Тепловое излучение. Энергетическая светимость

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Закон Стефана Больцмана Связь энергетической светимости R e и спектральной плотности энергетической светимости абсолютно черного тела Энергетическая светимость серого тела Закон смещения Вина (1-ый закон) Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры (2-ой закон) Формула Планка


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны = 0,48 мкм. Считая, что Солнце излучает как черное тело, определить: 1) температуру его поверхности; 2) мощность, излучаемую его поверхностью. Согласно закону смещения Вина Мощность, излучаемая поверхностью Солнца Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 2. Определить количество теплоты, теряемое 50 см 2 с поверхности расплавленной платины за 1 мин, если поглощательная способность платины А Т = 0,8. Температура плавления платины равна 1770 °С. Количество теплоты, теряемое платиной равно энергии, излучаемой ее раскаленной поверхностью Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 3. Электрическая печь потребляет мощность Р = 500 Вт. Температура ее внутренней поверхности при открытом небольшом отверстии диаметром d = 5,0 см равна 700 °С. Какая часть потребляемой мощности рассеивается стенками? Полная мощность определяется суммой Мощность, выделяемая через отверстие Мощность рассеиваемая стенками Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 4 Вольфрамовая нить накаливается в вакууме током силой I = 1 А до температуры T 1 = 1000 К. При какой силе тока нить накалится до температуры Т 2 = 3000 К? Коэффициенты поглощения вольфрама и его удельные сопротивления, соответствующие температурам T 1, Т 2 равны: a 1 = 0,115 и a 2 = 0,334; 1 = 25, Ом м, 2 = 96, Ом м Мощность излучаемая равна мощности потребляемой от электрической цепи в установившемся режиме Электрическая мощность выделяемая в проводнике Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 5. В спектре Солнца максимум спектральной плотности энергетической светимости приходится на длину волны.0 = 0,47 мкм. Приняв, что Солнце излучает как абсолютно черное тело, найти интенсивность солнечной радиации (т. е. плотность потока излучения) вблизи Земли за пределами ее атмосферы. Сила света (интенсивность излучения) Световой поток Согласно законам Стефана Больцмана и Вина


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 6. Длина волны 0, на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Определить максимальную спектральную плотность энергетической светимости (r,T) max, рассчитанную на интервал длин волн = 1 нм, вблизи 0. Максимальная спектральная плотность энергетической светимости пропорциональна пятой степени температуры и выражается 2-ым законом Вина Температуру Т выразим из закона смещения Вина значение С дано в единицах СИ, в которых единичный интервал длин волн =1 м. По условию же задачи требуется вычислить спектральную плотность энергетической светимости, рассчитанную на интервал длин волн 1 нм, поэтому выпишем значение С в единицах СИ и пересчитаем его на заданный интервал длин волн:


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 7. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны =500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость R e Солнца; 2) поток энергии Ф е, излучаемый Солнцем; 3) массу электромагнитных волн (всех длин), излучаемых Солнцем за 1 с. 1. Согласно законам Стефана Больцмана и Вина 2. Световой поток 3. Массу электромагнитных волн (всех длин), излучаемых Солнцем за время t=1 с, определим, применив закон пропорциональности массы и энергии Е=мс 2. Энергия электромагнитных волн, излучаемых за время t, равна произведению потока энергии Ф e ((мощности излучения) на время: E=Ф e t. Следовательно, Ф е =мс 2, откуда m=Ф е /с 2.

d Φ e {\displaystyle d\Phi _{e}} , испускаемого малым участком поверхности источника излучения, к его площади d S {\displaystyle dS} : M e = d Φ e d S . {\displaystyle M_{e}={\frac {d\Phi _{e}}{dS}}.}

Говорят также, что энергетическая светимость - это поверхностная плотность испускаемого потока излучения.

Численно энергетическая светимость равна среднему по времени модулю составляющей вектора Пойнтинга , перпендикулярной поверхности. Усреднение при этом проводится за время, существенно превосходящее период электромагнитных колебаний.

Испускаемое излучение может возникать в самой поверхности, тогда говорят о самосветящейся поверхности. Другой вариант наблюдается при освещении поверхности извне. В таких случаях некоторая часть падающего потока в результате рассеяния и отражения обязательно возвращается обратно. Тогда выражение для энергетической светимости имеет вид:

M e = (ρ + σ) ⋅ E e , {\displaystyle M_{e}=(\rho +\sigma)\cdot E_{e},}

где ρ {\displaystyle \rho } и σ {\displaystyle \sigma } - коэффициент отражения и коэффициент рассеяния поверхности соответственно, а - её облучённость .

Другие, иногда используемые в литературе, но не предусмотренные ГОСТОм наименования энергетической светимости: - излучательность и интегральная испускательная способность .

Спектральная плотность энергетической светимости

Спектральная плотность энергетической светимости M e , λ (λ) {\displaystyle M_{e,\lambda }(\lambda)} - отношение величины энергетической светимости d M e (λ) , {\displaystyle dM_{e}(\lambda),} приходящейся на малый спектральный интервал d λ , {\displaystyle d\lambda ,} , заключённый между λ {\displaystyle \lambda } и λ + d λ {\displaystyle \lambda +d\lambda } , к ширине этого интервала:

M e , λ (λ) = d M e (λ) d λ . {\displaystyle M_{e,\lambda }(\lambda)={\frac {dM_{e}(\lambda)}{d\lambda }}.}

Единицей измерения в системе СИ является Вт·м −3 . Поскольку длины волн оптического излучения принято измерять в нанометрах , то на практике часто используется Вт·м −2 ·нм −1 .

Иногда в литературе M e , λ {\displaystyle M_{e,\lambda }} именуют спектральной испускательной способностью .

Световой аналог

M v = K m ⋅ ∫ 380 n m 780 n m M e , λ (λ) V (λ) d λ , {\displaystyle M_{v}=K_{m}\cdot \int \limits _{380~nm}^{780~nm}M_{e,\lambda }(\lambda)V(\lambda)d\lambda ,}

где K m {\displaystyle K_{m}} - максимальная световая эффективность излучения , равная в системе СИ 683 лм /Вт . Её численное значение следует непосредственно из определения канделы .

Сведения о других основных энергетических фотометрических величинах и их световых аналогах приведены в таблице. Обозначения величин даны по ГОСТ 26148-84 .

Энергетические фотометрические величины СИ
Наименование (синоним ) Обозначение величины Определение Обозначение единиц СИ Световая величина
Энергия излучения (лучистая энергия) Q e {\displaystyle Q_{e}} или W {\displaystyle W} Энергия, переносимая излучением Дж Световая энергия
Поток излучения (лучистый поток) Φ {\displaystyle \Phi } e или P {\displaystyle P} Φ e = d Q e d t {\displaystyle \Phi _{e}={\frac {dQ_{e}}{dt}}} Вт Световой поток
Сила излучения (энергетическая сила света) I e {\displaystyle I_{e}} I e = d Φ e d Ω {\displaystyle I_{e}={\frac {d\Phi _{e}}{d\Omega }}} Вт·ср −1 Сила света
Объёмная плотность энергии излучения U e {\displaystyle U_{e}} U e = d Q e d V {\displaystyle U_{e}={\frac {dQ_{e}}{dV}}} Дж·м −3 Объёмная плотность световой энергии
Энергетическая яркость L e {\displaystyle L_{e}} L e = d 2 Φ e d Ω d S 1 cos ⁡ ε {\displaystyle L_{e}={\frac {d^{2}\Phi _{e}}{d\Omega \,dS_{1}\,\cos \varepsilon }}} Вт·м −2 ·ср −1 Яркость
Интегральная энергетическая яркость Λ e {\displaystyle \Lambda _{e}} Λ e = ∫ 0 t L e (t ′) d t ′ {\displaystyle \Lambda _{e}=\int _{0}^{t}L_{e}(t")dt"} Дж·м −2 ·ср −1 Интегральная яркость
Облучённость (энергетическая освещённость) E e {\displaystyle E_{e}} E e = d Φ e d S 2 {\displaystyle E_{e}={\frac {d\Phi _{e}}{dS_{2}}}} Вт·м −2

Спектральная плотность энергетической светимости (яркости) - это функция, показывающая распределение энергетической светимости (яркости) по спектру излучения.
Имея ввиду, что:
Энергетическая светимость - это поверхностная плотность потока энергии, излучаемой поверхностью
Энергетическая яркость - это величина потока, излучаемого единицей площади в единицу телесного угла в данном направлении

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Абсолютно черное тело

Абсолютно черное тело - это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

Для абсолютно черного тела

Серое тело

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

Для серого тела

Закон кирхгофа для теплового излучения

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Температурная зависимость спектральной плотности энергетической светимости абсолютно черного тела

зависимости спектральной плотности энергии излучения L (Т) черного тела от температуры Т в микроволновом диапазоне излучения, устанавливается для диапазона температур от 6300 до 100000 К.

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

B=2,90* м*К

Закон Стефана-Больцмана

Формула рэлея-джинса

формула планка

постоянная планка

Фотоэффе́кт - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта :

Формулировка 1-го закона фотоэффекта : количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл .

Согласно 2-му закону фотоэффекта , максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-ий закон фотоэффекта : для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит .

Фото́н - элементарная частица, квант электромагнитного излучения (в узком смысле -света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Уравнение Эйнштейна для внешнего фотоэффекта

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

энергия масса и импульс фотона

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела.

Давление р, оказываемое волной на поверхность металла можно было рассчитать, как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

Квантовая теория света объясняетдавление света как результат передачи фотонами своего импульса атомам или молекулам вещества.

Эффект Комптона (Комптон-эффект) - явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами

Комптоновская длина волны

Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом.

Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна:

а длина волны:

где p - импульс движущейся частицы.

Опыт Дэвиссона-Джермера - физический эксперимент по дифракции электронов, проведённый в 1927 г. американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматических электронов. Скорость электронов определялась напряжением на электронной пушке:

Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.

В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь - межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристала. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.

Волнова́я фу́нкция , или пси-функция - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей [* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Определение Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

Уравнение шредингера

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Тунне́льный эффект , туннели́рование - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект - явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Изучение строения атомов показало, что атомы состоят из положительно заряженного ядра, в котором сосредоточена почти вся масс. ч атома, и движущихся вокруг ядра отрицательно заряженных электронов.

Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Спектры излучения атомов обычно получаются при высокой температуре источника света (плазма, дуга или искра), при которой происходит испарение вещества, расщепление его молекул на отдельные атомы и возбуждение атомов к свечению. Атомный анализ может быть как эмиссионным - исследование спектров излучения, так и абсорбционным - исследование спектров поглощения.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней. Это излучение характеризуется длиной волны К, частотой v или волновым числом со.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) - полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка : .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

Здесь - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)·10 −11 м , ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собойэнергию ионизации атома водорода.

Постулаты Бора

§ Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

§ Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

§ При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии , где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома . В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Опыты франка и герца

опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии

Формула бальмера

Для описания длин волн λ четырех видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

В настоящее время для серии Бальмера используют частный случай формулы Ридберга:

где λ - длина волны,

R ≈ 1,0974·10 7 м −1 - постоянная Ридберга,

n - главное квантовое число исходного уровня - натуральное число, большее или равное 3.

Водородоподобный атом - атом, содержащий в электронной оболочке один и только один электрон.

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м)

Рентге́новская тру́бка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».

ХАРАКТЕРИСТИЧЕСКОЕ ИЗЛУЧЕНИЕ - рентг. излучение линейчатого спектра. Характерно для атомов каждого элемента.

Химическая связь - явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

молекуляр­ный спектр - спектр излучения (по­глощения), возникающий при квантовых переходах между уровнями энергии моле­кул

Энергетический уровень - собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики.

Квантовое число n главное . Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He + , Li 2+ и т. д.). В этом случае энергия электрона

где n принимает значения от 1 до ∞. Чем меньше n , тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Многоэлектронными атомами называются атомы с двумя и более электронами.

Эффе́кт Зе́емана - расщепление линий атомных спектров в магнитном поле.

Обнаружен в 1896 г. Зееманом для эмиссионных линий натрия.

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин и ассоциированный с ним магнитный момент.

Энергия, которую теряет тело вследствие теплового излучения, характеризуется следующими величинами.

Поток излучения (Ф) - энергия, излучаемая за единицу времени со всей поверхности тела.

Фактически, это мощность теплового излучения. Размерность потока излучения - [Дж/с = Вт].

Энергетическая светимость (Re) - энергия теплового излучения, испускаемого за единицу времени с единичной поверхности нагретого тела:

В системе СИ энергетическая светимость измеряется - [Вт/м 2 ].

Поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т),

Распределение энергетической светимости по спектру теплового излучения характеризует ее спектральная плотность. Обозначим энергию теплового излучения, испускаемого единичной поверхностью за 1 с в узком интервале длин волн от λ до λ + dλ, через dRe.

Спектральной плотностью энергетической светимости(r) или испускательной способностью называется отношение энергетической светимости в узком участке спектра (dRe) к ширине этого участка (dλ):

Примерный вид спектральной плотности и энергетичекая светимость (dRe) в интервале волн от λ до λ + dλ, показаны на рис. 13.1.

Рис. 13.1. Спектральная плотность энергетической светимости

Зависимость спектральной плотности энергетической светимости от длины волны называют спектром излучения тела . Знание этой зависимости позволяет рассчитать энергетическую светимость тела в любом диапазоне длин волн. Формула для расчета энергетической светимости тела в диапазоне длин волн имеет вид:

Полная светимость равна:

Тела не только испускают, но и поглощают тепловое излучение. Способность тела к поглощению энергии излучения зависит от его вещества, температуры и длины волны излучения. Поглощательную способность тела характеризует монохроматический коэффициент поглощенияα .

Пусть на поверхность тела падает поток монохроматического излучения Φ λ с длиной волны λ. Часть этого потока отражается, а часть поглощается телом. Обозначим величину поглощенного потока Φ λ погл.



Монохроматическим коэффициентом поглощения α λ называется отношение потока излучения, поглощенного данным телом, к величине падающего монохроматического потока:

Монохроматический коэффициент поглощения - величина безразмерная. Его значения лежат между нулем и единицей: 0 ≤ α ≤ 1.

Функция α = α(λ,Τ) , выражающая зависимость монохроматического коэффициента поглощения от длины волны и температуры, называется поглощательной способностью тела. Ее вид может быть весьма сложным. Ниже рассмотрены простейшие типы поглощения.

Абсолютно черное тело - это тело, коэффициент поглощения которого равен единице для всех длин волн: α = 1.

Серое тело - это тело, для которого коэффициент поглощения не зависит от длины волны: α = const < 1.

Абсолютно белое тело - это тело, коэффициент поглощения которого равен нулю для всех длин волн: α = 0.

Закон Кирхгофа

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

= /

Следствие из закона:

1. Если тело при данной температуре не поглощает какое-либо излучение, то оно его и не испускает. Действительно, если для некоторой длины волны коэффициент поглощения α = 0, то и r = α∙ε(λT) = 0

1. При одной и той же температуречерное тело излучает больше чем любое другое. Действительно, для всех тел, кроме черного, α < 1, поэтому для них r = α∙ε(λT) < ε

2. Если для некоторого тела экспериментально определить зависимость монохроматического коэффициент поглощения от длины волны и температуры - α = r = α(λT), то можно рассчитать спектр его излучения.

Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением.

Все тела при температуре Т > 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 о С.

Тепловое излучение характеризуют следующими величинами:

W - энергия излучения (в Дж);

(Дж/(с.м 2) - энергетическая светимость (DS - площадь излучающей

поверхности). Энергетическая светимость R - по смыслу –

это энергия, излучаемая единичной площадью за единицу

времени по всем длинам волн l от 0 до .

Кроме этих характеристик, называемых интегральными, используют также спектральные характеристики , которые учитывают количество излучаемой энергии, приходящейся на единичный интервал длин волн или единичный интервал

поглощательная способность (коэффициент поглощения) - это отношение поглощенного светового потока к падающему потоку, взятых в малом интервале длин волн вблизи данной длины волны.

Спектральная плотность энергетической светимости численно равна Мощности излучения с единицы площади поверхности этого тела в интервале частот единичной ширины.



Тепловое излучение и его природа. Ультрафиолетовая катастрофа. Кривая распределения теплового излучения. Гипотеза Планка.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (температурное излучение) - эл--магн. излучение, испускаемое веществом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к-рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр,положение максимума к-рого зависит от темп-ры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускает, напр., поверхность накалённого металла, земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип)для всех безыз-лучат. процессов, т. е. для разл. типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебат. движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства - состояние локального термодинамич. равновесия (ЛТР) - при этом характеризуется значением темп-ры, от к-рой зависит Т. и. в данной точке.

В общем случае системы тел, для к-рой осуществляется лишь ЛТР и разл. точки к-рой имеют разл. темп-ры, Т. и. не находится в термодинамич. равновесии с веществом. Более горячие тела испускают больше, чем поглощают, а более холодные-соответственно наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при к-ром сохраняется распределение темп-ры в системе, необходимо восполнять потерю тепловой энергии излучающим более горячим телом и отводить её от более холодного тела.

При полном термодинамич. равновесии все части системы тел имеют одну темп-ру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. других тел. В этом случае детальное равновесие имеет место и для излучат. переходов, Т. и. находится в термодинамич. равновесии с веществом и наз. излучением равновесным (равновесным является Т. и. абсолютно чёрного тела). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения.

Для Т. и. нечёрных тел справедлив Кирхгофа закон излучения,связывающий их испускат. и поглощат. способности с испускат. способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике, в частности в теории звёздных атмосфер.

Ультрафиоле́товая катастро́фа - физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.

По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности в описании фотометрических характеристик тел.

Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.

Гипо́теза Пла́нка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.