Теория вероятности объяснение. Определения и свойства вероятностей

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Основные понятия теории вероятностей

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными , если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными . Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий .

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны , то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий .

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными , если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Определения и свойства вероятностей

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N , которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А :

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой p , не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А .

Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 3. Бросается игральная кость. Событие B - выпадение чётного числа. Вычислить вероятность этого события.

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:

Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами.

ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что наши понятия слабы;
но потому, что сии вещи не входят в круг наших понятий.
Козьма Прутков

Основная цель изучения математики в средних специальных учебных заведениях состоит в том, чтобы дать студентам набор математических знаний и навыков, необходимых для изучения других программных дисциплин, использующих в той или иной мере математику, для умения выполнять практические расчеты, для формирования и развития логического мышления.

В данной работе последовательно вводятся все базовые понятия раздела математики "Основы теории вероятностей и математической статистики", предусмотренные программой и Государственными образовательными стандартами среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.), формулируются основные теоремы, большая часть которых не доказывается. Рассматриваются основные задачи и методы их решения и технологии применения этих методов к решению практических задач. Изложение сопровождается подробными комментариями и многочисленными примерами.

Методические указания могут быть использованы для первичного ознакомления с изучаемым материалом, при конспектировании лекций, для подготовки к практическим занятиям, для закрепления полученных знаний, умений и навыков. Кроме того, пособие будет полезно и студентам- старшекурсникам как справочное пособие, позволяющее быстро восстановить в памяти то, что было изучено ранее.

В конце работы приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Методические указания предназначены для студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные закономерности массовых случайных событий. Она является теоретической базой для математической статистики, занимающейся разработкой методов сбора, описания и обработки результатов наблюдений. Путем наблюдений (испытаний, экспериментов), т.е. опыта в широком смысле слова, происходит познание явлений действительного мира.

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая.

Случайное явление можно охарактеризовать отношением числа его наступлений к числу испытаний, в каждом из которых при одинаковых условиях всех испытаний оно могло наступить или не наступить.

Теория вероятностей есть раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении.

Математическая статистика - это раздел математики, который имеет своим предметом изучения методов сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия решений.

При этом под статистическими данными понимается совокупность чисел, которые представляют количественные характеристики интересующих нас признаков изучаемых объектов. Статистические данные получаются в результате специально поставленных опытов, наблюдений.

Статистические данные по своей сущности зависят от многих случайных факторов, поэтому математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется комбинаторикой, решаются некоторые задачи, связанные с рассмотрением множеств и составлением различных комбинаций из элементов этих множеств. Например, если взять 10 различных цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то будем получать различные числа, например 143, 431, 5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций отличаются только порядком цифр (например, 143 и 431), другие - входящими в них цифрами (например, 5671 и 1207), третьи различаются и числом цифр (например, 143 и 43).

Таким образом, полученные комбинации удовлетворяют различным условиям.

В зависимости от правил составления можно выделить три типа комбинаций: перестановки, размещения, сочетания .

Предварительно познакомимся с понятием факториала .

Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут .

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и , то можно вынести за скобки

Тогда получим

в) .

Перестановки.

Комбинация из n элементов, которые отличаются друг от друга только порядком элементов, называются перестановками.

Перестановки обозначаются символом Р n , где n- число элементов, входящих в каждую перестановку. (Р - первая буква французского слова permutation - перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числу перестановок из 6 элементов, т.е.

Размещения.

Размещениями из m элементов в n в каждом называются такие соединения, которые отличаются друг от друга либо самими элементами (хотя бы одним), либо порядком из расположения.

Размещения обозначаются символом , где m - число всех имеющихся элементов, n - число элементов в каждой комбинации. (А- первая буква французского слова arrangement , что означает "размещение, приведение в порядок").

При этом полагают, что nm.

Число размещений можно вычислить по формуле

,

т.е. число всех возможных размещений из m элементов по n равно произведению n последовательных целых чисел, из которых большее есть m .

Запишем эту формулу в факториальной форме:

Пример 3. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов?

Решение. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е.

.

Сочетания.

Сочетаниями называются все возможные комбинации из m элементов по n , которые отличаются друг от друга по крайней мере хотя бы одним элементом (здесь m и n- натуральные числа, причем n m ).

Число сочетаний из m элементов по n обозначаются (С -первая буква французского слова combination - сочетание).

В общем случае число из m элементов по n равно числу размещений из m элементов по n , деленному на число перестановок из n элементов:

Используя для чисел размещений и перестановок факториальные формулы, получим:

Пример 4. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?

Решение. Так как порядок выбранных четырех человек не имеет значения, то это можно сделать способами.

Находим по первой формуле

.

Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний:

(по определению полагают и );

.

1.2. Решение комбинаторных задач

Задача 1. На факультете изучается 16 предметов. На понедельник нужно в расписание поставить 3 предмета. Сколькими способами можно это сделать?

Решение. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3.

Задача 2. Из 15 объектов нужно отобрать 10 объектов. Сколькими способами это можно сделать?

Задача 3. В соревнованиях участвовало четыре команды. Сколько вариантов распределения мест между ними возможно?

.

Задача 4. Сколькими способами можно составить дозор из трех солдат и одного офицера, если имеется 80 солдат и 3 офицера?

Решение. Солдат в дозор можно выбрать

способами, а офицеров способами. Так как с каждой командой из солдат может пойти любой офицер, то всего имеется способов.

Задача 5. Найти , если известно, что .

Так как , то получим

,

,

По определению сочетания следует, что , . Т.о. .

1.3. Понятие о случайном событии. Виды событий. Вероятность события

Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием.

Результат этого действия или наблюдения называется событием .

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным . В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти,- невозможным .

События называются несовместными , если каждый раз возможно появление только одного из них.

События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными , если в условиях испытания они, являясь единственными его исходами, несовместны.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, Д, : .

Полной системой событий А 1 , А 2 , А 3 , : , А n называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании.

Если полная система состоит из двух несовместных событий, то такие события называются противоположными и обозначаются А и .

Пример. В коробке находится 30 пронумерованных шаров. Установить, какие из следующих событий являются невозможными, достоверными, противоположными:

достали пронумерованный шар (А);

достали шар с четным номером (В);

достали шар с нечетным номером (С);

достали шар без номера (Д).

Какие из них образуют полную группу?

Решение. А - достоверное событие; Д - невозможное событие;

В и С - противоположные события.

Полную группу событий составляют А и Д, В и С .

Вероятность события, рассматривается как мера объективной возможности появления случайного события.

1.4. Классическое определение вероятности

Число, являющееся выражением меры объективной возможности наступления события, называется вероятностью этого события и обозначается символом Р(А).

Определение. Вероятностью события А называется отношение числа исходов m, благоприятствующих наступлению данного события А , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е. .

Следовательно, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, подсчитать все возможные несовместные исходы n, выбрать число интересующих нас исходов m и вычислить отношение m к n .

Из этого определения вытекают следующие свойства:

Вероятность любого испытания есть неотрицательное число, не превосходящее единицы.

Действительно, число m искомых событий заключено в пределах . Разделив обе части на n , получим

2. Вероятность достоверного события равна единице, т.к. .

3. Вероятность невозможного события равна нулю, поскольку .

Задача 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Решение. Общее число различных исходов есть n =1000. Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле, получим

.

Задача 2. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Решение. Число всех равновозможных независимых исходов n равно числу сочетаний из 18 по 5 т.е.

Подсчитаем число m, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 качественных и 2 бракованных. Число способов выборки двух бракованных деталей из 4 имеющихся бракованных равно числу сочетаний из 4 по 2:

Число способов выборки трех качественных деталей из 14 имеющихся качественных равно

.

Любая группа качественных деталей может комбинироваться с любой группой бракованных деталей, поэтому общее число комбинаций m составляет

Искомая вероятность события А равна отношению числа исходов m, благоприятствующих этому событию, к числу n всех равновозможных независимых исходов:

.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них.

Сумму двух событий обозначают символом А+В, а сумму n событий символом А 1 +А 2 + : +А n .

Теорема сложения вероятностей.

Вероятность суммы двух несовместных событий равна суммевероятностей этих событий.

Следствие 1. Если событие А 1 , А 2 , : ,А n образуют полную систему, то сумма вероятностей этих событий равна единице.

Следствие 2. Сумма вероятностей противоположных событий и равна единице.

.

Задача 1. Имеется 100 лотерейных билетов. Известно, что на 5 билетов попадает выигрыш по 20000 руб., на 10 - по 15000 руб, на 15 - по 10000 руб., на 25 - по 2000 руб. и на остальные ничего. Найти вероятность того, что на купленный билет будет получен выигрыш не менее 10000 руб.

Решение. Пусть А, В, и С- события, состоящие в том, что на купленный билет падает выигрыш, равный соответственно 20000, 15000 и 10000 руб. так как события А, В и С несовместны, то

Задача 2. На заочное отделение техникума поступают контрольные работы по математике из городов А, В и С . Вероятность поступления контрольной работы из города А равна 0,6, из города В - 0,1. Найти вероятность того, что очередная контрольная работа поступит из города С .

Раздел 12. Теория вероятностей.

1. Введение

2. Простейшие понятия теории вероятностей

3. Алгебра событий

4. Вероятность случайного события

5. Геометрические вероятности

6. Классические вероятности. Формулы комбинаторики.

7. Условная вероятность. Независимость событий.

8. Формула полной вероятности и формулы Байеса

9. Схема повторных испытаний. Формула Бернулли и её асимптотика

10. Случайные величины (СВ)

11. Ряд распределения ДСВ

12. Интегральная функция распределения

13. Функция распределения НСВ

14. Плотность вероятности НСВ

15. Числовые характеристики случайных величин

16. Примеры важных распределений СВ

16.1. Биномиальное распределение ДСВ.

16.2. Распределение Пуассона

16.3. Равномерное распределение НСВ.

16.4. Нормальное распределение.

17. Предельные теоремы теории вероятностей.

Введение

Теория вероятностей, подобно многим другим математическим дисциплинам, развивалась из потребностей практики. При этом, изучая реальный процесс, приходилось создавать абстрактную математическую модель реального процесса. Обычно учитывают главные, наиболее существенные движущие силы реального процесса, отбрасывая из рассмотрения второстепенные, которые называются случайными. Конечно, что считать главным, а что второстепенным,- отдельная задача. Решение этого вопроса определяет уровень абстракции, простоту или сложность математической модели и уровень адекватности модели реальному процессу. В сущности, любая абстрактная модель является результатом двух противостоящих устремлений: простоты и адекватности реальности.

Например, в теории стрельбы разработаны достаточно простые и удобные формулы для определения траектории полёта снаряда из орудия, расположенного в точке (рис. 1).


В определённых условиях упомянутая теория является достаточной, например, при массированной артподготовке.

Однако ясно, что если из одного орудия при одинаковых условиях произвести несколько выстрелов, то траектории будут хотя и близкими, но все же отличающимися. И если размер цели мал по сравнению с областью рассеивания, то возникают специфические вопросы, связанные именно с влиянием факторов, неучтённых в рамках предлагаемой модели. При этом учёт дополнительных факторов приведёт к слишком сложной модели, пользоваться которой практически невозможно. К тому же, этих случайных факторов бывает много, природа их чаще всего неизвестна.



В приведённом примере такими специфическими вопросами, выходящими за рамки детерминированной модели, являются, например, следующие: сколько надо произвести выстрелов, чтобы с определённой уверенностью (например, на ) гарантировать поражение цели? как надо провести пристрелку, чтобы на поражение цели затратить наименьшее количество снарядов? и т.п.

Как мы увидим в дальнейшем, слова «случайный», «вероятность» станут строгими математическими терминами. Вместе с тем они весьма распространены в обычной разговорной речи. При этом считается, что прилагательное «случайный» является противопоставлением «закономерному». Однако, это не так, ибо природа устроена таким образом, что случайные процессы обнаруживают закономерности, но при определённых условиях.

Основное условие называется массовостью.

Например, если подбросить монету, то нельзя предсказать, что выпадает, герб или цифра,- можно лишь угадать. Однако, если эту монету подбросить большое число раз, что доля выпадений герба будет не сильно отличается от некоторого числа, близкого к 0,5 (в дальнейшем это число мы назовем вероятностью). Причем, с увеличением числа подбрасываний отклонение от этого числа будет уменьшаться. Это свойство называется устойчивостью средних показателей (в данном случае - доли гербов). Надо сказать, что на первых шагах теории вероятностей, когда надо было на практике убедиться в наличии свойства устойчивости, даже большие учёные не считали за труд провести самостоятельно проверку. Так, известен опыт Бюффона, который подбросил монету 4040 раз, и герб выпал 2048 раз, следовательно, доля (или относительная частота) выпадения герба равна 0,508, что близко интуитивно к ожидаемому числу 0,5.

Поэтому обычно даётся определение предмета теории вероятностей как раздела математики, изучающего закономерности массовых случайных процессов.

Надо сказать, что, несмотря на то, что наибольшие достижения теории вероятностей относятся к началу прошлого века, в особенности благодаря аксиоматическому построению теории в работах А.Н. Колмогорова (1903-1987), интерес к изучению случайностей проявился давно.

Сначала интересы были связаны с попытками применить числовой подход к азартным играм. Первые достаточно интересные результаты теории вероятностей принято связывать с работами Л. Пачоли (1494г), Д. Кардано (1526) и Н. Тартальи (1556).

Позже Б. Паскаль (1623-1662), П. Ферма (1601-1665), Х. Гюйгенс (1629-1695) заложили основы классической теории вероятностей. В начале 18 века Я. Бернулли (1654-1705) формирует понятие вероятности случайного события как отношение числа благоприятствующих шансов к числу всех возможных. На использовании понятия меры множества строили свои теории Э. Борель (1871-1956), А. Ломницкий (1881-1941), Р. Мизес (1883-1953).

Теоретико-множественная точка зрения в наиболее законченном виде была изложена в 1933г. А.Н. Колмогоровым в его монографии «Основные понятия теории вероятностей». Именно с этого момента теория вероятностей становится строгой математической наукой.

Большой вклад в развитие теории вероятностей внесли русские математики П.Л. Чебышёв (1821-1894), А.А. Марков (1856-1922), С.Н. Бернштейн (1880-1968) и другие.

Теория вероятностей бурно развивается и в настоящее время.

Простейшие понятия теории вероятностей

Как любая математическая дисциплина, теория вероятностей начинается с введения простейших понятий, которые не определяются, а лишь поясняются.

Одним из основных первичных понятий является опыт. Под опытом понимается некоторый комплекс условий, которые могут воспроизводиться неограниченное число раз. Каждую реализацию этого комплекса и назовем опытом или испытанием. Результаты опыта могут быть различными, в этом и проявляется элемент случайности. Различные результаты или исходы опыта называются событиями (точнее случайными событиями). Таким образом, при осуществлении опыта может произойти то или иное событие. Другими словами, случайное событие – это исход опыта, который при осуществлении опыта может произойти (появиться) или не произойти.

Опыт будем обозначать буквой , а случайные события обозначаются обычно заглавными буквами

Часто в опыте можно заранее выделить его исходы, которые можно назвать простейшими, которые нельзя разложить на более простые. Такие события называются элементарными событиями (или случаями).

Пример 1. Пусть подбрасывается монета. Исходами опыта являются: выпадение герба (обозначим это событие буквой ); выпадение цифры (обозначим ). Тогда можно записать: опыт ={подбрасывание монеты}, исходы: Ясно, что элементарные события в данном опыте. Иначе говоря, перечисление всех элементарных событий опыта полностью его описывает. По этому поводу будем говорить, что опыт есть пространство элементарных событий, и в нашем случае опыт кратко можно записать в виде: ={подбрасывание монеты}={Г;Ц}.

Пример 2 . ={монета подбрасывается дважды}= Здесь приведено словесное описание опыта и перечисление всех элементарных событий: означает, что сначала при первом подбрасывании монеты выпал герб, при втором – тоже герб; означает, что при первом подбрасывании монеты выпал герб, при втором цифра и т.д.

Пример 3. В системе координат в квадрат бросаются точки. В этом примере элементарными событиями являются точки с координатами которые удовлетворяют приведенным неравенствам. Кратко это записывается следующим образом:

Двоеточие в фигурных скобках означает, что состоит из точек но не любых, а только тех, которые удовлетворяют условию (или условиям), указанным после двоеточия (в нашем примере это неравенства).

Пример 4. Монета подбрасывается до первого выпадения герба. Другими словами, подбрасывание монеты продолжается до тех пор, пока не выпадет герб. В этом примере элементарные события перечислить можно, хотя их бесконечное число:

Заметим, что в примерах 3 и 4 пространство элементарных событий насчитывает бесконечное число исходов. В примере 4 их можно перечислить, т.е. пересчитать. Такое множество называется счетным. В примере 3 пространство является несчетным.

Введем в рассмотрение еще два события, которые присутствуют в любом опыте и которые имеют большое теоретические значение.

Назовем событие невозможным, если в результате опыта оно обязательно не произойдет. Будем его обозначать знаком пустого множества . Наоборот, событие, которое в результате опыта обязательно произойдёт называется достоверным. Достоверное событие обозначается так же, как и само пространство элементарных событий – буквой .

Например, при подбрасывании игральной кости событие {выпало меньше 9 очков} - достоверное, а событие {выпало ровно 9 очков} невозможное.

Итак, пространство элементарных событий может задаваться словесным описанием, перечислением всех его элементарных событий, заданием правил или условий, по которым получаются все его элементарные события.

Алгебра событий

До сих пор мы говорили лишь об элементарных событиях как непосредственных результатах опыта. Однако в рамках опыта можно говорить и о других случайных событиях, кроме элементарных.

Пример 5. При подбрасывании игральной кости, кроме элементарных событий выпадений соответственно единицы, двойки,…, шестерки, можно говорить о других событиях: (выпадение четного числа), (выпадение нечетного числа), (выпадение числа, кратного трем), (выпадение числа, меньшего 4) и т.п. В данном примере указанные события, кроме словесного задания, можно задать перечислением элементарных событий:

Образование новых событий из элементарных, а также из других событий осуществляется с помощью операций (или действий) над событиями.

Определение. Произведением двух событий и называется событие, состоящее в том, что в результате опыта произойдет и событие ,и событие , т. е произойдут оба события вместе (одновременно).

Знак произведения (точку) часто не ставят:

Определение. Суммой двух событий называется событие, состоящее в том, что в результате опыта произойдет или событие ,или событие ,или оба вместе (одновременно).

В обоих определениях мы намеренно подчеркнули союзы и и или -сцелью привлечь внимание читателя к своей речи при решении задач. Если мы произносим союз «и», то речь идет о произведении событий; если произносится союз «или», то события надо складывать. При этом заметим что союз «или» в обиходной речи часто используется в смысле исключения одного из двух: «только или только ». В теории вероятностей такое исключение не предполагается: и ,и , и означают появление события

Если задано перечислением элементарных событий, то сложные события с помощью указанных операций получить просто. Для получения надо найти все элементарные события, принадлежащие обоим событиям, если таковых нет, то Сумму событий также составить несложно: надо взять любое из двух событий и добавить к нему те элементарные события из другого события, которые не входят в первое.

В примере 5 получаем, в частности

Введенные операции называются бинарными, т.к. определены для двух событий. Большое значение имеет следующая унарная операция (определенная для одного события): событие называется противоположным событию если оно состоит в том, что в данном опыте событие не произошло. Из определения ясно, что всякое событие и ему противоположное обладают следующими свойствами: Введённая операция называется дополнением события А.

Отсюда следует, что если задано перечислением элементарных событий, то, зная задание события ,легко получить оно состоит из всех элементарных событий пространства которые не принадлежат В частности, для примера 5 событие

Если нет скобок, то устанавливается следующий приоритет в выполнении операций: дополнение, умножение, сложение.

Итак, с помощью введённых операций пространство элементарных событий пополняется другими случайными событиями, которые образуют так называемую алгебру событий.

Пример 6. По мишени стрелок произвёл три выстрела. Рассмотрим события = {стрелок попал в мишень при i-м выстреле}, i = 1,2,3.

Составим из этих событий (не забудем и о противоположных ) некоторые события. Пространных комментариев не приводим; полагаем, что читатель проведёт их самостоятельно.

Событие В = {все три выстрела попали в мишень}. Подробнее: В = {и первый, и второй, и третий выстрелы попали в мишень}. Использовали союз и, следовательно, события перемножаются:

Аналогично:

С = {ни один из выстрелов не попал в цель}

Е = {один выстрел достиг мишени}

Д = {мишень поражена при втором выстреле} = ;

F = {мишень поражена двумя выстрелами}

Н = {в мишени окажется хотя бы одно попадание}

Как известно, в математике большое значение имеет геометрическая интерпретация аналитических объектов, понятий и формул.

В теории вероятностей удобно наглядное представление (геометрическая интерпретация) опыта, случайных событий и операций над ними в виде так называемых диаграмм Эйлера-Венна . Суть состоит в том, что всякий опыт отождествляется (интерпретируется) с бросанием точек в некоторый квадрат. Точки бросаются наугад, так что у всех точек имеются одинаковые шансы попасть в любое место этого квадрата. Квадрат определяет рамки рассматриваемого опыта. Каждое событие в рамках опыта отождествляется с некоторой областью квадрата. Иначе говоря, осуществление события означает попадание случайной точки внутрь области, обозначенной буквой Тогда операции над событиями легко интерпретируются геометрически (рис.2)

А:

А + В: всякая

штриховка

На рис.2 а) для наглядности событие А выделено вертикальной штриховкой, событие В - горизонтальной. Тогда операции умножения соответствует двойная штриховка - событию соответствует та часть квадрата которая покрыта двойной штриховкой. При этом, если то и называются несовместными событиями. Соответственно операции сложения соответствует любая штриховка- событие означает часть квадрата, заштрихованная любой штриховкой – вертикальной, горизонтальной и двойной. На рис.2 б) показано событие ему соответствует заштрихованная часть квадрата - все, что не входит в область Введенные операции обладают следующими основными свойствами, некоторые из которых справедливы для одноименных операций над числами, но есть и специфические.

1 0 . коммутативность умножения;

2 0 . коммутативность сложения;

3 0 . ассоциативность умножения;

4 0 . ассоциативность сложения,

5 0 . дистрибутивность умножения относительно сложения,

6 0 . дистрибутивность сложения относительно умножения;

9 0 . законы двойственности де Моргана,

10 0 .

1 .A .A+ .A· =A, 1 .A+ . 1 .A· = , 1 .A+ =

Пример 7. Иван и Петр договорились встретиться на временном промежутке в Т час, например, (0,Т). При этом они условились, что каждый из них, придя на встречу, ждет другого не более час.

Придадим этому примеру геометрическую интерпретацию. Обозначим: время прихода на встречу Ивана; время прихода на встречу Петра. Согласно договоренности: 0 . Тогда в системе координат получаем: = Нетрудно заметить, что в нашем примере пространство элементарных событий представляет собой квадрат. 1


0 x соответствует та часть квадрата, которая расположена выше этой прямой.Аналогично, второму неравенству y≤x+ и; и не работает, если не работают все элементы, т.е. .Таким образом, второй закон двойственности де Моргана: реализуется при параллельном соединении элементов.

Приведённый пример показывает, почему теория вероятностей находит большое применение в физике, в частности, в расчетах надежности реальных технических устройств.

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие . Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие - монета станет на ребро, случайное событие - выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием . В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий .

Основные понятия теории

Вероятность - степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным.

Случайная величина - это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство - понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками: , где

Это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- сигма-алгебра подмножеств , называемых (случайными) событиями;
- вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и - число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей - функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х - произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание - среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской - . В статистике часто используют обозначение .

Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, - измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины - мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть - случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми , если значение одной из них влияет на вероятность значений другой.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел - совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.