Таблица химической активности металлов. Активные металлы

Восстановительные свойства - это главные химические свойства, характерные для всех металлов. Они проявляются во взаимодействии с самыми разнообразными окислителями, в том числе с окислителями из окружающей среды. В общем виде взаимодействие металла с окислителями можно выразить схемой:

Ме + Окислитель " Me (+Х),

Где (+Х) - это положительная степень окисления Ме.

Примеры окисления металлов.

Fe + O 2 → Fe(+3) 4Fe + 3O 2 = 2 Fe 2 O 3

Ti + I 2 → Ti(+4) Ti + 2I 2 = TiI 4

Zn + H + → Zn(+2) Zn + 2H + = Zn 2+ + H 2

  • Ряд активности металлов

    Восстановительные свойства металлов отличаются друг от друга. В качестве количественной характеристики восстановительных свойств металлов используют электродные потенциалы Е.

    Чем активнее металл, тем отрицательнее его стандартный электродный потенциал Е о.

    Металлы, расположенные в ряд по мере убывания окислительной активности, образуют ряд активности.

    Ряд активности металлов

    Me Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H 2 Cu Ag Au
    Me z+ Li + K + Ca 2+ Na + Mg 2+ Al 3+ Mn 2+ Zn 2+ Cr 3+ Fe 2+ Ni 2+ Sn 2+ Pb 2+ H + Cu 2+ Ag + Au 3+
    E o ,B -3,0 -2,9 -2,87 -2,71 -2,36 -1,66 -1,18 -0,76 -0,74 -0,44 -0,25 -0,14 -0,13 0 +0,34 +0,80 +1,50
    Металл, с более отрицательным значением Ео, способен восстановить катион металла с более положительным электродным потенциалом.

    Восстановление металла из раствора его соли с другим металлом с более высокой восстановительной активностью называется цементацией . Цементацию используют в металлургических технологиях.

    В частности, Cd получают, восстанавливая его из раствора его соли цинком.

    Zn + Cd 2+ = Cd + Zn 2+

  • 3.3. 1. Взаимодействие металлов с кислородом

    Кислород - это сильный окислитель. Он может окислить подавляющее большинство металлов, кроме Au и Pt . Металлы, находящиеся на воздухе, контактируют с кислородом, поэтому при изучении химии металлов всегда обращают внимание на особенности взаимодействия металла с кислородом.

    Всем известно, что железо во влажном воздухе покрывается ржавчиной - гидратировааным оксидом железа. Но многие металлы в компактном состоянии при не слишком высокой температуре проявляют устойчивость к окислению, так как образуют на своей поверхности тонкие защитные пленки. Эти пленки из продуктов окисления не позволяют окислителю контактировать с металлом. Явление образования на поверхности металла защитных слоев, препятствующих окислению металла, называется - пассивацией металла.

    Повышение температуры способствует окислению металлов кислородом . Активность металлов повышается в мелкораздробленном состоянии. Большинство металлов в виде порошка сгорает в кислороде.

  • s-металлы

    Наибольшую восстановительную активность проявляют s -металлы. Металлы Na, K, Rb Cs способны воспламеняться на воздухе, и их хранят в запаянных сосудах или под слоем керосина. Be и Mg при невысоких температурах на воздухе пассивируются. Но при поджигании лента из Mg сгорает с ослепительным пламенем.

    Металлы II А-подгруппы и Li при взаимодействии с кислородом образуют оксиды .

    2Ca + O 2 = 2CaO

    4 Li + O 2 = 2Li 2 O

    Щелочные металлы, кроме Li , при взаимодействии с кислородом образуют не оксиды, а пероксиды Me 2 O 2 и надпероксиды MeO 2 .

    2Na + O 2 = Na 2 O 2

    K + O 2 = KO 2

  • р-металлы

    Металлы, принадлежащие p -блоку на воздухе пассивируются.

    При горении в кислороде

    • металлы IIIА-подгруппы образуют оксиды типа Ме 2 О 3 ,
    • Sn окисляется до SnO 2 , а Pb - до PbO
    • Bi переходит в Bi 2 O 3 .
  • d-металлы

    Все d -металлы 4 периода окисляются кислородом . Легче всего окисляются Sc, Mn , Fe. Особенно устойчивы к коррозии Ti, V, Cr.

    При сгорании в кислороде из всех d

    При сгорании в кислороде из всех d -элементов 4 периода только скандий, титан и ванадий образуют оксиды, в которых Ме находится в высшей степени окисления, равной № группы. Остальные d-металлы 4 периода при сгорании в кислороде образуют оксиды, в которых Ме находится в промежуточных, но устойчивых степенях окисления.

    Типы оксидов, образуемых d-металлами 4 периода при горении в кислороде:

    • МеО образуют Zn, Cu, Ni, Co. (при Т>1000оС Cu образует Cu 2 O),
    • Ме 2 О 3 , образуют Cr, Fe и Sc,
    • МеО 2 - Mn, и Ti,
    • V образует высший оксид -V 2 O 5 .
    d -металлы 5 и 6 периодов, кроме Y, La, более всех других металлов устойчивы к окислению. Не реагируют с кислородом Au, Pt.

    При сгорании в кислороде d -металлов 5и 6 периодов, как правило, образуют высшие оксиды , исключение составляют металлы Ag, Pd, Rh, Ru.

    Типы оксидов, образуемых d-металлами 5и 6 периодов при горении в кислороде:

    • Ме 2 О 3 - образуют Y, La; Rh;
    • МеО 2 - Zr, Hf; Ir:
    • Me 2 O 5 - Nb, Ta;
    • MeO 3 - Mo, W
    • Me 2 O 7 - Tc, Re
    • МеО 4 - Os
    • MeO - Cd, Hg, Pd;
    • Me 2 O - Ag;
  • Взаимодействие металлов с кислотами

    В растворах кислот катион водорода является окислителем . Катионом Н + могут быть окислены металлы, стоящие в ряду активности до водорода , т.е. имеющие отрицательные электродные потенциалы.

    Многие металлы, окисляясь, в кислых водных растворах многие переходят в катионы Me z + .

    Анионы ряда кислот способны проявлять окислительные свойства, более сильные, чем Н + . К таким окислителям относятся анионы и самых распространенных кислот H 2 SO 4 и HNO 3 .

    Анионы NO 3 - проявляют окислительные свойства при любой их концентрации в растворе, но продукты восстановления зависят от концентрации кислоты и природы окисляемого металла.

    Анионы SO 4 2- проявляют окислительные свойства лишь в концентрированной H 2 SO 4 .

    Продукты восстановления окислителей: H + , NO 3 - , SO 4 2 -

    2Н + + 2е - = Н 2

    SO 4 2- из концентрированной H 2 SO 4 SO 4 2- + 2e - + 4 H + = SO 2 + 2 H 2 O

    (возможно также образование S, H 2 S)

    NO 3 - из концентрированной HNO 3 NO 3 - + e - + 2H + = NO 2 + H 2 O
    NO 3 - из разбавленной HNO 3 NO 3 - + 3e - + 4H + = NO + 2H 2 O

    (возможно также образование N 2 O, N 2 , NH 4 +)

    Примеры реакций взаимодействия металлов с кислотами

    Zn + H 2 SO 4 (разб.) " ZnSO 4 + H 2

    8Al + 15H 2 SO 4 (к.) " 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

    3Ni + 8HNO 3 (разб.) " 3Ni(NO 3) 2 + 2NO + 4H 2 O

    Cu + 4HNO 3 (к.) " Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • Продукты окисления металлов в кислых растворах

    Щелочные металлы образуют катион типа Ме + , s-металлы второй группы образуют катионы Ме 2+ .

    Металлы р-блока при растворении в кислотах образуют катионы, указанные в таблице.

    Металлы Pb и Bi растворяют только в азотной кислоте.

    Me Al Ga In Tl Sn Pb Bi
    Mez+ Al 3+ Ga 3+ In 3+ Tl + Sn 2+ Pb 2+ Bi 3+
    Eo,B -1,68 -0,55 -0,34 -0,34 -0,14 -0,13 +0,317

    Все d-металлы 4 периода, кроме Cu, могут быть окислены ионами Н + в кислых растворах.

    Типы катионов, образуемых d-металлами 4 периода:

    • Ме 2+ (образуют d-металлы начиная от Mn до Cu)
    • Ме 3+ (образуют Sc, Ti , V , Cr и Fe в азотной кислоте).
    • Ti и V образуют также катионы МеО 2+
    d -элементы 5 и 6 периодов более устойчивы к окислению, чем 4 d - металлы.

    В кислых растворах Н + может окислить: Y, La, Сd.

    В HNO 3 могут растворяться: Cd, Hg, Ag. В горячей HNO 3 растворяются Pd, Tc, Re.

    В горячей H 2 SO 4 растворяются: Ti, Zr, V, Nb, Tc, Re, Rh, Ag, Hg.

    Металлы: Ti, Zr, Hf, Nb, Ta, Mo, W обычно растворяют в смеси HNO 3 + HF.

    В царской водке (смеси HNO 3 + HCl) можно растворить Zr, Hf, Mo, Tc, Rh, Ir, Pt, Au и Os с трудом). Причиной растворения металлов в царской водке или в смеси HNO 3 + HF является образование комплексных соединений.

    Пример. Растворение золота в царской водке становится возможным из-за образования комплекса -

    Au + HNO 3 + 4HCl = H + NO + 2H 2 O

  • Взаимодействие металлов с водой

    Окислительные свойства воды обусловлены Н(+1).

    2Н 2 О + 2е - " Н 2 + 2ОН -

    Так как концентрация Н + в воде мала, окислительные свойства ее невысоки. В воде способны растворяться металлы с Е < - 0,413 B. Число металлов, удовлетворяющих этому условию, значительно больше, чем число металлов, реально растворяющихся в воде. Причиной этого является образование на поверхности большинства металлов плотного слоя оксида, нерастворимого в воде. Если оксиды и гидроксиды металла растворимы в воде, то этого препятствия нет, поэтому щелочные и щелочноземельные металлы энергично растворяются в воде. Все s -металлы, кроме Be и Mg легко растворяются в воде.

    2 Na + 2 HOH = H 2 + 2 OH -

    Na энергично взаимодействует с водой с выделением тепла. Выделяющийся Н 2 может воспламениться.

    2H 2 +O 2 =2H 2 O

    Mg растворяется только в кипящей воде, Ве защищен от окисления инертным нерастворимым оксидом

    Металлы р-блока - менее сильные восстановители, чем s .

    Среди р-металлов восстановительная активность выше у металлов IIIА-подгруппы, Sn и Pb - слабые восстановители, Bi имеет Ео > 0 .

    р-металлы при обычных условиях в воде не растворяются . При растворении защитного оксида с поверхности в щелочных растворах водой окисляются Al, Ga и Sn.

    Среди d-металлов водой окисляются при нагревании Sc и Mn, La, Y. Железо реагирует с водяным паром.

  • Взаимодействие металлов с растворами щелочей

    В щелочных растворах окислителем выступает вода .

    2Н 2 О + 2е - = Н 2 + 2ОН - Ео = - 0,826 B (рН =14)

    Окислительные свойства воды с ростом рН понижаются, из-за уменьшения концентрации Н + . Тем не менее, некоторые металлы, не растворяющиеся в воде, растворяются в растворах щелочей, например, Al, Zn и некоторые другие. Главная причина растворения таких металлов в щелочных растворах заключается в том, что оксиды и гидроксиды этих металлов проявляют амфотерность, растворяются в щелочи, устраняя барьер между окислителем и восстановителем.

    Пример. Растворение Al в растворе NaOH.

    2Al + 3H 2 O +2NaOH + 3H 2 O = 2Na + 3H 2

  • Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

    Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

    Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

    Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

    Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

    Взаимодействие с простыми веществами

      С кислородом большинство металлов образует оксиды – амфотерные и основные:

    4Li + O 2 = 2Li 2 O,

    4Al + 3O 2 = 2Al 2 O 3 .

    Щелочные металлы, за исключением лития, образуют пероксиды:

    2Na + O 2 = Na 2 O 2 .

      С галогенами металлы образуют соли галогеноводородных кислот, например,

    Cu + Cl 2 = CuCl 2 .

      С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

    2Na + H 2 = 2NaH.

      С серой металлы образуют сульфиды – соли сероводородной кислоты:

      С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

    3Mg + N 2 = Mg 3 N 2 .

      С углеродом образуются карбиды:

    4Al + 3C = Al 3 C 4 .

      С фосфором – фосфиды:

    3Ca + 2P = Ca 3 P 2 .

      Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

    2Na + Sb = Na 2 Sb,

    3Cu + Au = Cu 3 Au.

      Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

    Сплавы

    Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

    Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

    Возможны следующие типы сплавов:

    Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

    Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

    Какую информацию можно получить из ряда напряжений?

    Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

    Взаимодействие металлов с кислотами

    Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами - неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами - окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4).

    Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

    Zn + 2HCl = ZnCl 2 + H 2

    Zn + H 2 SO 4 = ZnSO 4 + H 2

    Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с "обычными" кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

    Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

    Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O

    Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать !

    Взаимодействие металлов с водой

    Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

    Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

    2Na + 2H 2 O = 2NaOH + H 2

    2K + 2H 2 O = 2KOH + H 2

    Ca + 2H 2 O = Ca(OH) 2 + H 2

    Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.

    Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

    Взаимодействие металлов с водными растворами солей

    Речь пойдет о реакциях следующего типа:

    металл (*) + соль металла (**) = металл (**) + соль металла (*)

    Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

    Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

    1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
    2. металл (*) должен находиться в ряду напряжений левее металла (**);
    3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

    Пример 4 . Рассмотрим несколько реакций:

    Zn + CuSO 4 = ZnSO 4 + Cu

    K + Ni(NO 3) 2 ≠

    Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

    Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец - менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

    Процесс термического распада нитратов

    Напомню, что нитраты - это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

    Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

    2KNO 3 = 2KNO 2 + O 2

    В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:

    2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

    Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород.

    Электрохимический ряд активности металлов (ряд напряжений, ряд стандартных электродных потенциалов) - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

    Практическое использование ряда активности металлов

    Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

    • Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
    • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.
    • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
    • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

    Самыми активными считаются щелочные металлы:

    • литий;
    • натрий;
    • калий;
    • рубидий;
    • цезий;
    • франций.

    Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

    Положение в таблице Менделеева

    Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

    Рис. 1. Активные металлы в таблице Менделеева.

    Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

    Наиболее активными считаются щелочные металлы:

    • литий;
    • натрий;
    • калий;
    • рубидий;
    • цезий;
    • франций.

    К щелочноземельным металлам относятся:

    • бериллий;
    • магний;
    • кальций;
    • стронций;
    • барий;
    • радий.

    Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

    Рис. 2. Электрохимический ряд напряжений металлов.

    К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

    Свойства

    Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

    Основные химические свойства металлов представлены в таблице.

    Реакция

    Уравнение

    Исключение

    Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

    K + O 2 → KO 2

    Литий реагирует с кислородом только при высокой температуре

    Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

    2Ca + O 2 → 2CaO

    Реагируют с простыми веществами, образуя соли

    Ca + Br 2 → CaBr 2 ;
    - 2Al + 3S → Al 2 S 3

    Алюминий не вступает в реакцию с водородом

    Бурно реагируют с водой, образуя щёлочи и водород


    - Ca + 2H 2 O → Ca(OH) 2 + H 2

    Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

    Реагируют с кислотами, образуя соли

    Ca + 2HCl → CaCl 2 + H 2 ;

    2K + 2HMnO 4 → 2KMnO 4 + H 2

    Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

    2Na + CuCl 2 + 2H 2 O:

    2Na + 2H 2 O → 2NaOH + H 2 ;
    - 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

    Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

    Рис. 3. Минералы и чистые металлы.

    Что мы узнали?

    К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.4 . Всего получено оценок: 388.