (г) – 125,60 кДж

тепловые эффекты 442,13 кДж и -125,60 кДж представляют собой теплоты образования соответственно КСl и HCN. Теплоты разложения указанных соединений на простые вещества, согласно закону сохране­ния энергии, равны по абсолютной величине, но противоположны по знаку, т. е. для КСl теплота разложения равна -442,13 кДж, а для HCN она составляет +125,60 кДж.

Чем больше выделяется теплоты при образовании соединения, тем, следовательно, больше теплоты необходимо затратить на разложение его, и тем прочнее данное соединение при обычных условиях. Химически устойчивыми и прочными веществами являются: SiO 2 , А1 2 О 3 , Р 2 О 5 , КСl, NaCl и др. Вещества же, образующиеся с поглощением тепла, малоустойчивы (например, NO, CS 2 , С 2 Н 2 , HCN и все взрывчатые вещества). Теплоты образования органических соединений невоз­можно определить на опыте. Их рассчитывают теоретически по величинам теплот сгорания данных соединений, найденным опытным путем.

Теплотой сгорания называется теплота, выделяющаяся при полном сгорании 1 моля вещества в токе кислорода. Теплоты сгорания определяют на калориметрической установке, основными частями которой являются: баллон с кислородом, калориметрическая бомба, калориметр с отвешенным количеством воды и мешалкой и зажигающее электрическое устройство.

Величины тепловых эффектов химических реакций зависят от многих факторов: от природы реагирующих веществ, агрегатного состояния начальных и конечных веществ, условий проведения реакции (температуры, давления, объема систем, концентрации).

Подобно тому, как одной из физических характеристик человека является физическая сила, важнейшей характеристикой любой химической связи является сила связи, т.е. её энергия.

Напомним, что энергия химической связи – эта та энергия, которая выделяется при образовании химической связи или та энергия, которую нужно истратить, чтобы эту связь разрушить.

Химическая реакция в общем случае – это превращение одних веществ в другие. Следовательно, в ходе химической реакции происходит разрыв одних связей и образование других, т.е. превращения энергии.

Фундаментальный закон физики гласит, что энергия не возникает из ничего и не исчезает бесследно, а лишь переходит из одного вида в другой. В силу своей универсальности данный принцип, очевидно, применим и к химической реакции.

Тепловым эффектом химической реакции называется количество теплоты,

выделившееся (или поглотившееся) в ходе реакции и относимое к 1 моль прореагировавшего (или образовавшегося) вещества.

Тепловой эффект обозначается буквой Q и, как правило, измеряется в кДж/моль или в ккал/моль.

Если реакция происходит с выделением тепла (Q > 0), она называется экзотермической, а если с поглощением тепла (Q < 0) – эндотермической.

Если схематично изобразить энергетический профиль реакции, то для эндотермических реакций продукты находятся выше по энергии, чем реагенты, а для экзотермических – наоборот, продукты реакции располагаются ниже по энергии (более стабильны), чем реагенты.

Ясно, что чем больше вещества прореагирует, тем большее количество энергии выделится (или поглотится), т.е. тепловой эффект прямо пропорционален количеству вещества. Поэтому отнесение теплового эффекта к 1 моль вещества обусловлено нашим стремлением сравнивать между собой тепловые эффекты различных реакций.

Лекция 6. Термохимия. Тепловой эффект химической реакции Пример 1 . При восстановлении 8,0 г оксида меди(II) водородом образовалась металлическая медь и пары воды и выделилось 7,9 кДж теплоты. Вычислите тепловой эффект реакции восстановления оксида меди(II).

Решение . Уравнение реакции CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +Q (*)

Составим пропорцию при восстановлении 0,1 моль – выделяется 7,9 кДж при восстановлении 1 моль – выделяется x кДж

Откуда x = + 79 кДж/моль. Уравнение (*) принимает вид

CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +79 кДж

Термохимическое уравнение – это уравнение химической реакции, в котором указаны агрегатное состояние компонентов реакционной смеси (реагентов и продуктов) и тепловой эффект реакции.

Так, чтобы расплавить лед или испарить воду, требуется затратить определенные количества теплоты, тогда как при замерзании жидкой воды или конденсации водяного пара такие же количества теплоты выделяются. Именно поэтому нам холодно, когда мы выходим из воды (испарение воды с поверхности тела требует затрат энергии), а потоотделение является биологическим защитным механизмом от перегрева организма. Напротив, морозильник замораживает воду и нагревает окружающее помещение, отдавая ему избыточное тепло.

На данном примере показаны тепловые эффекты изменения агрегатного состояния воды. Теплота плавления (при 0o C) λ = 3,34×105 Дж/кг (физика), или Qпл. = - 6,02 кДж/моль (химия), теплота испарения (парообразования) (при 100o C) q = 2,26×106 Дж/кг (физика) или Qисп. = - 40,68 кДж/моль (химия).

плавление

испарение

обр ,298.

Лекция 6. Термохимия. Тепловой эффект химической реакции Разумеется, возможны процессы сублимации, когда твердое вещество

переходит в газовую фазу, минуя жидкое состояние и обратные процессы осаждения (кристаллизации) из газовой фазы, для них также возможно рассчитать или измерить тепловой эффект.

Ясно, что в каждом веществе есть химические связи, следовательно, каждое вещество обладает некоторым запасом энергии. Однако далеко не все вещества можно превратить друг в друга одной химической реакцией. Поэтому договорились о введении стандартного состояния.

Стандартное состояние вещества – это агрегатное состояние вещества при температуре 298 К, давлении 1 атмосфера в наиболее устойчивой в этих условиях аллотропной модицикации.

Стандартные условия – это температура 298 К и давление 1 атмосфера. Стандартные условия (стандартное состояние) обозначается индексом0 .

Стандартной теплотой образования соединения называется тепловой эффект химической реакции образования данного соединения из простых веществ, взятых в их стандартном состоянии. Теплота образования соединения обозначается символом Q 0 Для множества соединений стандартные теплоты образования приведены в справочниках физикохимических величин.

Стандартные теплоты образования простых веществ равны 0. Например, Q0 обр,298 (O2 , газ) = 0, Q0 обр,298 (C, тв., графит) = 0.

Например . Запишите термохимическое уравнение образования сульфата меди(II). Из справочника Q0 обр,298 (CuSO4 ) = 770 кДж/моль.

Cu (тв.) + S (тв.) + 2O2 (г.) = CuSO4 (тв.) + 770 кДж.

Замечание : термохимическое уравнение можно записать для любого вещества, однако надо понимать, что в настоящей жизни реакция происходит совершенно по-другому: из перечисленных реагентов образуются при нагревании оксиды меди(II) и серы(IV), но сульфат меди(II) не образуется. Важный вывод: термохимическое уравнение – модель, которая позволяет производить расчеты, она хорошо согласуется с другими термохимическими данными, но не выдерживает проверки практикой (т.е. неспособна правильно предсказать возможность или невозможность реакции).

(B j ) - ∑ a i × Q обр 0 ,298 i

Лекция 6. Термохимия. Тепловой эффект химической реакции

Уточнение . Для того, чтобы не вводить Вас в заблуждение, сразу добавлю, что химическая термодинамикаможет предсказывать возможность / невозможность реакции , однако для этого требуются более серьезные «инструменты», которые выходят за рамки школьного курса химии. Термохимическое уравнение по сравнению с этими приемами – первая ступенька на фоне пирамиды Хеопса – без него не обойтись, но высоко не подняться.

Пример 2 . Вычислите тепловой эффект конденсации воды массой 5,8г.Решение . Процесс конденсации описывается термохимическим уравнением H2 O (г.) = H2 O (ж.) + Q – конденсация обычно экзотермический процесс Теплота конденсации воды при 25o C 37 кДж/моль (справочник).

Следовательно, Q = 37 × 0,32 = 11,84 кДж.

В 19 веке русским химиком Гессом, изучавшим тепловые эффекты реакций, был экспериментально установлен закон сохранения энергии применительно к химическим реакциям – закон Гесса .

Тепловой эффект химической реакции не зависит от пути процесса и определяется только разностью конечного и начального состояний.

С точки зрения химии и математики данный закон означает, что мы вольны для расчета процесса выбрать любую «траекторию расчета», ведь результат от нее не зависит. По этой причине очень важный закон Гесса имеет невероятно важное следствие закона Гесса .

Тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования реагентов (с учетом стехиометрических коэффициентов).

С точки зрения здравого смысла данное следствие соответствует процессу, в котором сначала все реагенты превратились в простые вещества, которые затем собрались по-новому, так что получились продукты реакции.

В форме уравнения следствие закона Гесса выглядит так Уравнение реакции: a 1 A 1 + a 2 A 2 + … + a n A n = b 1 B 1 + b 2 B 2 + … b

При этом a i иb j – стехиометрические коэффициенты,A i – реагенты,B j – продукты реакции.

Тогда следствие закона Гесса имеет вид Q = ∑ b j × Q обр 0 ,298

k Bk + Q

(A i )

Лекция 6. Термохимия. Тепловой эффект химической реакции Поскольку стандартные теплоты образования многих веществ

а) сведены в специальные таблицы или б) могут быть определены экспериментально, то становится возможным предсказать (рассчитать) тепловой эффект очень большого количества реакций с достаточно высокой точностью.

Пример 3 . (Следствие закона Гесса). Рассчитайте тепловой эффект паровой конверсии метана, происходящей в газовой фазе при стандартных условиях:

CH4 (г.) + H2 O (г.) = CO (г.) + 3 H2 (г.)

Определите, является ли данная реакция экзотермической или эндотермической?

Решение: Следствие закона Гесса

Q = 3 Q0

Г ) +Q 0

(CO ,г ) −Q 0

Г ) −Q 0

O , г ) - в общем виде.

обр ,298

обр ,298

обр ,298

обр ,298

Q обр0

298 (H 2 ,г ) = 0

Простое вещество в стандартном состоянии

Из справочника находим теплоты образования остальных компонентов смеси.

O ,г ) = 241,8

(СO ,г ) = 110,5

Г ) = 74,6

обр ,298

обр ,298

обр ,298

Подставляем значения в уравнение

Q = 0 + 110,5 – 74,6 – 241,8 = -205,9 кДж/моль, реакция сильно эндотермична.

Ответ: Q = -205,9 кДж/моль, эндотермическая

Пример 4. (Применение закона Гесса). Известны теплоты реакций

C (тв.) + ½ O (г.)= CO (г.) + 110,5 кДж

С (тв.) + O2 (г.) = CO2 (г.) + 393,5 кДж Найти тепловой эффект реакции 2CO (г.) + O2 (г.) = 2CO2 (г.).Решение Умножим первое и второе уравнение на 2

2C (тв.) + O2 (г.)= 2CO (г.) + 221 кДж 2С (тв.) + 2O2 (г.) = 2CO2 (г.) + 787 кДж

Вычтем из второго уравнения первое

O2 (г.) = 2CO2 (г.) + 787 кДж – 2CO (г.) – 221 кДж,

2CO (г.) + O2 (г.) = 2CO2 (г.) + 566 кДж Ответ: 566 кДж/моль.

Замечание: При изучении термохимии мы рассматриваем химическую реакцию извне (снаружи). Напротив, химическая термодинамика – наука о поведении химических систем – рассматривает систему изнутри и оперирует понятием «энтальпии»H как тепловой энергии системы. Энтальпия, таким

Лекция 6. Термохимия. Тепловой эффект химической реакции образом, имеет тот же смысл, что и количество теплоты, но имеет противоположный знак: если энергия выделяется из системы, окружающая среда её получает и греется, а система энергию теряет.

Литература :

1. учебник, В.В. Еремин, Н.Е. Кузьменко и др., Химия 9 класс, параграф 19,

2. Учебно-методическое пособие «Основы общей химии» Часть 1.

Составители – С.Г. Барам, И.Н. Миронова. – взять с собой! на следующее семинарское занятие

3. А.В. Мануйлов. Основы химии. http://hemi.nsu.ru/index.htm

§9.1 Тепловой эффект химической реакции. Основные законы термохимии.

§9.2** Термохимия (продолжение). Теплота образования вещества из элементов.

Стандартная энтальпия образования.

Внимание!

Мы переходим к решению расчетных задач, поэтому на семинары по химии отныне и впредь желателен калькулятор.

Тепловой эффект реакции количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть Н (Р,Т = const) или U (V,T = const).

Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (Н 0 ), то реакция называется экзотермической.

Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (Н 0), называются эндотермическими.

Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (Н) обычно относят к 1 моль вещества и выражают в кДж/моль.

Обычно функции системы определяют при стандартных условиях , в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25C). Часто температуру указывают в виде нижнего индекса ().

5.3. Термохимические уравнения

Термохимические уравнения реакций  уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

C (графит) + O 2 (газ) = CO 2 (газ) , Н 0 298 = 396 кДж.

Тепловой эффект можно записать в уравнении реакции:

C (графит) + O 2 (газ) = CO 2 (газ) + 396 кДж.

В химической термодинамике первая форма записи употребляется чаще.

Особенности термохимических уравнений.

1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты . Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

½H 2 + ½Cl 2 = HCl, H 0 298 = 92 кДж

или Н 2 + Cl 2 = 2HСl, H 0 298 = 184 кДж.

2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж жидкое, г  газообразное, т твердое или к – кристаллическое, р – растворенное.

Например:H 2 + ½ O 2 = H 2 О (ж) , Н 0 298 = -285,8 кДж.

H 2 + ½ О 2 = H 2 О (г) , Н 0 298 = 241,8 кДж.

3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения  они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

5.4. Закон Гесса и его следствия

В основе термохимических расчетов лежит закон открытый российским ученым Гессом Г. И. (1841 г.). Суть его в следующем: тепловой эффект химической реакции зависит только от начального и конечного состояния системы, но не зависит от скорости и пути процесса, то есть от числа промежуточных стадий. Это, в частности, значит, что термохимические реакции можно складывать вместе с их тепловыми эффектами. Например, образование CO 2 из углерода и кислорода можно представить следующей схемой:

С+О 2 Н 1 СО 2 1. C (граф.) +O 2 (г) = CO 2 (г) , Н 0 1 = 396 кДж.

2. C (граф.) + 1/2O 2 (г) = CO (г) , Н 0 2 = Х кДж.

Н 2 Н 3

3. CO (г) + 1/2O 2 (г) = CO 2 (г) , Н 0 3 = 285,5кДж.

СО + ½ О 2

Все эти три процесса находят широкое применение в практике. Как известно, тепловые эффекты образования СО 2 (Н 1) и горения СО (Н 3) определяются экспериментально. Тепловой же эффект образования СО (Н 2) экспериментально измерить невозможно, так как при горении углерода в условиях недостатка кислорода образуется смесь СО и СО 2 . Но энтальпию реакции образования СО из простых веществ можно рассчитать.

Из закона Гесса следует, что H 0 1 = H 0 2 + H 0 3 . Следовательно,

H 0 2 = H 0 1  H 0 3 = 396  (285,5) = 110,5 (кДж) – это и есть истенная величина

Таким образом, пользуясь законом Гесса, можно находить теплоту реакций, которые невозможно определить экспериментально.

В термохимических расчетах широко используют два следствия закона Гесса. По первому, тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (реагентов).

Н 0 х.р. = n прод · H 0 ƒ прод - n исх · Н 0 ƒ реагентов ,

где n  количество вещества; Н 0 ƒ  стандартная энтальпия (теплота) образования вещества.

Тепловой эффект реакции образования 1 моль сложного вещества из простых веществ, определенный при стандартных условиях, называется стандартной энтальпией образования этого вещества (Н 0 образ или Н 0 ƒ кДж/моль).

Так как абсолютную энтальпию вещества определить невозможно, то для измерений и расчетов необходимо определить начало отсчета, то есть систему и условия, для которых принимается значение : Н = 0. В термодинамике в качестве начала отсчета принимают состояния простых веществ в их наиболее устойчивых формах при обычных условиях – в стандартном состоянии.

Например: Н 0 ƒ (О 2) = 0, но Н 0 ƒ (О 3) = 142,3 кДж/моль. Стандартные энтальпии образования определены для многих веществ и проведены в справочниках (табл. 5.1).

В общем виде для реакции аА+ вВ = сС + dD энтальпия, согласно первому следствию определяется по уравнению:

H 0 298 х.р. = (cН 0 ƒ, C + dН 0 ƒ , Е)  (аH 0 ƒ , A + вH 0 ƒ , B).

Второе следствие закона Гесса относится к органическим веществам. Тепловой эффект реакции с участием органических веществ равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов.

При этом теплота сгорания определяется в предположении полного

сгорания: углерод окисляется до CO 2 , водород  до H 2 O, азот  до N 2 .

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества (Н 0 сг.). При этом очевидно, что теплоты сгорания O 2 , CO 2 , H 2 O, N 2 принимаются равными нулю.

Таблица 5.1

Термодинамические константы некоторых веществ

Вещество

Н 0 f , 298 , кДж/ моль

S 0 298 , Дж/ мольK

G 0 f , 298 , кДж/ моль

Вещество

Н 0 f , 298, кДж/ моль

Дж/ мольK

G 0 f , 298 ,

С(графит)

Например, теплоту сгорания этанола

C 2 H 5 OH (ж) + 3O 2 = 2CO 2 + 3H 2 O (г)

H 0 х.р. = Н 0 сг (C 2 H 5 OH) = 2Н 0 ƒ, (CO 2)+3Н 0 ƒ, (H 2 O)  Н 0 ƒ, (C 2 H 5 OH).

Н 0 сг (C 2 H 5 OH) = 2(393,5) + 3(241,8) – (277,7) = 1234,7 кДж/моль.

Значения теплот сгорания также приведены в справочниках.

Пример 1. Определить тепловой эффект реакции дегидратации этанола, если

H 0 сг (C 2 H 4) =1422,8;H 0 сг (H 2 О) = 0; Н 0 сг (C 2 H 5 OH) =1234,7 (кДж/моль).

Решение. Запишем реакцию:C 2 H 5 OH (ж) =C 2 H 4 +H 2 O.

Согласно второму следствию определяем тепловой эффект реакции по теплотам сгорания, которые приведены в справочнике:

H 0 298 х.р = H 0 сг (C 2 H 5 OH)  H 0 сг (C 2 H 4)  H 0 сг (H 2 O) =

1234,7 + 1422,8 = 188,1 кДж/моль.

В технике для характеристики тепловых качеств отдельных видов топлива обычно используют их теплотворную способность.

Теплотворной способностью топлива называется тепловой эффект, который соответствует сгоранию единицы массы (1 кг) для твердых и жидких видов топлива или единицы объема (1 м 3) для газообразного топлива (табл. 5.2).

Таблица 5.2

Теплотворная способность и состав некоторых

распространенных видов топлива

Теплотворная способность,

кислород

Антрацит*

Древ. уголь

Прир. газ

Сырая нефть

*Антрацит – каменный уголь с максимальным содержанием углерода (94-96%).

Водород является наиболее эффективным химическим энергоносителем для энергетики, транспорта и технологии будущего, поскольку имеет очень высокую теплотворную способность (табл. 4.2), его относительно легко транспортировать, а при его сгорании образуется только вода, т.е. он является "чистым" горючим, не вызывает загрязнения воздуха. Однако, его широкому использованию в качестве источника энергии мешает слишком малое содержание водорода в природе в свободном состоянии. Большую часть водорода получают разложением воды или углеводородов. Однако, такое разложение требует большого расхода энергии, причем на практике из-за тепловых потерь на получение водорода приходится затратить больше энергии, чем ее потом можно будет получить. В перспективе, если удастся создать большие и дешевые источники энергии (например, в результате развития техники получения ядерной или солнечной энергии), часть ее будет использоваться на получение водорода. Многие ученые убеждены, что энергетика будущего – это водородная энергетика.

С помощью закона Гесса и его следствий можно определять многие величины, в том числе не определяемые экспериментально, если соответствующую неизвестной величине реакцию можно получить, складывая другие реакции с известными характеристиками.

Пример 2. Исходя из теплоты сгорания СН 4 (Н 0 сг =890кДж/моль) и Н 2 (Н 0 сг =286 кДж/моль), вычислить теплотворную способность газа, содержащего 60 % водорода и 40 % метана СН 4 .

Решение . Запишем термохимические уравнения реакций сгорания:

1) Н 2 +½О 2 = Н 2 О (ж) ;Н 0 f (Н 2 О)=286 кДж/моль;

    СН 4 + 2О 2 = СО 2 + 2Н 2 О (ж) ;Н 0 2

H 0 2 = Н 0 ƒ, (CO 2) + 2Н 0 ƒ, (Н 2 0)Н 0 ƒ, (СН 4) =3932 . 286 + 75 =890 кДж/моль.

1м 3 газа содержит 600л Н 2 и 400л СН 4 , что составляетН 2 иСН 4 . Теплотворная способность газа составит:

кДж/м 3 .

Пример 3. Используя данные таблицы 5.1, рассчитать тепловой эффект реакции сгорания этилена: С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О (г).

Решение. Из таблицы 5.1 выписываем значения энтальпий образования веществ, участвующих в реакции (в кДж/моль):

H 0 ƒ , co 2 =393,5;Н 0 ƒ , с 2 н 4 = 52,3;Н 0 ƒ , н 2 о =241,8.

(Напомним, что энтальпия образования простых веществ равна нулю.)

Согласно следствию из закона Гесса (4.4):

H 0 298 х.р =n прод · Н 0 ƒ , прод n исх · Н 0 ƒ , исх = 2Н 0 ƒ , со 2 + 2Н 0 ƒ , н 2 оН 0 ƒ , с 2 н 4 =

2 . (393,5) + 2 . (241,8)52,3 =1322,9 кДж.

Пример 4. Исходя из теплового эффекта реакции

3СаО (т) + Р 2 О 5 (т) = Са 3 (РО 4) 2 (т) ,Н 0 =739 кДж,

определить энтальпию образования ортофосфата кальция.

Решение. По следствию из закона Гесса:

H 0 298 х.р =Н 0 ƒ , Са 3 (PO 4) 2 (3Н 0 ƒ, СаО +Н 0 ƒ, P 2 O 5).

Из табл. 4.1: Н 0 ƒ , (СаО) =635,5;Н 0 ƒ , (P 2 O 5)=1492 (кДж/моль).

Н 0 ƒ , Са 3 (PO 4) 2 =739 + 3 . (635,5)1492 =4137,5 кДж/моль.

Пример 5. Написать термохимическое уравнение реакции сгорания твердой серы в N 2 O, если известно, что при сгорании 16 г серы выделяется 66,9 кДж тепла (предполагается, что при измерении теплоты температура продуктов снижается до температуры реагентов, равной 298 К).

Решение. Чтобы записать термохимическое уравнение, надо рассчитать тепловой эффект реакции:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ;H 0 = Х кДж.

По условию задачи известно, что при сгорании 16 г серы выделяется 66,9 кДж, а в реакции участвует 32 г серы. Составляем пропорцию:

16г 66,9 кДж

32г X кДж X = 133,8 к Дж.

Таким образом, термохимическое уравнение записывается так:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ,Н 0 х..р. =133,8 кДж.

(Так как тепло выделяется, реакция экзотермическая, Н 0 0).

Пример 6. Какое количество теплоты выделится при соединении 5,6 л водорода с хлором (н. у.), если энтальпия образования хлористого водорода равна91,8 кДж/моль (температура продуктов и реагентов равна 25С).

Решение. Н 0 ƒ , (HCl) = -91,8 кДж/моль, это значит, что при образовании одного моля HCl из простых веществ выделяется 91,8 кДж тепла, что соответствует термохимическому уравнению:

½Cl 2 +½ H 2 =HCl,H 0 ƒ =91,8 кДж.

Из уравнения видно, что для получения 1 моль HCl расходуется 0,5 моль Н 2 , т. е. 0,5·22,4 л = 11,2 л. Составляем пропорцию:

11,2 л 91,8 кДж

5,6 л XX= 45,19 кДж.

Ответ: выделится 45,19 кДж тепла.

Пример 7. Определить энтальпию образования оксида железа (III), исходя из трех термохимических уравнений (справочником не пользоваться):

    Fe 2 O 3 + 3CO = 2Fe + 3CO 2 , Н 0 1 = 26,5 кДж;

    С (графит) +½O 2 = CO,Н 0 2 =110,4 кДж;

    СO 2 = C (графит) + O 2 ,Н 0 3 = + 393,3 кДж.

Решение: Запишем уравнение, тепловой эффект которого нужно определить:

4Fe + 3O 2 = 2Fe 2 O 3 ; Н 0 4 = 2Х кДж.

Чтобы из первых трех уравнений получить четвертое, надо уравнение 1) умножить на (2), а уравнения 2) и 3) – на (6) и сложить:

1) 4Fe + 6CO 2 = 2Fe 2 O 3 + 6CO, Н 0 1 = 2·(+26,5) кДж;

2) 6CO = 6С (графит) + 3O 2 ,Н 0 2 = 6·(+110,4) кДж;

3) 6C (графит) + 6O 2 = 6СO 2 ,Н 0 3 = 6·(393,3) кДж;

Н 0 4 = 2Н 0 1 + 6Н 0 2 + 6Н 0 3 = +53 + 662,42359,8 =1644,4 кДж.

Отсюда Н 0 ƒ (Fe 2 O 3) =822,2 кДж/моль.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Воронежский государственный технический университет

КУРСОВОЙ ПРОЕКТ

по дисциплине «Теоретические основы прогрессивной технологии»

Тема: «Тепловой эффект химической реакции и его практическое применение.»

Воронеж 2004

Введение …………………………………………………………………… 3
1. Тепловой эффект химической реакции………………………………... 4
1.1. Уравнения химических реакций……………………………... 8
1.2. Основные законы термохимии………………………………. 10
2. Применение теплового эффекта на практике…………………………. 12
2.1.Жаропрочные покрытия………………………………………. 1
2.2.Термохимический способ обработки алмаза………………... 14
2.3.Техногенное сырьё для производства цемента……………… 15
2.4. Биосенсоры……………………………………………………. 16
Заключение…………………………………………………………………. 17
Список литературы………………………………………………………… 18

Введение

Тепловые эффекты химических реакций необходимы для многих технических расчетов. Они находят обширное применение во многих отраслях промышленности, а также в военных разработках.

Целью данной курсовой работы является изучение практического применения теплового эффекта. Мы рассмотрим некоторые варианты его использования, и выясним насколько важноиспользование тепловых эффектов химических реакций в условиях развития современных тех­нологий.


1. Тепловой эффект химической реакции

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Одним из самых известных ученых, работающих в области термохимии, является Бертло. Бертло- профессор химии Высшей фармацевтической школы в Париже (1859г). Министр просвещения и иностранных дел.

Начиная с 1865 Бертло активно занимался термохимией, провел обширные калориметрические исследования, приведшие, в частности, к изобретению "калориметрической бомбы" (1881); ему принадлежат понятия "экзотермической" и "эндотермической" реакций. Бертло получены обширные данные о тепловых эффектах огромного числа реакций, о теплоте разложения и образования многих веществ.

Бертло исследовал действие взрывчатых веществ: температуру взрыва, скорости сгорания и распространения взрывной волны и др.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию. Когда химическая связь образуется, энергия выделяется.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты (рис. 1а). Такие реакции являются экзотермическими.

· Реакции, протекающие с выделением теплоты, проявляют положительный тепловой эффект (Q>0, DH<0) и называются экзотермическими.

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими.

· Реакции, которые идут с поглощением теплоты из окружающей среды (Q<0, DH>0), т.е. с отрицательным тепловым эффектом, являются эндотермическими.

Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании (рис. 1б).


Рис. 1а


Рис. 1б

Рис. 1а,б. Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

    Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = H кон. - H исх. = E кон. - E исх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (D Е) можно показать графически (рис. 2).

Рис.2. Графическое изображение теплового эффекта (Q = D Е): а ) экзотермической реакции горения водорода; б ) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).


1.1. Уравнения химических реакций

· Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями.

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH 4 путем прямого соединения углерода с водородом:

С + 2 H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4 (г) + 2 O 2 (г) = СO 2 (г) + 2 H 2 О(ж) + 890 кДж

б) С(тв) + O 2 (г) = СO 2 (г) + 394 кДж

в) 2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4 (г) - С(тв) - 2 H 2 (г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С(тв) + 2 H 2 (г) = CH 4 (г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.


1.2. Основные законы термохимии

· Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией.

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:

· Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2 H 2 (г) + O 2 (г) 2 H 2 О(ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О(ж) + 572 кДж = 2 H 2 (г) + O 2 (г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:

· Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.


2. Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

Тепловой эффект рассчитывается при получении монометиланилина, который относится к классу замещенных ароматических аминов. Основная область применения монометиланилина – антидетонационная присадка для бензинов. Возможно использование монометиланилина в производстве красителей. Товарный монометиланилин (N-метиланилин) выделяется из катализата методом периодической или непрерывной ректификации. Тепловой эффект реакции ∆Н= -14±5 кДж/моль.

2.1.Жаропрочные покрытия

Развитие техники высоких температур вызывает необходимость создания особо жаропрочных материалов. Эта задача может быть решена путём использования тугоплавких и жаропрочных металлов. Интерметаллические покрытия привлекают всё большее внимание, поскольку обладают многими ценными качествами: стойкостью к окислению, агрессивными расплавами, жаропрочностью и т.д. Интерес представляет и существенная экзотермичность образования этих соединений из составляющих их элементов.Возможны два способа использования экзотермичности реакции образования интерметаллидов. Первый – получение композитных, двухслойных порошков. При нагреве компоненты порошка вступают во взаимодействие, и тепло экзотермической реакции компенсируют остывание частиц, достигающих защищаемой поверхности в полностью расплавленном состоянии и образующих малопористое прочно сцеплённое с основой покрытие. Другим вариантом может быть нанесение механической смеси порошков. При достаточном нагреве частиц они вступают во взаимодействие уже в слое покрытие. Если величина теплового эффекта значительная, то это может привести к самопроплавлению слоя покрытия, образованию промежуточного диффузионного слоя, повышающего прочность сцепления, получения плотной, малопористой структуры покрытия. Пpи выборе композиции, образующей интерметаллидное покрытие с большим тепловым эффектом и обладающее многими ценными качествами – коррозионной стойкостью, достаточной жаропрочностью и износостойкостью, обращает на себя внимание алюминиды никеля, в частности NiAl и Ni 3 Al. Образование NiAl сопровождается максимальным тепловым эффектом.

2.2.Термохимический способ обработки алмаза

Свое название "термохимический" способ получил благодаря тому, что протекает он при повышенных температурах, а в основе его лежит использование химических свойств алмаза. Осуществляется способ следующим образом: алмаз приводят в контакт с металлом, способным растворять в себе углерод, а для того, чтобы процесс растворения или обработки шел непрерывно, его проводят в атмосфере газа, взаимодействующего с растворенным в металле углеродом, но не реагирующим непосредственно с алмазом. В процессе величина теплового эффекта принимает высокое значение.

Для определения оптимальных условий проведения термохимической обработки алмаза и выявления возможностей способа потребовалось изучить механизмы определенных химических процессов, которые, как показал анализ литературы, вообще не исследовались. Более конкретному изучению термохимической обработки алмаза мешало, прежде всего, недостаточное знание свойств самого алмаза. Опасались испортить его нагревом. Исследования по термической устойчивости алмаза были выполнены лишь в последние десятилетия. Установлено, что алмазы, не содержащие включений, в нейтральной атмосфере или в вакууме можно без всякого для них вреда нагреть до 1850 “С”, и только выше.

Алмаз является лучшим материалом для лезвия благодаря уникальной твердости, упругости и низкому трению по биологическим тканям. Оперирование алмазными ножами облегчает проведение операций, сокращает в 2-3 раза сроки заживления разрезов. По мнению микрохирургов МНТК микрохирургии глаза, ножи, заточенные термохимическим способом, не только не уступают, но и превосходят по качеству лучшие зарубежные образцы. Термохимически заточенными ножами уже сделаны тысячи операций. Алмазные ножи разной конфигурации и размеров могут применяться и в других областях медицины, биологии. Так, для изготовления препаратов в электронной микроскопии используют микротомы. Высокая разрешающая способность электронного микроскопа предъявляет особые требования к толщине и качеству среза препаратов. Алмазные микротомы, заточенные термохимическим методом, позволяют изготавливать срезы нужного качества.

2.3. Техногенное сырьё для производства цемента

Дальнейшая интенсификация цементного производства предполагает широкое внедрение энерго- и ресурсосберегающих технологий с использованием отходов различных отраслей.

При переработке скарново-магнетитовых руд выделяются хвосты сухой магнитной сепарации (СМС), представляющие собой щебневидный материал с размером зерен до 25 мм. Хвосты СМС имеют достаточно стабильный химический состав, мас.%: SiO 2 40…45, Al 2 O 3 10…12, Fe 2 O 3 15…17, CaO 12…13, MgO 5…6, S 2…3, R 2 O 2…4. Доказана возможность использования хвостов СМС в производстве портландцементного клинкера. Полученные цементы характеризуются высокими прочностными показателями.

Тепловой эффект клинкерообразования (ТЭК) определен как алгебраическая сумма теплот эндотермических процессов (декарбонизация известняка, дегидратация минералов глины, образование жидкой фазы) и экзотермических реакций (окисление пирита, вносимого хвостами СМС, формирование клинкерных фаз).

Основными преимуществами использования отходов обогащения скарново-магнетитовых руд в производстве цемента являются:

Расширение сырьевой базы за счет техногенного источника;

Экономия природного сырья при сохранении качества цемента;

Снижение топливно-энергетических затрат на обжиг клинкера;

Возможность выпуска малоэнергоемких активных низкоосновных клинкеров;

Решение экологических проблем за счет рациональной утилизации отходов и сокращения газовых выбросов в атмосферу при обжиге клинкера.

2.4. Биосенсоры

Биосенсоры - датчики на основе иммобилизованных ферментов. Позволяют быстро и качественно анализировать сложные, многокомпонентные смеси веществ. В настоящее время находят все более широкое применение в целом ряде отраслей науки, промышленности, сельского хозяйства и здравоохранения. Основой для создания автоматических систем ферментативного анализа послужили последние достижения в области энзимологии и инженерной энзимологии. Уникальные качества ферментов - специфичность действия и высокая каталитическая активность - способствуют простоте и высокой чувствительности этого аналитического метода, а большое количество известных и изученных на сегодняшний день ферментов позволяют постоянно расширять список анализируемых веществ.

Ферментные микрокалориметрические датчики - используют тепловой эффект ферментативной реакции. Состоит из двух колонок (измерительной и контрольной), заполненных носителем с иммобилизованным ферментом и снаряженных термисторами. При пропускании через измерительную колонку анализируемого образца происходит химическая реакция, которая сопровождается регистрируемым тепловым эффектом. Данный тип датчиков интересен своей универсальностью.

Заключение.

Итак, проведя анализ практического применения теплового эффекта химических реакций, можно сделать вывод: тепловой эффект вплотную связан с нашей повседневной жизнью, он подвергается постоянному исследованию и находит всё новые применения на практике.

В условиях развития современных технологий теплой эффект нашел свое применение в различных отраслях. Химическая, военная, строительная, пищевая, горнодобывающая и многие другие отрасли используют тепловой эффект в своих разработках. Он применяется в двигателях внутреннего сгорания, холодильных установках и в различных топочных устройствах, а также в производстве хирургических приборов, жаропрочных покрытий, новых видах строительных материалов и так далее.

В современных условиях постоянно развивающейся науке, мы наблюдаем появление всё более новых разработок и открытий в сфере производства. Это влечет за собой всё новые и новые области применения теплового эффекта химических реакций.


Список литературы

1. МусабековЮ. С., МарселенБертло, М., 1965; Centenaire de Marcelin Berthelot, 1827-1927, P., 1929.

2. Патент 852586 Российская Федерация. МКИ В 28 Д 5/00. Способ размерной обработки алмаза /А.П.Григорьев, С.Х.Лифшиц, П.П.Шамаев (Российская Федерация). - 2 с.

3. Классен В.К. Материальный баланс.Теплотехнические расчеты тепловых агрегатов. – Белгород: БТИСМ, 1978. –114 с.

4. Перегудов В.В., Роговой М.И. Тепловые процессы и установки в технологии строительных изделий и деталей.– М.:Стройиздат,1983.-416с.

5. Е-mail:[email protected]

6. "Биотехнологии" (http://www.ictc.ru/R_42.htm).

7. С.Д. Варфоломеев, Ю.М. Евдокимов, М.А. Островский. "ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК".