Теоретические основы теплотехники для чайников. Теоретические основы теплотехники

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

ДОЦЕНТ ГОРОЖАНКИН С. А.

ПРОФЕССОР ДЕГТЯРЕВ В. И.

Т Е О Р Е Т И Ч Е С К И Е О С Н О В Ы Т Е П Л О Т Е Х Н И К И

К О Н С П Е К Т Л Е К Ц И Й

(ДЛЯ СПЕЦИАЛЬНОСТИ 7.090258 "АВТОМОБИЛИ И АВТОМОБИЛЬНОЕ ХОЗЯЙСТВО")

О Д О Б Р Е Н О:

Кафедрой "Автомобили и автомобильное хозяйство"

Протокол № от 27.04.2001г.

Советом механического факультета Протокол №3 от 10.03.2001г.

М А К Е Е В К А 2001 г.

строительства и архитектуры, - 2001. - 110 с.: 76 илл.

Конспект лекций предназначен для студентов, изучающих курс "Теоретические основы теплотехники"

Конспект лекций посвящен изложению теоретических основ теплотехники в краткой и доходчивой форме с учетом изучения материала студентами специальности автомобили и автомобильное хозяйство. Курс, кроме обеспечения современной энергетической подготовки инженеров-автомобилистов, имеет и свою особую методику обобщенного раскрытия материала, позволяющую сосредоточить главное внимание на выявлении более широких закономерностей и новых возможностей развития энергетики.

Изложены теоретические основы технической термодинамики, теории тепломассообмена, особое внимание уделено термодинамическим циклам тепловых машин. Приводятся общие сведения о теплоснабжении и использовании вторичных энергоресурсов, имеющих целью максимально экономное расходование энергетических ресурсов

Изучение этого курса необходимо для глубокого понимания физической сущности термодинамических процессов тепловых двигателей, ясного представления о закономерностях энергопревращений в двигателях внутреннего сгорания.

Для студентов специальности 7.090258 "АВТОМОБИЛИ И АВТОМОБИЛЬНОЕ ХОЗЯЙСТВО".

Введение. Уравнение состояния. Теплоемкость.

Первый закон термодинамики

Термодинамические процессы идеальных газов

Второй закон термодинамики

Водяной пар

Влажный воздух

Общая характеристика компрессоров

Двигатели внешнего сгорания

Циклы газотурбинных установок

Циклы двигателей внутреннего сгорания

Основы теплообмена

Конвективный теплообмен

Теплообмен при фазовых превращениях

Теплообмен излучением

Теплопередача

Теплообменные аппараты

Топливо и процессы горения

1. ВВЕДЕНИЕ. УРАВНЕНИЕ СОСТОЯНИЯ. ТЕПЛОЕМКОСТЬ

1.1 Теплотехника, ее предмет и метод

Теплотехника - наука, изучающая теорию и средства превращения энергии природных источников в тепловую механическую и электрическую энергии, а также использования тепла для практических целей.

Теоретические основы теплотехники включают термодинамику и теорию тепломассообмена.

Основным методом теплотехники является термодинамический метод. Сущность его состоит в том, что на основе изучения энергоэнтропийных балансов в макроскопических системах устанавливают условие максимальной эффективности тепловых машин и установок. Затем определяют пути приближения к этим условиям.

1.2. Основные понятия и определения термодинамики

Термодинамика - наука о закономерностях превращения энергии в макроскопических физических системах.

Техническая термодинамика - раздел термодинамики, рассматривающий закономерности превращения тепловой энергии в другие виды.

Название "термодинамика" впервые применил Сари Карно (1824 г.) в работе "Размышления о движущей силе огня и о машинах, способных развивать эту силу".

"Терме" - тепло, жар, огонь. "Динамикос" - сила, движение.

"Термодинамика" - движущая сила огня - дословный перевод с греческого. В основу термодинамики положены два основных закона (начала),

установленных опытным путем.

- закон характеризует количественную сторону процессов превращения энергии.

- закон характеризует, устанавливает качественную сторону (направленность) процессов в физических системах.

1.3. Термодинамическая система. Термодинамический процесс.

Термодинамическая система - совокупность макроскопических тел, обменивающихся энергией между собой и с окружающей средой.

Термодинамический процесс - совокупность изменений состояния термодинамической системы при переходе из одного состояния в другое.

1.4. Обратимые и необратимые процессы.

Равновесное состояние тела - такое, при котором во всех точках объема параметры состояния одинаковы.

Равновесный процесс - процесс перехода термодинамической системы из одного состояния в другое через равновесные состояния тела в любой момент времени.

Неравновесный процесс - процесс, включающий неравновесные состояния. Обратимый процесс - процесс, который протекает в прямом и обратном

направлении через одни и те же равновесные состояния.

Условия обратимости:

1. Отсутствие химических реакций.

2. Отсутствие внутреннего и внешнего трения.

3. Бесконечно медленное изменение состояния рабочего тела. Необратимый процесс - процесс, который самопроизвольно протекает

только в одном направлении.

1.5. Рабочее тело. Термодинамические параметры состояния

Взаимное преобразование теплоты в механическую энергию в тепловых машинах осуществляются при помощи рабочего тела.

В качестве рабочего тела обычно используют пар или газ, т.к. они обладают значительно большим коэффициентом объемного расширения по сравнению с жидкостями и твердыми телами.

Для однозначного определения состояния вещества вводятся физические характеристики состояния вещества - параметры состояния.

Параметры состояния могут быть интенсивными и экстенсивными. Интенсивные параметры не зависят от количества вещества, экстенсивные - зависят. Пример - объем и температура.

Экстенсивные параметры, отнесенные к единице количества вещества, приобретают смысл интенсивных. Их называют удельными.

Термодинамические параметры состояния - интенсивные свойства, определяющие состояние тела или группы тел.

Обычно состояние однородного тела может быть однозначно определено тремя параметрами - давлением, температурой и удельным объемом.

При наличии силовых полей (гравитационного, электромагнитного и др.) состояние определяется неоднозначно.

1.6. Давление.

Давление - сила, действующая на единицу поверхности тела по нормали к этой поверхности.

1 Па величина сравнительно небольшая. Поэтому вводят кратные величины

1 кПа = 103 Па = 103

1 МПа = 106 Па = 103 кПа 1 бар = 105 Па = 102 кПа Внесистемные единицы

1 мм Нg 133.3 Пa.

1 мм вод. ст. 9.81 Па.

Виды давления 1. Абсолютное, т.е. полное давление, отсчитываемое от абсолютного

р абс

2. Атмосферное (барометрическое) - абсолютное давление атмосферы Земли

в данной точке

рабс = В.

3. Избыточное давление - разность между абсолютным и атмосферным. Параметром состояния не является.

pизб = pабс – B.

Избыточное давление иногда называют манометрическим (т.к. измеряется манометрами).

4. Вакууметрическое давление - разность между атмосферным и абсолютным.

pвак = B - pабс .

1.7. Температура

Температура характеризует тепловое состояние тела - степень "нагретости"

Температура - осредненная величина кинетической энергии хаотического движения молекул.

Температура, при которой полностью прекращается движение молекул,

принята за начало отсчета. Температура тройной точки воды принята равной 273,

16 К (0, 010 С).

[T]=K - единица измерения абсолютной температуры. Температуру часто измеряют по шкале Цельсия.

[t]=C - единицы измерения температуры в обеих шкалах численно равны. Температура по шкале Цельсия термодинамическим параметром состояния

не является.

За рубежом иногда пользуются шкалами температур Фаренгейта, Реомюра и

1.8. Удельный объем.

Удельный объем - объем единицы массы газа.

Плотность - величина обратная удельному объему.

1 m; кг.

1.9. Уравнение состояния идеального газа Менделеева-Клапейрона

Идеальный газ - модель газа, в которой молекулы не имеют объема и не взаимодействуют друг с другом.

Совместное рассмотрение законов Бойля-Мариотта и Гей-Люссака позволило Клапейрону в 1834 г. вывести уравнение состояния идеального газа

pv=RT - уравнение для 1 кг. газа (уравнение Клапейрона) R - газовая постоянная

H м3

м2 кг К кг К кг К

Бойль Роберт (1627-1691). Англия. Физика, химия. Совместно с Мариоттом не работал.

Мариотт Эдм (1620-1684). Франция. Механика жидкости и газа. Оптика. Гей-Люссак Жозеф-Луи (1778-1850). Франция. Физика, химия.

Клапейрон Бенуа Поль Эмиль (1799-1864). Франция. Вывел уравнение Клапейрона-Клаузиуса для водяного пара. Первым обратил внимание на работы С.Карко, в которых был установлен II закон термодинамики.

pV=mRT - уравнение для газа массойm.

pV = RT - уравнение для 1 киломоля(уравнение Менделеева).V - объем киломоля газа

R 8315 - формула для вычисления газовой постоянной.

1.10. Особенности реальных газов. Уравнение состояния реальных газов Ван-дер-Ваальса

Уравнение состояния идеального газа можно применять в расчетах для реактивных газов при низких давлениях и высоких температурах. При нормальных условиях оно применимо для:

H2 , He, O2 , N2 .

Углекислый газ (СО2 ) и некоторые другие дают отклонение до 2-3%. Уравнение состояния реальных газов, учитывающие размер молекул, силы

взаимодействия между ними, образование комплексов молекул (ассоциаций) и пр. имеют сложный вид.

В практике обычно используются таблицы и номограммы, построенные на основе этих уравнений.

В общей форме в 1937-46 г. в СССР (Н.Н.Богомолов) и США (Дж.Мейер) были выведены уравнения состояния реальных газов.

Наиболее простым, качественно правильно отображающим поведение реальных газов, является уравнение Ван-дер-Ваальса (1873 г.).

(p a )(v b) RT, v 2

где b - поправка на объем молекул газа;

Поправка на давление газа, учитывающая силы взаимодействия

Уравнение Ван-дер-Ваальса позволяет качественно анализировать поведение газов вблизи границ фазовых переходов.

1.11. Смеси идеальных газов. Законы Дальтона и Амага

Парциальное давление - давление отдельного компонента смеси газов.

p см p i - закон Дальтона

Абсолютное давление смеси газов равно сумме парциальных давлений компонентов смеси.

V см V i - закон Амагá

Полный объем смеси газов равен сумме приведенных к давлению и температуре смеси объемов компонентов (парциальных объемов).

Законы Дальтона и Амагá позволяют получить уравнение состояния смеси

p смV см=m смR смT см,

где R см см .

Кажущаяся молярная масса смеси определяется из уравнения

см i r i , где ri - объемные доли компонентов

Пример: Полагая, что в воздухе 80% N2 и 20% О2

возд = 0,8 28 + 0,2 32 = 28,8 кг/моль Газовая постоянная смеси может быть установлена из уравнения

R смg iR i

Где gi - массовые доли компонентов смеси.

Соотношение между массовыми и объемными долями определяется

выражением

Где ri - объемные доли компонентов смеси.

Следует отметить, что всегда

gi 1; ri 1.

1.12. Теплоемкость газов и газовых смесей. Истинная, средняя и удельная теплоемкость. Зависимость теплоемкости от температуры

Теплоемкость - количество тепла, необходимое для нагрева тела на 1 К.

Удельная теплоемкость - количество тепла, необходимое для нагрева единицы количества вещества на 1К.

Обычно различают следующие удельные теплоемкости: 1. Массовая - c

[c] = Дж

кг К

2. Объемная - с"

Истинная теплоемкость определяется следующим аналитическим выражением

c dq . dt

Средняя теплоемкость в интервале температур t1 - t2 определяется из соотношения

q C m t2 - t1 .

В общем случае теплоемкость является функцией температуры, причем обычно она возрастает с ростом температуры.

На рис.1.1 показана линейная зависимость удельной теплоемкости от температуры, на рис.1.2 - степенная.

Если зависимость теплоемкости от температуры имеет сложный нелинейный характер (как это показано на рис.1.3), то средняя теплоемкость в интервале температур t1 -t2 определяется из выражения:

t2 до t2 определяется выражением:

Эта формула применяема к массовой, объемной и мольной теплоемкостям. Нагрев газов или паров может осуществляться при различных условиях.

Среди них можно выделить: 1. Нагрев при постоянном объеме;

2. Нагрев при постоянном давлении.

В первом случае теплоемкость процесса называют изохорной, во втором - изобарной.

Изобарная и изохорная теплоемкости связаны уравнениями: Сp - Сv = R- Майера

С Р K - Пуассона

С V

К - коэффициент Пуассона.

Для одноатомных

- "" - двухатомных

(7/5) Теоретические

трехатомных

значения

многооатомных

Обычно принимают К=1,29.

Теплоемкость газовых смесей вычисляется на основе уравнения теплового баланса, из которого следует:

1. Для массовой теплоемкости смеси: C см C ii g i .

2. Для объемной теплоемкости смеси: C см / C / i r i .

Основы теплотехники. Теплопроводность.

Теплопроводность как физическое явление представляет собой перенос тепла беспорядочно движущимися микрочастицами, непосредственно соприкасающимися друг с другом. В газах и жидкостях передвигаются молекулы, в кристаллической решетке твердых тел колеблются атомы, в металлах диффундируют свободные электроны. К основному закону теплопроводности относится закон Фурье, в соответствии с которым


где q1 - плотность теплового потока, Вт/м2; г - коэффициент теплопроводности, Вт/(м-К); t - температура, К; п - координата, перпендикулярная поверхности переноса тепла, м.

В правой части уравнения (1.1) стоит знак минус, так как векторы теплового потока qt и градиент температуры dt/dn направлены в противоположные стороны.

Коэффициент теплопроводности представляет собой количество теплоты, переносимой через единицу поверхности в единицу времени при градиенте температуры, равном единице. Уравнение (1.1) верно в стационарных условиях, когда температура не зависит от времени дt/дn≠0, a

В более общем случае, в нестационарных условиях, когда температура изменяется во времени и по координате, т. е. dt/dn≠0 и

перенос тепла теплопроводностью описывается уравнением Фурье:


Внутри тела может генерироваться или поглощаться тепло, например за счет химических реакций. В таких случаях рассматривается задача с внутренним источником тепла (соответственно положительным или отрицательным) и уравнение (1.2) превращается в уравнение

где Iq -источник тепла, Дж/(м3-с).

Коэффициент температуропроводности а является характеристикой инерционных свойств тела, обусловленных распространением теплоты теплопроводностью. Тело с большим а быстрее нагревается и охлаждается.

Коэффициент теплопроводности влажного материала - эквивалентный коэффициент теплопроводности - является суммирующей величиной:

где лc - коэффициент теплопроводности сухого твердого скелета материала; лконд -коэффициент кондукции (теплопроводности) жидкости и паровоздушной смеси, находящихся в стационарном (неподвижном) состоянии в порах материала; лконв - коэффициент, характеризующий перенос тепла за счет конвекции воздуха внутри материала; лл - коэффициент лучистой теплопроводности; лн - коэффициент, характеризующий перенос тепла за счет переноса массы (влаги) внутри материала.

Имеются указания на то, что при диаметре пор меньше 0,5 мм величинами лконв и лл можно пренебречь.

Теплопроводность пищевых продуктов изучена достаточно хорошо в виде значений лэкв и а представлена в форме таблиц и расчетных формул в справочной литературе.


Теплогенерирующие устройства

Общие сведения о тепловом оборудовании

В большинстве случаев при приготовлении пищи продукты варят, жарят, тушат, т.е. подвергают тепловой обработке. Под действием определенного количества тепла продукты изменяют физико-химические свойства: жиры плавятся, белки свертываются, меняется вкус, цвет, запах и 1Л Кроме того, под действием высокой температуры уничтожается в продуктах переработки болезнетворная микрофлора.

При тепловой обработке происходит естественный самопроизвольный переход тепла от его источника к нагреваемому продукту, поскольку источник тепла всегда более нагрет, чем продукт.

Источники тепла в аппаратах могут быть топливо, электроэнергия и теплоносители. На практике применяются в основном такие теплоносители, как водяной пар, вода, масло. Основные способы тепловой обработки пищевых продуктов - варка и жарка. Варка продуктов может осуществляться несколькими способами, в жидкой среде, автоклавах и в сосудах с пониженным давлением. Для всех видов варки характерны две стадии, быстрый нагрев жидкой среды и слабый нагрев. В. некоторых случаях используют аккумулированное тепло и варку "острым паром» Варка продуктов "острым паром" осуществляется в результате соприкосновения насыщенного пара с обрабатываемым продуктом.

Процесс жарки продуктов осуществляется без добавления жидкой среды. Жарку продуктов производят в неглубокой посуде - сковороде и во фритюре, когда продукт полностью загружают в горячий жир.

На предприятиях общественного питания используют и вспомогательные способы тепловой обработки продуктов. К ним относятся: тушение, ошпаривание, опаливание, а также обработка продуктов сверх-высокочастотным и инфракрасным обогревом.

Новым способом тепловой обработки продуктов является обработка его в электромагнитном поле сверхвысокой частоты. В таких случаях происходит нагрев продуктов по всему объему. Надо отметить, что СВ-поле нагревает только продукты, а рабочая камера, посуда и воздух не нагревается. СВЧ-нагрев имеет большое преимущество по сравнению с традиционными способами тепловой обработки продуктов. Время приготовления сокращается в 10 раз, а для большинства продуктов оно составляет не более 5 минут. Значительно улучшаются вкусовые качества и внешний вид приготовляемых продуктов. Надо помнить, что в СВЧ-апларате применяют посуду из диэлектриков, т.е. стекла, фарфора, пластмасс и керамики. Использовать металлическую посуду категорически запрещается, т.к. она выводит из строя генератор этого аппарата.

Понятие о теплообмене

Передача тепла от одной среды к другой называется теплообменом. Различают два основных вида теплообмена: соприкосновением и излучением. Теплообмен соприкосновением заключается в том, что тепло от одного тела, более нагретого, передается другому, менее нагретому, непосредственно соприкосновением. Теплообмен излучением связан с двойным превращением энергии. Тепловая энергия более нагретой поверхности превращается в лучистую, которая проходит через пространство, попадая на более холодную поверхность вновь превращается в тепловую энергию. Такие передачи тепла происходят например, лампами инфракрасного излучения или приготовления шашлыка на мангале. Теплообмен в жидкостях и газах называется конвекцией. Это когда нижние слои жидкости нагреваются, поднимаясь вверх, переносят тепло, а менее нагретые слои опускаются вниз, т.е. происходит перемешивание нагретых и ненагретых слоев.

Теплообмен внутри тел называется теплопроводностью. Когда нагревается дно металлической посуды, быстро нагреваются и ее стенки, Посуда и аппараты, изготовленные из диэлектриков, имеют значительно меньший коэффициент теплопроводности, чем металлические.

Тепло и его состав

Топливом в технике называют сложное органическое соединение, способное при горении выделить значительное количество тепловой энергии. По физическому состоянию топливо подразделяется на твердое, жидкое и газообразное. К твердому топливу относятся - дрова, торф, уголь и сланцы. К жидкому топливу относятся - нефть и продукты ее переработки - бензин, керосин, мазут и печное топливо. К газообразному топливу относятся - природный и искусственный газы. В состав топлива входят горючие и негорючие элементы. К горючим элементам относятся - углерод, водород, сера. К негорючим элементам относятся - азот, зола и влага. Кислород - не горючий элемент, но поддерживает процесс.

Твердое топливо. Уголь - является высококалорийным топливом, имеет большое содержание углерода, малое содержание влаги и незначительное количество летучих веществ.

Дрова из-за низкой теплоты сгорания, относятся к местному топливу. Выход летучих веществ большой, что дает хорошую воспламеняемость дров. Зольность древесины незначительная.

Торф - это неполное разложение органических веществ растительного происхождения при избытке влаги и очень малом доступе воздуха.

Горючие сланцы - это [низкокалорийное топливо, применять рекомендуется после переработки и вблизи мест добычи.

Жидкое топливо - основным вкладом жидкого топлива используют печной мазут, получаемый при переработке нефти. Он имеет большое содержание углерода и водорода. При сгорании имеет высокую теплоту сгорания.

Газообразное топливо - как топливо, используются природные горючие и искусственные тазы, которые по своим качествам превосходят все остальные виды. Природные газы добывают из газовых месторождений или попутно из нефтяных месторождений. К искусственным газам относятся доменный, коксовый и сжиженный газ. Основным преимуществами газообразного топлива являются: высокий КПД газовых аппаратов, возможность использования автоматических устройств, регулирующих тепловой режим и обеспечивающий технику безопасности при работе газовых тепловых аппаратов. Использование газа улучшает культуру производства, санитарно-гигиенические условия работы, исключает загрязненность воздушного бассейна населенных пунктов копотью и дымом.

Газовое топливо обладает и отрицательными свойствами. В определенных отношениях с воздухом образует взрывоопасную смесь. Газ ядовит, и поэтому неправильное обращение с газом приводит к несчастным случаям.

Однако, наиболее удобным и гигиеническим является оборудование с электрическим обогревом. В настоящее время на предприятиях общественного питания более 90% всего теплового оборудования работает на электроэнергии. К преимуществам электрического оборудования, по сравнению с аппаратами, имеющими другие источники тепла, являются: простота обслуживания, хорошие санитарно-гигиенические условия труда и снижение пожарной опасности Возможность работы аппаратов в автоматическом режиме и более высокий КПД.

Понятие о процессе горения

Процесс горения топлива основан на химической реакции соединения кислорода воздуха с горючими элементами топлива. Горением топлива называют процесс быстрого окисления горючей части топлива с выделением значительного количества тепла. Часть тепла затрачивается на поддержание высокой температуры топлива, без которой горение невозможно. Горение топлива возможно при условии достаточного притока к нему воздуха и нагрева топлива до температуры воспламенения. Горение топлива может быть полным или неполным. При неполном сгорании образуется угарный газ, и при этом выделяется не более 1/3 общего количества тепла, которое могло бы быть выделено при полном сгорании топлива. При полном сгорании углерод образует углекислоту, водород превращается в воду, при этом выделяется наибольшее количество тепла. Газ нужно сжигать только в состоянии движения. Если смесь газа с воздухом находится в покое, то сгорание происходит мгновенно, в виде взрыва. Важной качественной характеристикой топлива служит его теплота сгорания или теплотворная способность - количество тепла в ккал, которое выделяется одной весовой (1 кг) или объемной (1 куб. м) единицей топлива при полном сгорании. Теплота сгорания различных видов топлива неодинакова, поэтому для сопоставления различных видов топлива и решения вопроса о замене одного вида топлива другим, введено понятие "условное топливо". Под "условным топливом" понимают такое топливо, теплота сгорания которого составляет 7000 к кал/кг.

Мероприятия по экономии топлива

Выбор наиболее экономичного вида топлива и соответствующего теплового аппарата для приготовления пищи является одним из эффективных путей снижения издержек и способствует удешевлению питания.

Организационно-технические мероприятии по экономии топлива, тепловой и электрической энергии разрабатываются на всех предприятиях общественного питания. Основными вопросами мероприятии по экономии топливно-энергетических ресурсов, являются:

Ведение контроля за рациональным и экономическим использованием топливно-энергетических ресурсов и разрезе каждого оборудования предприятия;

Систематический контроль за техническим состоянием оборудования;

Своевременное включение и выключение оборудования, имея в виду недопустимость их работы в нерабочее время,

Проведение систематической очистки парогенераторов, сосудов, тс нов, трубок или змеевиков водонагревателей от накипеобразований;

Увеличение загрузки рабочих объемов оборудования при эксплуатации;

Косвенный обогрев - это передача теша через промежуточную среду (пароводяная рубашка котла). По технологическому назначению тепловое оборудование делится на универсальное (эл.плита) и специализированные (кофеварка, пекарский шкаф).

По источникам тепла тепловое оборудование делится на электрическое, газовое, огневое и паровое.

Тепловые аппараты можно еще классифицировать по принципу действия - непрерывного и периодического действия.

По степени автоматизации тепловые аппараты подразделяются на неавтоматизированные, контроль за которыми осуществляет обслуживающий работник, и автоматизированные, где контроль за безопасной работой и режимом тепловой обработки обеспечивает сам тепловой аппарат при помощи приборов автоматики.

На предприятиях общественного питания тепловое оборудование может использоваться как несекционное или секционное, модулированное.

Несекционное оборудование, это оборудование, которое различно по габаритам, конструктивному исполнению и архитектурному оформлению. Такое оборудование предназначено только для индивидуальной установки и работы с ним, без учета блокировки с другими видами оборудования. Несекционное оборудование для своей установки требует значительных производственных площадей, т.к. обслуживание такого оборудования осуществляется со всех сторон.

В настоящее время промышленность осваивает серийное производство секционного модулированного оборудования, применение которого целесообразно на больших предприятиях общественного питания. Преимущество секционного модулированного оборудования в том, что выпускается оно в виде отдельных секций, из которых можно комплектовать различные технологические линии. Секционное модулированное оборудование имеет единые размеры по длине, ширине и высоте. Такое оборудование устанавливается линейно по периметру или по центру помещения и установленная секция способствует повышению производительность труда и обшей культуры на производстве.

На все виды тепловых аппаратов разработаны и утверждены ГОСТы, которые являются обязательными для всех заводов и предприятий, связанных с выпуском или эксплуатацией оборудования.

ГОСТ указывает сведения аппарата: наименование аппарата и его Индексацию, параметры, требования ТБ, БТ и производственной санитарки, комплектность, а также требования к транспортировке, упаковке и хранению.

Все тепловые аппараты имеют буквенно-цифровую индексацию, первая буква которой соответствует наименованию группы, к которой относится данный тепловой аппарат. Например: котел - К, шкаф - Ш,

плита - П и т.д Вторая буква соответствует наименованию вида оборудования: пищеварочные - П, непрерывного действия - Н и т.д. Третья буква соответствует наименованию теплоносителя: электрические - Э, газовые - Г и т.д. Цифрами обозначают основные параметры теплового оборудования. Например: КПП-160 - котел пищеварочный, паровой, вместимостью 160 л.

Бухмиров В.В. Лекции по ТМОдекабрь, 2008_часть1_в8

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

УНИВЕРСИТЕТ

имени В.И. ЛЕНИНА»

Кафедра теоретических основ теплотехники

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

ТЕПЛОТЕХНИКИ

ТЕПЛОМАССООБМЕН

Лекции

Составил: профессор кафедры ТОТ

В.В. Бухмиров

Иваново 2008

ВВЕДЕНИЕ

Теплотехника – наука (общетехническая дисциплина) о методах и способах получения, преобразования, передачи и использования теплоты, а также о технических устройствах, реализующих эти методы и способы.

Теоретические основы теплотехники – раздел теплотехники, представляющий ее теоретическую базу.

Дисциплина «Теоретические основы теплотехники (ТОТ)» изучает тепловые процессы, происходящих в природе и технических устройствах, путем их математического описания и экспериментального исследования.

В технике существуют два принципиально различные способы использования теплоты: энергетический и технологический.

При энергетическом использовании теплота служит для получения механической работы , которая используется, либо непосредственно для привода механизмов, либо преобразуется в электрическую работу (электрическую энергию) в электрогенераторе.

При технологическом или непосредственном использовании теплота служит для создания условий протекания технологических процессов в технических устройствах различных отраслей промышленности, для изменения физических свойств тел путем их нагревания или охлаждения, в быту и т. д.

Процессы преобразования теплоты в механическую или электрическую работу изучает техническая термодинамика (ТТД).

Процессы непосредственного использования теплоты изучает наука теплообмен или теплопередача . Поскольку процессы теплообмена могут происходить одновременно с массообменом, и законы переноса теплоты и массы аналогичны, то их изучение объединяют в одну дисциплину тепломассообмен (ТМО).

Таким образом, дисциплина «Теоретические основы теплотехники» состоит из двух взаимодополняющих друг друга частей: ТТД и ТМО.

При изучении любой технической дисциплины в основном используют два метода исследования: феноменологический и статистический .

Следуя феноменологическому методу среду, в которой происходят физические процессы, представляют, как непрерывное вещество без учета его внутреннего строения. Для описания всех процессов используют макрофизические величины, которые, как правило, можно измерить (температура, давление, объем) или вычислить (внутренняя энергия, энтальпия, энтропия).

Статистическая теория рассматривает внутреннее строение вещества и использует понятия микрофизической природы (масса молекулы, число молекул и т.д.). Эта теория использует методы математической статистики и методы теории вероятности.

В технической термодинамике используют и статистический и феноменологический методы исследования. При изучении процессов тепломассообмена в основном используют феноменологический метод исследования.

Тепломассообмен

Тепломассообмен (ТМО) – наука о самопроизвольных необратимых процессах распространения теплоты и массы в пространстве в переменном поле температур и переменном поле концентраций.

Согласно второму закону термодинамики самопроизвольный процесс передачи теплоты и массы направлен в сторону уменьшения температуры и концентрации данного компонента смеси.

В отличие от термодинамики ТМО рассматривает развитие процессов в пространстве и времени. В результате расчета процессов тепломассообмена находят распределения температур, концентраций компонентов смеси, а также потоков теплоты и массы как функции координат и времени.

В нашем кратком курсе будем рассматривать только процессы теплообмена в данном теле или системе тел, поэтому наша задача научиться рассчитывать температурные поля и тепловые потоки и их развитие в пространстве и времени.

РАЗДЕЛ 1. Основные понятия теплообмена

§ 1.1. Температурное поле. Изотермическая поверхность.

Температурное поле есть совокупность значений температуры во всех точках данной расчетной области и во времени.

Температурное поле измеряют в градусах Цельсия и Кельвинах и обозначают также как и в ТТД: ,где х i - координаты точки в пространстве, в которой находят температуру, в метрах [м]; τ – время процесса теплообмена в секундах, [с]. Т. о. температурное поле характеризуется количеством координат и своим поведением во времени.

В тепловых расчетах используют следующие системы координат:

х i = х 1 , х 2 , х 3 – произвольная ортогональная система координат;

х i = x, y, z – декартовая система координат;

х i = r, φ, z – цилиндрическая система координат;

х i = r, φ, ψ – сферическая система координат.

В зависимости от числа координат различают трехмерное , двумерное , одномерное и нульмерное (однородное ) температурные поля.

Температурное поле, которое изменяется во времени , называют нестационарным температурным полем. И наоборот, температурное поле, которое не изменяется во времени , называют стационарным температурным полем.

Примеры записи температурных полей:

T(x,y,z,τ) – трехмерное нестационарное температурное поле;

T(τ) – нульмерное нестационарное температурное поле;

T(x) – стационарное одномерное температурное поле;

T = const – нульмерное стационарное температурное поле – частный случай температурного поля, характеризующего термодинамическое равновесие системы.

Изотермическая поверхность – поверхность равных температур.

Свойства изотермических поверхностей:

а) изотермические поверхности не пересекаются;

б) в нестационарных процессах изотермические поверхности перемещаются в пространстве.

В нашем курсе мы будем рассматривать тела, так называемой, простой или классической формы. Таких тел три:

Бесконечная или неограниченная пластина – пластина, у которой толщина много меньше (в несколько раз) длины и ширины;

Бесконечный цилиндр – цилиндр, у которого диаметр меньше (в несколько раз) длины цилиндра;

Шар или сфера.

Примеры изотермических поверхностей в телах простой формы:

) изотермические поверхности в бесконечной пластине при одинаковых на обеих поверхностях условиях теплообмена – это плоскости параллельные образующим плоскостям данную пластину (см. рис.1);

б) изотермические поверхности в бесконечном цилиндре при одинаковых по всей его поверхности условиях теплообмена – соосные (коаксиальные) цилиндрические поверхности или, другими словами, вложенные друг в друга цилиндры меньшего диаметра (см. рис.2);

Рис. 1.1. Изотермические поверхности

в бесконечной пластине

Рис. 1.2. Изотермические поверхности в бесконечном цилиндре

в) в шаре при равномерном нагреве или охлаждении изотермические поверхности – вложенные друг в друга сферы.

§ 1. 2. Градиент температуры

Градиент температуры (обозначается grad T или
) – вектор, направленный по нормали к изотермической поверхности, в сторону увеличения температуры и численно равный изменению температуры на единице длины:

или
,

где n – нормаль; - единичный вектор; – оператор Гамильтона ("набла") - символический вектор, заменяющий символ градиента.

В декартовой системе координат:


,

где
– единичные векторы или орты в декартовой системе координат.

§ 1.3. Количество теплоты. Тепловой поток.

Удельные тепловые потоки

Количество теплоты – количество тепловой энергии, полученное или отданное телом (твердым, жидким или газообразным) или проходящее через это тело за некоторое время τ в результате теплообмена.

Обозначают количество теплоты и измеряют в джоулях [Дж] или калориях [кал]:

1 кал = 4,187 Дж, 1 Дж = 0,24 кал.

При этом для анализа процессов часто используют кратные джоулю и калории единицы измерения:

1 кДж = 10 3 Дж;1 МДж = 10 6 Дж; 1 ГДж = 10 9 Дж; 1 ТДж = = 10 12 Дж.

Тепловой поток (обозначают ) количество теплоты, проходящее через заданную и нормальную к направлению распространения теплоты поверхность в единицу времени :

.

При стационарном режиме теплообмена тепловой поток не изменяется во времени и рассчитывается по формуле:

, Вт.

В старой системе единиц тепловой поток измеряется в
:
Вт.

В расчетах используют три вида удельных тепловых потоков:

а) поверхностную плотность теплового потока (обозначают: q, Вт/м 2) – тепловой поток, отнесенный к площади поверхности тела;

б) линейную плотность теплового потока (обозначают: , Вт/м) – тепловой поток, отнесенный к длине протяженного тела;

в) объемную плотность теплового потока (обозначают: q v ,Вт/м 3) – тепловой поток, отнесенный к объему тела.

Поверхностная плотность теплового потока – количество теплоты, проходящее через заданную и нормальную к направлению распространению теплоты единичную площадку в единицу времени.

, Вт/м 2 ,

где - единичный вектор; τ – время, с; F – площадь, м 2 .

В стационарном режиме теплообмена и при одинаковых условиях теплообмена на всей поверхности тела:

Линейная плотность теплового потока – тепловой поток, проходящий через боковую поверхность единичной длины некоего протяженного тела, произвольного, но постоянного по длине поперечного сечения. В стационарном режиме теплообмена и при одинаковых условиях теплообмена на всей поверхности тела:

,откуда следует, что

где τ – время, с; – длина протяженного объекта, м.

Поверхностная плотность теплового потока и линейная плотность теплового потока связаны между собой следующим соотношением:

или
,

где П – периметр протяженного тела произвольного, но постоянного поперечного сечения.

Например, для трубы диаметром d периметр равен длине окружности (
) и формула связи q и примет вид

.

Объемная плотность теплового потока – количество теплоты, которое выделяется или поглощается внутри единичного объема тела в единицу времени . В стационарном режиме теплообмена и при условии равномерного распределения внутренних источников (стоков) теплоты в объеме тела:

откуда следует
и
.

Объемную плотность теплового потока q v используют в следующих расчетах тепловыделений или теплопоглощений:

В ядерном реакторе,

При прохождении электрического тока по проводнику с большим сопротивлением;

Внутреннего трения при течении жидкости;

При химических реакциях.

Величина q v может быть как положительной, (теплота выделяется), так и отрицательной (теплота поглощается).

§ 1.4. Элементарные способы передачи теплоты.

(Виды процессов теплообмена)

Различают три элементарных способа передачи теплоты:

    теплопроводность (кондукция);

    конвекция;

    тепловое излучение (радиационный теплообмен).

Теплопроводность (кондукция ) – способ передачи теплоты за счет взаимодействия микрочастиц тела (атомов, молекул, ионов в электролитах и электронов в металлах) в переменном поле температур.

Теплопроводность имеет место в твердых, жидких и газообразных телах. В твердых телах теплопроводность является единственным способом передачи теплоты. В вакууме теплопроводность отсутствует.

Конвекция – способ передачи теплоты за счет перемещения макрообъемов среды из области с одной температурой в область с другой температурой. При этом текучая среда (флюид) с более высокой температурой перемещается в область более низких температур, а холодный флюид – в область с высокой температурой. В вакууме конвекция теплоты невозможна.

Тепловое излучение (радиационный теплообмен) – способ передачи теплоты за счет распространения электромагнитных волн в определенном диапазоне частот.

Замечания :

Все тела выше 0 К обладают собственным тепловым излучением, то есть энергию излучают все тела;

Для передачи теплоты излучением не требуется тело-посредник, т.е. лучистая энергия может передаваться и в вакууме.

§ 1.5. Сложный теплообмен. Теплоотдача и теплопередача

В природе и в технических устройствах, как правило, все три способа передачи теплоты происходят одновременно. Такой теплообмен называется сложным теплообменом .

Например, конвекция теплоты всегда протекает совместно с теплопроводностью, так как макрообъемы текучей среды состоят из микрообъемов, и есть неравномерное по пространству температурное поле. Передача теплоты совместно теплопроводностью и конвекцией называется конвективным теплообменом .

Совместная передача теплоты излучением и теплопроводностью называется радиационно-кондуктивным теплообменом .

Совместная передача теплоты излучением и конвекцией называется радиационно-конвективным теплообменом .

В природе и технике наиболее часто встречаются следующие два варианта сложного теплообмена:

- теплоотдача – процесс теплообмена между непроницаемой твёрдой стенкой и окружающей текучей средой;

- теплопередача – передача теплоты от одной текучей среды к другой текучей среде через непроницаемую твёрдую стенку.

Теплоотдача. График температурного поля при теплоотдаче показан на рис. 3. Температура текучей среды изменяется в очень узкой области, которая называется тепловым пограничным слоем .

Рис. 1.3. Схема процесса теплоотдачи: T w – температура стенки; T f – температура текучей среды; δ q – толщина теплового пограничного слоя.

Заметим, что в зависимости от соотношения температур стенки T w и флюида T f тепловой поток Q может нагревать стенку при условии
или охлаждать ее, если
.

Процесс теплоотдачи может быть осуществлен сочетанием следующих элементарных процессов теплообмена:

- конвективная теплоотдача (конвекция + теплопроводность = конвективный теплообмен) – имеет место при омывании твердых поверхностей различной формы текучей средой (лученепрозрачной капельной жидкостью);

- лучистая или радиационная теплоотдача (тепловое излучение)– имеет место при радиационном теплообмене в вакууме или между стенкой и излучающим и поглощающим неподвижным газом;

- радиационно - конвективная теплоотдача (тепловое излучение + конвективный теплообмен) – наиболее часто встречающийся в практике расчетов случай сложного теплообмена;

- конвективная теплоотдача при фазовых превращениях теплоносителя (конвекция + теплопроводность + возможно излучение) – теплоотдача при конденсации и кипении, протекающая с выделением или поглощением теплоты фазового перехода.

Расчет теплоотдачи заключается в определении теплового потока, которым обмениваются стенка и текучая среда. В инженерных расчетах теплоотдачи используется, так называемый закон теплоотдачи – закон Ньютона (1701 г.):

,

где Q – тепловой поток, Вт; – коэффициент теплоотдачи, Вт/(м 2 ·К); T f и T w – температура текучей среды и стенки; F – площадь поверхности теплообмена.

Теплопередача. В курсе ТМО изучают расчет теплопередачи через стенки плоской, цилиндрической, сферической и произвольной формы. В нашем кратком курсе ограничимся расчетом теплопередачи через плоскую и цилиндрическую стенки. График температурного поля при теплопередаче через плоскую стенку показан на рис. 4.

Рис. 1.4. Схема процесса теплопередачи: T f ,1 и T f ,2 – температура горячего и холодного флюида (текучей среды); T w ,1 и T w ,1 – температура поверхностей плоской стенки; δ – толщина плоской стенки.

Итак, теплопередача включает в себя следующие процессы:

а) теплоотдачу от горячей текучей среды (горячего теплоносителя) к стенке;

б) теплопроводность внутри стенки;

в) теплоотдачу от стенки к холодной текучей среде (холодному теплоносителю).

Тепловой поток при теплопередаче , передаваемый от горячего флюида с температурой T f ,1 к холодному флюиду с температурой T f ,2 , рассчитывается по формуле (для плоской стенки):

,

где
– коэффициент теплопередачи через плоскую стенку, Вт/(м 2 ·К); R t – термическое сопротивление теплопроводности плоской стенки, (м 2 ·К)/Вт..

В заключение первого раздела курса можно сделать вывод о том, что для решения основной задачи расчета теплообмена – определения температурных полей и тепловых потоков при теплоотдаче и теплопередаче – необходимо уметь рассчитывать три элементарных способа передачи тепловой энергии.

РАЗДЕЛ 2. Теплопроводность

§ 2.1. Основной закон теории теплопроводности.

Закон (гипотеза) Фурье.

В 1807 году французский ученый Фурье (Fourier) предложил считать, что в каждой точке тела (вещества) в процессе теплопроводности существует однозначная связь между тепловым потоком и градиентом температуры:

, (*)

где Q – тепловой поток, Вт; grad(T) – градиент температурного поля, К/м; F – площадь поверхности теплообмена, м 2 ; , – коэффициент теплопроводности ,
– величина, характеризующая физические свойства вещества. Коэффициент теплопроводности определяют экспериментально и приводят в справочной литературе.

Закон Фурье для поверхностной плотности теплового потока запишется в виде

. (**)

Физический смысл коэффициента теплопроводности заключается в том, что он (λ ) характеризует способность данного вещества проводить теплоту.

Коэффициент теплопроводности λ находят экспериментально, используя выражения (*) и (**) решением, так называемой, обратной задачи теории теплопроводности.

Знак "–" показывает, что векторы теплового потока и градиента температуры направлены в противоположные стороны. Градиент температурного поля направлен по нормали к изотермической поверхности в сторону возрастания температуры, тепловой поток – в сторону убывания температуры. Выражения (*) и (**) представляют собой линейный закон теплопроводности, т.к. в этом законе коэффициент теплопроводности есть величина постоянная (λ = const). При экспериментальной проверке закона Фурье обнаруживается отклонение расчета и эксперимента, которое в первом приближении можно учесть, сохранив форму записи закона, но приняв зависимость λ = f(T). В этом случае получаем нелинейный закон Фурье:

.

Для разных веществ и их фазового состояния λ может, как увеличиваться, так уменьшаться с ростом температуры. Для пористых и сыпучих материалов коэффициент теплопроводности λ также зависит от порозности (величина пор) и от влажности. С увеличением порозности λ уменьшается, так как поры заполняются газом, а λ газов мал. При увеличении влажности поры заполняются влагой, и коэффициент теплопроводности λ увеличивается. Примеси уменьшают коэффициент теплопроводности. Коэффициент теплопроводности газов также зависит и от давления.

Приведем примерные значения коэффициента λ разных веществ. Поскольку λ функция температуры, то эти данные взяты из справочника при t = 0 0 С.

§2.2. Энергетическая форма записи закона Фурье.

Коэффициент температуропроводности а , [м 2 /с] – физическая характеристика вещества, которая определяется экспериментально и приводится в справочных таблицах.

Коэффициент температуропроводности а , характеризует теплоинерционные свойства вещества или другими словами характеризует скорость изменения температуры тела во времени . Скорость изменения температуры ~ а , прямо пропорциональна коэффициенту температуропроводности. Т.о. коэффициент температуропроводности характеризует только нестационарные процессы.

Коэффициент температуропроводности связан с другими физическими характеристиками вещества, следующими соотношениями:

;
,

где с – удельная массовая теплоемкость, Дж/(кг·град); - удельная объемная теплоемкость, Дж/(м 3 ·град); ρ – плотность, кг/м 3 ; λ – коэффициент теплопроводности Вт/(м·град);.

Для твердых тел, обладающим малым коэффициентом температурного расширения
.

Для газов, у которых теплоемкость зависит от вида процесса, естественно, и коэффициент температуропроводности является функцией процесса:

Для изохорного процесса v = const :
;

Для изобарного процесса p = const :
.

Порядок величины коэффициента температуропроводности можно характеризовать следующими величинами:

а ≈ 10 -7 м 2 /с – для тепловой изоляции;

а ≈ 10 -6 м 2 /с – для огнеупоров;

а ≈ 10 -5 м 2 /с – для стали.

Для представления закона Фурье в энергетической форме заменим λ в классической форме записи закона теплопроводности выражением

или
.

– для изохорных процессов,

где – удельная объемная внутренняя энергия, Дж/м 3 ;

– для изобарных процессов,

где
- удельная объемная энтальпия, Дж/м 3 .

Для твердых тел энергетическая форма записи закона Фурье имеет вид:

§2.3. Дифференциальное уравнение теплопроводности.

(Дифференциальное уравнение Фурье)

Если поместить тело, например, бесконечную пластинку толщиной δ и начальной температурой T 0 в горячую среду с температурой T f (рис. 1.1), то пластинка, получая энергию от горячей среды, будет нагреваться, и ее температура изменяется с течением времени в каждой точке.

Рис. 2.1. Нагрев пластины в среде с температурой T f

Температурное поле
, т.е. распределение температур в пространстве и во времени, находят решением дифференциального уравнения (ДУ) теплопроводности, которое в 1814 году вывел французский ученый Фурье и поэтому это уравнение носит его имя. Вывод ДУ теплопроводности основан на законе сохранения энергии и использует закон Фурье. Уравнение Фурье моделирует процессы, которые в процессе теплопроводности протекают в каждом элементарном объеме тела:

1) поглощение тепловой энергии при нагреве или выделение при охлаждении;

2) прохождение теплоты через элементарный объем транзитом;

3) выделение или поглощение теплоты за счет действия внутренних источников или стоков теплоты мощностью q v .

В векторной форме записи дифференциальное уравнение теплопроводности имеет вид:

,

где
– удельная объемная теплоемкость, Дж/(м 3 К); – плотность, кг/м 3 ; с – удельная массовая теплоемкость, Дж/(кгК).

Напомним, что для твёрдых тел
.

Решая это уравнение, мы получим температурное поле: Т(х i , ). Т.о. дифференциальное уравнение теплопроводности устанавливает связь между пространственным и временным изменениями температуры.

Вид формул для операторов дивергенции (div) и градиента (grad) зависят от выбора системы координат. Например, в декартовой системе координат ДУ теплопроводности примет вид:

или принимая допущение о независимости физических свойств вещества от температуры {
}

,

где
– коэффициент температуропроводности, м 2 /с.

В нашем кратком курсе ТМО будем решать дифференциальное уравнение Фурье для тел простейшей формы (бесконечная пластина, бесконечный цилиндр и шар или сфера) с постоянными физическими коэффициентами:

,

где x 1 – первая координата в ортогональной системе координат: x 1 = x в декартовой системе координат,x 1 = r в цилиндрической и сферической системах координат; k = 1, 2 или 3 – коэффициент формы тела: k = 1 – бесконечная пластина; k = 2 – бесконечный цилиндр; k = 3 – шар.

При отсутствии в системе внутренних источников\стоков теплоты (q v = 0) дифференциальные уравнения Фурье для тел простейшей формы записываются следующим образом:

k = 1:
; k = 2:
;k = 3:
.

При неизменных условиях теплообмена (постоянных температурах флюида, омывающих тело с разных сторон, и постоянных коэффициентах теплоотдачи) на границах тела его температурное поле с некоторого момента времени перестает изменяться во времени и наступает стационарный режим теплопроводности, который для тел простейшей формы описывается уравнением Пуассона при действии внутренних источников теплоты

,

или уравнением Лапласа, если q v =0

.

В результате решения одномерного дифференциального уравнения для стационарного процесса теплопроводности находят температурное поле в виде T(x 1) или в явном виде T(x) – в декартовой системе координат и T(r) – в цилиндрической и сферической системах координат.

§2.4. Условия однозначности,

необходимые для решения уравнения Фурье

ДУ теплопроводности имеет бесчисленное множество решений. Для выделения единственного решения этого уравнения, соответствующего единственному явлению теплопроводности, должны быть заданы следующие параметры:

1. геометрические размеры и форма тела, а также время τ для нестационарного процесса. Заметим, что время процесса может быть задано неявно по какому-либо дополнительному условию, например, нагрев или охлаждение тела до достижения теплового равновесия с окружающей средой;

2. физические свойства вещества (коэффициент теплопроводности λ , удельная объемная теплоемкость с" (или удельная массовая теплоемкость с ), плотность ρ , коэффициент температуропроводности a );

3. закон распределения внутренних источников теплоты q v (x i , τ) . В частном случае
;

4. краевые условия (КУ) задают начальное распределение температуры в заданной расчетной области (НУ) и условия теплообмена на границе этой области (ГУ).

§2.4.1. Начальные условия (НУ)

Перед началом расчета процесса нестационарной теплопроводности необходима информация о распределения температуры в объеме тела в некоторый момент времени, принимаемый за начало отсчета, или начальный момент времени (момент времени τ = 0). Т.о., должна быть задана функция

или
,

где – система координат.

В частном случае одномерного и равномерно распределенного в объеме тела начального температурного поля НУ имеют вид:

Т (х, 0) = Т 0 = const.

Заметим, что для задач стационарной теплопроводности задание начальных условий не имеет смысла.

§2.4.2. Граничные условия (ГУ)

В расчетах теплообмена применяют четыре типа ГУ, которые называют родами. Граничные условия теплообмена необходимо задавать, как на внешней поверхности тела (внешние ГУ), так и, при расположении границы расчетной области внутри тела, на внутренней поверхности (внутренние ГУ). Граничные условия первого и второго родов могут быть как внешними, так и внутренними, граничные условия третьего рода – только внешние граничные условия, граничные условия четвертого рода – только внутренние граничные условия.

Граничные условия первого рода

При граничных условиях I рода задают значение температуры на границе расчетной области:

,

где индексw означает "граница";
– координаты границы заданной расчетной области. В частном случае эта температура после мгновенного изменения до температуры T w может оставаться неизменной во времени и не изменяться вдоль границы:

.

Граничные условия второго рода

При граничных условиях II рода задают значение плотности теплового потока на границе расчетной области:

,

где индексw означает "граница"; – координаты границы заданной расчетной области.

С учетом закона Фурье ГУ II рода можно записать следующим образом

,

где n – координата, направленная по нормали к границе расчетной области.

В частном случае плотность теплового потока q w может не изменяться вдоль границы расчетной области и быть постоянной во времени:

.

Граничные условия третьего рода

При граничных условиях III рода задают температуру внешней среды, окружающей тело, и закон теплообмена между средой и поверхностью тела. Граничные условия третьего рода являются наиболее общими и часто используемыми в практике расчетов граничными условиями. В качестве закона теплообмена между окружающей тело средой и поверхностью тела наиболее часто в инженерных расчетах используют закон теплоотдачи – закон Ньютона

где коэффициент теплоотдачи (вспомним, что в общем случае теплоотдача происходит конвекцией и излучением); T f – температура флюида; T w – температура поверхности тела.

С учетом закона Фурье ГУ III рода можно записать следующим образом

,

где знак + или – в законе Фурье зависит от выбора начала системы координат.

В расчетах теплопроводности используют безразмерную форму записи граничных условий третьего рода

, где
– безразмерная температура;
– безразмерная координата, перпендикулярная поверхности теплообмена; R – характерный или определяющий размер тела;
– критерий Биó (Biot); λ w – коэффициент теплопроводности твердого тела.

Критерий Био – определяющий критерий в задачах теплопроводности, т.е. от его величины зависит интенсивность процесса теплопроводности. Физический смысл критерия Био можно раскрыть, записав его формулу в виде

,

т.е.критерий Био характеризует:

а) отношение интенсивности внешнего теплообмена () к интенсивности внутреннего теплообмена(/R);

б) отношение термического сопротивления теплопроводности(R/) к термическому сопротивлению конвективной теплоотдачи(1/).

Граничные условия четвертого рода

Граничные условия IV рода задают условия теплообмена на границе идеального контакта двух тел, состоящих из разного вещества с разными физическими свойствами. В этом случае в зоне идеального контакта у обоих тел равны температуры и тепловые потоки

, или, используя закон Фурье
.

§2.5. Методы решения краевой задачи в теории теплопроводности

Все методы решения краевой задачи теории теплопроводности можно разделить на две большие группы. К первой группе относят методы, использующие современные средства математического анализа, вычислительной математики и вычислительной техники, поэтому их называют теоретическими методами. Во вторую группу включены методы, при использовании которых, температурное поле находят в результате проведения эксперимента. Поэтому их называют экспериментальными методами.

Экспериментальные методы делятся на методы теории подобия и методы аналогий. По методу теории подобия температурное поле находят экспериментально на модели, в которой реализуется процесс той же физической природы, что и в объекте моделирования. По методу аналогий исследование процесса теплопроводности заменяется исследованием процесса другой физической природы, который протекает аналогично процессу теплопроводности. Эта аналогия проявляется в одинаковых по форме записи дифференциальных уравнениях переноса, относящихся к разным физическим явлениям.

Теоретические методы можно подразделить на аналитические, численные, численно-аналитические методы.

При использовании аналитических методов решение получают в виде конечной формулы или бесконечного ряда. Различают точные аналитические методы (метод разделения переменных или метод Фурье, метод интегральных преобразований, метод конформных отображений и др.) и приближенные аналитические методы (различные формы вариационных методов, метод подстановок и др.). Точные аналитические методы можно применять только к линейным задачам теории теплопроводности.

При использовании численных методов решение задачи получают в виде набора значений температур в дискретных точках пространства в дискретные моменты времени. В настоящее время для методами решения задач теплообмена наиболее часто используют метод сеток и метод конечных элементов.

Методы, которые используют аналитические решения для получения значений температур в дискретных точках пространства в дискретные моменты времени, называются численно-аналитическими (метод граничных элементов, метод R-функций, метод дискретного удовлетворения краевых условий и др.).

§2.6. Нестационарная теплопроводность в телах простейшей формы

В результате решения задачи нестационарной теплопроводности находят температурное поле
, изменяющееся в пространстве и во времени. Точные аналитические решения дифференциального уравнения теплопроводности для тел простейшей формы с граничными условиями I, II и III родов приведены в методических указаниях "Нестационарная теплопроводность" №1684. Для удобства инженерных расчетов аналитическое решение при ГУ III рода представлено в виде графиков – номограмм, которые для тел простейшей формы также приведены в той же методичке №1684. Поэтому далее рассмотрим постановку задачи и алгоритм определения температурного поля с помощью номограмм.

§2.6.1. Математическая формулировка задачи

Линейное дифференциальное уравнение теплопроводности для тел классической формы при отсутствии внутренних источников теплоты имеет вид

,

где x 1 – первая координата в ортогональной системе координат; k = 1, 2 или 3 – коэффициент формы тела; k – коэффициент температуропроводности.

Температурное поле будем находить в расчетной области, ограниченной осью симметрии тела и его внешней границей (см. рис. 1.2). Для выделения единственного решения данного уравнения зададим условия однозначности:

Размер расчетной области
;

Теплофизические свойства материала тела известны: a и λ ;

Внутренние источники теплоты отсутствуют:
;

Начальные условия: Т (х 1 , 0)=Т 0 ;

Граничные условия:

а) на внутренней границе из условия симметрии температурного поля следует, что
;

б) на внешней границе теплообмен определяется температурой окружающей среды T f и коэффициентом теплоотдачи

.

Решением поставленной задачи будет температурное поле для заданных условий однозначности.

Рис. 2.2. К расчету температурного поля при ГУ III рода

В практике инженерных расчетов находят общее решение температурного поля в безразмерном виде
в зависимости от безразмерного коэффициента теплоотдачи – критерия Био (Bi) в безразмерных точках пространства (X) в моменты времени Fo. В этом случае математическая формулировка задачи имеет вид:

.

Начальное условие

Граничные условия:

а) на внутренней границе
;

б) на внешней границе
,

где – безразмерная температура;
– безразмерная координата; R – характерный или определяющий размер тела; – критерий Биó; λ w – коэффициент теплопроводности твердого тела;
– безразмерное время – критерий Фурье.

В результате решения задачи нестационарной теплопроводности, записанной в безразмерном виде, получаем функциональную зависимость
. Для удобства анализа решения данную зависимость представляют графически для теплового центра и поверхности каждого тела в отдельности. Т.о. наиболее часто используют шесть графиков зависимости
для конкретных значений k=1,2 и 3 в точках X=0 и X=1, которые приведены в учебниках по ТМО и в методических указаниях №1684. На рис. 2.3. показан общий вид номограммы расчета нестационарной теплопроводности в телах простейшей формы при граничных условиях III рода.

Рис.2.3. Номограмма для расчета нестационарной теплопроводности при ГУ III рода

При расчете нестационарной теплопроводности существует 2 основные постановки задачи: прямая и обратная. Целью решения прямой задачи является определение температурного поля (Θ) при заданных условиях однозначности (Fo, Bi). В результате решения обратной задачи теплопроводности по известному температурному полю (Θ) находят условия однозначности – время процесса теплопроводности или коэффициент теплоотдачи. Если по условию задачи заданы Θ и Bi, то по графику определяют критерий Fo, а затем время процесса. Если по условию задачи заданы Θ и Fo, то по графику определяют критерий Bi, по значению которого рассчитывают коэффициент теплоотдачи.

Прямая постановка задачи расчета нестационарной теплопроводности

Дано:
, где – время нагрева или охлаждения тела

Найти: 1) температуру поверхности тела

2) температуру теплового центра тела

3) среднюю по массе температуру тела
.

1. Перед началом расчета необходимо рассчитать размер расчетной области R, который для бесконечного цилиндра и шара равен радиусу тела, а для бесконечной пластины – при симметричном нагреве или охлаждении и, соответственно,
, если теплообмен на одной из сторон пластины отсутствует – несимметричный процесс теплопроводности.

2. Рассчитываем критерии
и по графикам для поверхности и теплового центра тела определяем безразмерные температуры поверхности
и центра соответственно.


3. Находим температуры на поверхности и в центре тела. Т.к. по определению , то, выражая неизвестную температуру, получим
, где Т = Т w , если
и Т = Т с, если
.

4) Рассчитываем среднюю по массе температуру тела в конце процесса теплопроводности. При допущении параболического распределения температуры по сечению тел простейшей формы формула для расчета среднемассовой температуры будет иметь вид:

,

где k – коэффициент формы тела;
– перепад температур по сечению тела.

Обратная постановка задачи расчета нестационарной теплопроводности

А. Определение времени процесса нагрева/охлаждения

Найти: 1) время процесса теплопроводности – ;

2) температуру теплового центра
, либо температуру поверхности
;

3) среднюю по массе температуру тела .

Алгоритм поставленной выше задачи заключается в следующем.

1. Перед началом расчета необходимо рассчитать размер расчетной области R, который для бесконечного цилиндра и шара равен радиусу тела, а для бесконечной пластины – при симметричном нагреве или охлаждении и, соответственно, , если теплообмен на одной из сторон пластины отсутствует – несимметричный процесс теплопроводности.

2. Рассчитываем температурные критерии , либо в зависимости от исходных данных и критерий Bi. Затем по графикам
или
определяем критерий Фурье.


3. Рассчитываем время процесса по формуле
.

4. Неизвестную температуру и среднемассовую температуру находим по алгоритму решения прямой задачи.

Б. Определение коэффициента теплоотдачи от внешней среды к поверхности тела

Найти: 1) коэффициент теплоотдачи – ;

2) температуру теплового центра , либо температуру поверхности ; определяем критерий Био.где x 1 – координата, м; k – коэффициент формы тела. Подставляя в последнее уравнение значения коэффициента формы тела и обозначение координаты для тел простейшей формы, получим в любой точке плоской стенки. Поэтому для любого i-го слоя многослойной стенки можно записать

,

где
– перепад температур на i-ом слое многослойной стенки;
– термическое сопротивление теплопроводности i-го слоя многослойной стенки.

Из последнего выражения следует, что перепад температур на каждом слое многослойной стенки прямо пропорционален термическому сопротивлению этого слоя

Плотность теплового потока для плоской стенки, состоящей из n слоев, рассчитывается по формуле:

.

Цилиндрическая стенка

Решим дифференциальное уравнение теплопроводности для цилиндрической стенки при следующих условиях однозначности:

Внутренний и наружный радиусы цилиндрической стенки равны r 1 и r 2 ,м;

Методические указания

Афанасьева, О.Б. Сенникова, Е.А. Шакирова. Теоретические основы теплотехники . Конструирование и расчет рекуперативного теплообменника. Методические... , 1987.-352 с. Бакластов А.М. Промышленные тепломассообменные процессы и установки / А.М. Бакластов, ...

  • Направление подготовки 140100 теплоэнергетика и теплотехника программы подготовки магистров теоретические основы теплотехники

    Документ

    Теплоэнергетика и теплотехника Программы подготовки магистров: Теоретические основы теплотехники Технология производства электрической... Инженерная графика", "Техническая термодинамика", "Тепломассообмен" , "Информационные технологии", "Численные методы...

  • Рабочая программа по дисциплине опд ф 6 гидравлика и теплотехника

    Рабочая программа

    И режимов эксплуатации гидромеханических и тепломассообменных аппаратов и установок. 3. Распределение... Ртищева А.С. Теоретические основы гидравлики и теплотехники : Уч. пособие.- Ульяновск, 2007. Ляшков В.И. Теоретические основы теплотехники : учеб...

  • Документ

    ... : - теоретические основы теплотехники Теоретические основы теплотехники ...

  • Программа вступительных испытаний в магистратуру направление 140100 68 теплоэнергетика и теплотехника

    Документ

    ... : - теоретические основы теплотехники ; - источники и системы теплоснабжения предприятий; - технологические энергоносители предприятий - энергосбережение в теплоэнергетике и теплотехнологиях. Теоретические основы теплотехники ...

  • В учебном пособии лаконично и последовательно изложены теоретические основы теплотехники (основы термодинамики, теории тепло- и массообмена и теории горения), составляющие необходимый и достаточный минимум для того, чтобы в дальнейшем специалист мог самостоятельно углублять знания в тех или иных областях прикладной теплотехники. Учебный материал изложен отдельными, сравнительно небольшими подразделами, структурированность и последовательность которых продиктована внутренней логикой названных наук. Для студентов, обучающихся по специальности «Энергообеспечение предприятий», а также для студентов других специальностей при изучении ими дисциплин теплотехнического профиля.

    Основные термины термодинамики.
    Окружающий мир материален, материя находится в непрерывном движении. Меру движения материи называют энергией. Наиболее распространенные формы движения материи - механическая и тепловая. В первом случае движение связано с перемещением в пространстве макрообъемов материи, во втором - с движением только на микроуровне (тепловое движение молекул). Изменения энергии в результате таких движений называют соответственно механической работой и теплотой.

    Тело или группу макротел, энергетические свойства которых подлежат изучению, называют термодинамической системой. Все остальные тела, способные взаимодействовать с системой, составляют окружающую среду. Границу между системой и средой называют контрольной поверхностью. Если контрольная поверхность допускает обмен массой между системой и окружающей средой, систему называют открытой. если же такой обмен невозможен, систему называют закрытой. Закрытые системы проще и именно с них начинают изучение основ термодинамики.

    Одну из аксиом термодинамики составляет ее нулевое правило: всякие изменения в системе возможны только в результате взаимодействия с окружающей средой, а любые случайные изменения в системе вызывают процесс, возвращающий ее в первоначальное состояние. Априорно принимая это положение, из объектов анализа исключают многие биологические системы, обладающие способностью самопроизвольных изменений, или отдельные химические реакции (см., например, материал в Интернете о колебательной реакции Белоусова - Жаботинского).

    СОДЕРЖАНИЕ
    ПРЕДИСЛОВИЕ
    ВВЕДЕНИЕ
    1. ОСНОВЫ ТЕРМОДИНАМИЧЕСКОГО АНАЛИЗА
    1.1.Общие понятия и законы термодинамики
    1.1.1.Основные термины термодинамики
    1.1.2.Первый закон термодинамики в общем виде
    1.1.3.Термомеханическая система
    1.1.4.Внутренняя энергия газа
    1.1.5.Энтальпия, ее физический смысл
    1.1.6.Другие характеристические функции. Эксергия
    1.1.7.Равновесные и неравновесные процессы
    1.1.8.Принцип возрастания энтропии. Второй закон термодинамики
    1.1.9.Уравнение состоянии. Критерий устойчивости
    1.1.10.Графический метод в термодинамике
    1.1.11.Теплоемкости газов
    1.1.12.Уравнение Майера и другие свойства идеального газа
    1.1.13.Формулы для вычисления энтропии
    1.2.Идеальные термодинамические процессы и циклы
    1.2.1.Политропные процессы
    1.2.2.Анализ политропных процессии
    1.2.3.Общие понятия о циклах
    1.2.4.Цикл и теорема Карно
    1.2.5.Потери работоспособности. Коэффициент качества теплоты
    1.3.Термодинамика реальных газов
    1.3.1.Реальные газы
    1.3.2.Термические коэффициенты и связь между ними
    1.3.3.Состояния и свойства воды и водяного пара
    1.3.4.Определение параметров воды и пара
    1.3.5.Диаграмма h-s воды и пара
    1.3.6.Уравнение Клапейрона- Клаузиуса
    1.3.7.Расчет процессов с водой и паром
    1.4.Термодинамика газового потока
    1.4.1.Первый закон термодинамики для потока газа
    1.4.2.Анализ адиабатных течений
    1.4.3.Скорость истечения и расход газа
    1.4 4. Скорость распространения колебаний давления в газе
    1.4.5.Связь между скоростью импульса и скоростью звука
    1.4.6.Связь между скоростью газа и скоростью звука
    1.4.7.Влияние формы канала на скорость газа
    1.4.8.Дифференциальный и интегральный дроссель-эффекты
    1.5.Смеси и смешивание газов
    1.5.1.Газовые смеси
    1.5.2.Смешивание газов
    1.5.3.Влажный воздух и процессы с ним
    1.5.4.Смешивание потоков пара или потоков влажного воздуха
    1.6.Основы химической термодинамики
    1.6.1.Химический потенциал
    1.6.2.Тепловой эффект химических реакций
    1.6.3.Условия равновесия сложных систем
    1.6.4.Фазовое равновесие, фазовая диаграмма р-Т
    1.7.Циклы реальных машин и установок
    1.7.1.Циклы идеальных компрессоров
    1.7.2.Цикл реального компрессора
    1.7.3.Циклы поршневых двигателей внутреннего сгорания
    1.7.4.Циклы газотурбинных установок
    1.7.5.Циклы паросиловых установок
    1.7.6.Повышение эффективности теплосиловых циклов
    1.7.7.Цикл воздушной холодильной машины
    1.7.8.Цикл парокомпрессорной холодильной машины
    1.7.9.Абсорбционная холодильная установка
    1.7.10.Термотрансформаторы
    2. ТЕОРИЯ ТЕПЛО- И МАССООБМЕНА
    2.1.Основные понятия и законы теории теплообмена
    2.1.1.Классификация процессов теплообмена
    2.1.2.Основные термины теории теплообмена
    2.1.3.Основные законы теплообмена
    2.2.Теплопроводность
    2.2.1.Способность тел проводить теплоту
    2.2.2.Дифференциальное уравнение теплопроводности
    2.2.3.Условия однозначности в задачах теплопроводности
    2.2.4.Стационарная теплопроводность плоской стенки при ГУ-1
    2.2.5.Стационарная теплопроводность плоской стенки при ГУ-3
    2.2.6.Стационарная теплопроводность плоских стенок при смешанных граничных условиях
    2.2.7.Стационарная теплопроводность цилиндрической стенки при ГУ-1
    2.2.8.Теплопередача через цилиндрическую стенку
    2.2.9.Критический диаметр изоляции. Оптимальная изоляция
    2.2.10.Теплопередача через ребристую стенку
    2.2.11.Теплопроводность цилиндра при наличии внутренних источников теплоты
    2.2.12.Численное решение задач стационарной теплопроводности
    2.2.13.Процессы нестационарной теплопроводности
    2.2.14.Общее решение дифференциального уравнения теплопроводности
    2.2.15.Нестационарная теплопроводность неограниченной плоской стенки
    2.2.16.Метод источников теплоты
    2.2.17.Численное решение нестационарных задач теплопроводности
    2.3.Конвективный теплообмен
    2.3.1.Основные факторы, определяющие интенсивность конвекции
    2.3.2.Понятие о гидродинамическом и тепловом пограничных слоях
    2.3.3.Дифференциальное уравнение теплоотдачи и другие дифференциальные уравнения теплового пограничного слоя
    2.3.4.Основы теории подобия
    2.3.5.Теплоотдача при свободной конвекции
    2.3.6.Теплоотдача при движении теплоносителя в трубах и каналах
    2.3.7.Теплоотдача при поперечном обтекании труб и в трубных пучках
    2.3.8.Теплоотдача при конденсации
    2.3.9.Отдельные случаи конденсации
    2.3.10.Теплоотдача при кипении
    2.3.11.Отдельные случаи кипения
    2.3.12.Изменение температурного напора вдоль поверхности теплообмена
    2.3.13.Среднелогарифмический температурный напор
    2.3.14.Тепловой расчет рекуперативных теплообменников
    2.3.15.Пути и способы интенсификации процессов теплопередачи
    2.4.Тепловое излучение
    2.4.1.Общие понятия и определения
    2.4.2.Основные законы теплового излучения
    2.4.3.Лучистый теплообмен между параллельными стенками
    2.4.4.Экраны
    2.4.5.Лучистый теплообмен между телами произвольной формы
    2.4.6.Угловые коэффициенты
    2.4.7.Теплообмен в диатермических ободочках
    2.4.8.Излучение и поглощение газов
    2.4.9.Сложный теплообмен
    2.5.Массообменные процессы
    2.5.1.Основные понятия и законы
    2.5.2.Диффузионный пограничный слой
    2.5.3.Массопроводность, массоотдача, массопередача
    2.5.4.Критериальные уравнения массоотдачи
    2.5.5.Элементы теории сушки
    2.5.6.Кинетика процесса сушки
    2.5.7.Смесительные теплообменники
    3. ХАРАКТЕРИСТИКИ РАЗЛИЧНЫХ ВИДОВ ТОПЛИВА. ОСНОВЫ ТЕОРИИ ГОРЕНИЯ И ОСОБЕННОСТИ ТЕПЛООБМЕНА В ТОПКАХ
    3.1.Топливо, его основные характеристики
    3.2.Элементы теории трения
    3.3.Технические расчеты горения
    3.4.Топочные устройства
    3.5.Особенности теплообмена в топках
    ЗАКЛЮЧЕНИЕ
    СПИСОК ЛИТЕРАТУРЫ.