Сжигание серы. Задание для расчета

Из википедии.

Пожароопасные свойства серы.
Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углём, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

Средства тушения: распылённая вода, воздушно-механическая пена.

По данным В. Маршалла пыль серы относится к разряду взрывоопасных, но для взрыва необходима достаточно высокая концентрация пыли - порядка 20 г/м³ (20 000 мг/м³), такая концентрация во много раз превышает предельно допустимую концентрацию для человека в воздухе рабочей зоны - 6 мг/м³.

Пары образуют с воздухом взрывчатую смесь.

Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C.

Так как воздух по объёму состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объёма кислорода получается один объём SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха, и объёмное содержание SO2 в газовой смеси меньше теоретически возможного, составляя обычно 14…15 %.

Обнаружение горения серы пожарной автоматикой является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Тепловыделение при пожаре приводит к температуре ниже, чем при пожарах других распространенных пожароопасных веществ. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространёнными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

Для выполнения требований пожарной безопасности на складах серы необходимо:

Конструкции и технологическое оборудование должны регулярно очищаться от пыли;
помещение склада должно постоянно проветриваться естественной вентиляцией при открытых дверях;
дробление комков серы на решётке бункера должно производиться деревянными кувалдами или инструментом из неискрящего материала;
конвейеры для подачи серы в производственные помещения должны быть снабжены металлоискателями;
в местах хранения и применения серы необходимо предусматривать устройства (бортики, пороги с пандусом и т. п.), обеспечивающие в аварийной ситуации предотвращение растекания расплава серы за пределы помещения или открытой площадки;
на складе серы запрещается:
производство всех видов работ с применением открытого огня;
складировать и хранить промасленную ветошь и тряпки;
при ремонте применять инструмент из искродающего материала.

Сера представляет собой химический элемент, который находится в шестой группе и третьем периоде таблицы Менделеева. В этой статье мы подробно рассмотрим ее химические и получение, использование и так далее. В физическую характеристику входят такие признаки, как цвет, уровень электропроводности, температура кипения серы и т. д. Химическая же описывает ее взаимодействие с другими веществами.

Сера с точки зрения физики

Это хрупкое вещество. При нормальных условиях оно пребывает в твердом агрегатном состоянии. Сера обладает лимонно-желтой окраской.

И в большинстве своем все ее соединения имеют желтые оттенки. В воде не растворяется. Обладает низкой тепло- и электропроводностью. Данные признаки характеризуют ее как типичный неметалл. Несмотря на то что химический состав серы совсем не сложен, данное вещество может иметь несколько вариаций. Все зависит от строения кристаллической решетки, с помощью которой соединяются атомы, молекул же они не образовывают.

Итак, первый вариант - ромбическая сера. Она является наиболее устойчивой. Температура кипения серы такого типа составляет четыреста сорок пять градусов по шкале Цельсия. Но для того чтобы данное вещество перешло в газообразное агрегатное состояние, ему сначала необходимо пройти жидкое. Итак, плавление серы происходит при температуре, которая составляет сто тринадцать градусов Цельсия.

Второй вариант - моноклинная сера. Она представляет собой кристаллы игольчатой формы с темно-желтой окраской. Плавление серы первого типа, а затем ее медленное охлаждение приводит к формированию данного вида. Эта разновидность обладает почти теми же физическими характеристиками. К примеру, температура кипения серы такого типа - все те же четыреста сорок пять градусов. Кроме того, есть такая разновидность данного вещества, как пластическая. Ее получают посредством выливания в холодную воду нагретой почти до кипения ромбической. Температура кипения серы данного вида такая же. Но вещество обладает свойством тянуться, как резина.

Еще одна составляющая физической характеристики, о которой хотелось бы сказать, - температура воспламенения серы.

Данный показатель может разниться в зависимости от типа материала и его происхождения. К примеру, температура воспламенения серы технической составляет сто девяносто градусов. Это довольно низкий показатель. В других случаях температура вспышки серы может составлять двести сорок восемь градусов и даже двести пятьдесят шесть. Все зависит от того, из какого материала была она добыта, какую имеет плотность. Но можно сделать вывод, что температура горения серы достаточно низкая, по сравнению с другими химическими элементами, это легковоспламеняющееся вещество. Кроме того, иногда сера может объединяться в молекулы, состоящие из восьми, шести, четырех либо двух атомов. Теперь, рассмотрев серу с точки зрения физики, перейдем к следующему разделу.

Химическая характеристика серы

Данный элемент обладает сравнительно низкой атомной массой, она равняется тридцати двум граммам на моль. Характеристика элемента сера включает в себя такую особенность данного вещества, как способность обладать разной степенью окисления. Этим она отличается от, скажем, водорода или кислорода. Рассматривая вопрос о том, какова химическая характеристика элемента сера, невозможно не упомянуть, что он, в зависимости от условий, проявляет как восстановительные, так и окислительные свойства. Итак, по порядку рассмотрим взаимодействие данного вещества с различными химическими соединениями.

Сера и простые вещества

Простыми являются вещества, которые имеют в своем составе только один химический элемент. Его атомы могут объединяться в молекулы, как, например, в случае с кислородом, а могут и не соединяться, как это бывает у металлов. Так, сера может вступать в реакции с металлами, другими неметаллами и галогенами.

Взаимодействие с металлами

Для осуществления подобного рода процесса необходима высокая температура. При таких условиях происходит реакция присоединения. То есть атомы металла объединяются с атомами серы, образуя при этом сложные вещества сульфиды. Например, если нагреть два моль калия, смешав их с одним моль серы, получим один моль сульфида данного металла. Уравнение можно записать в следующем виде: 2К + S = K 2 S.

Реакция с кислородом

Это сжигание серы. Вследствие данного процесса образуется ее оксид. Последний может быть двух видов. Поэтому сжигание серы может происходить в два этапа. Первый - это когда из одного моль серы и одного моль кислорода образуется один моль диоксида сульфура. Записать уравнение данной химической реакции можно следующим образом: S + О 2 = SO 2 . Второй этап - присоединение к диоксиду еще одного атома оксигена. Происходит это, если добавить к двум моль один моль кислорода в условиях высокой температуры. В результате получим два моль триоксида сульфура. Уравнение данного химического взаимодействия выглядит таким образом: 2SO 2 + О 2 = 2SO 3 . В результате такой реакции образуется серная кислота. Так, осуществив два описанных процесса, можно пропустить полученный триоксид через струю водяного пара. И получим Уравнение подобной реакции записывается следующим образом: SO 3 + Н 2 О = H 2 SO 4 .

Взаимодействие с галогенами

Химические как и других неметаллов, позволяют ей реагировать с данной группой веществ. К ней относятся такие соединения, как фтор, бром, хлор, йод. Сера реагирует с любым из них, за исключением последнего. В качестве примера можно привести процесс фторирования рассматриваемого нами элемента таблицы Менделеева. С помощью разогревания упомянутого неметалла с галогеном можно получить две вариации фторида. Первый случай: если взять один моль сульфура и три моль фтора, получим один моль фторида, формула которого SF 6 . Уравнение выглядит так: S + 3F 2 = SF 6 . Кроме того, есть второй вариант: если взять один моль серы и два моль фтора, получим один моль фторида с химической формулой SF 4 . Уравнение записывается в следующем виде: S + 2F 2 = SF 4 . Как видите, все зависит от пропорций, в которых смешать компоненты. Точно таким же образом можно провести процесс хлорирования серы (также может образоваться два разных вещества) либо бромирования.

Взаимодействие с другими простыми веществами

На этом характеристика элемента сера не заканчивается. Вещество также может вступать в химическую реакцию с гидрогеном, фосфором и карбоном. Вследствие взаимодействия с водородом образуется сульфидная кислота. В результате её реакции с металлами можно получить их сульфиды, которые, в свою очередь, также получают прямым путем взаимодействия серы с тем же металлом. Присоединение атомов гидрогена к атомам сульфура происходит только в условиях очень высокой температуры. При реакции серы с фосфором образуется ее фосфид. Он имеет такую формулу: P 2 S 3. Для того чтобы получить один моль данного вещества, нужно взять два моль фосфора и три моль сульфура. При взаимодействии серы с углеродом образуется карбид рассматриваемого неметалла. Его химическая формула выглядит так: CS 2 . Для того чтобы получить один моль данного вещества, нужно взять один моль углерода и два моль серы. Все описанные выше реакции присоединения происходят только при условии нагревания реагентов до высоких температур. Мы рассмотрели взаимодействие серы с простыми веществами, теперь перейдем к следующему пункту.

Сера и сложные соединения

Сложными называются те вещества, молекулы которых состоят из двух (или более) разных элементов. Химические свойства серы позволяют ей реагировать с такими соединениями, как щелочи, а также концентрированная сульфатная кислота. Реакции ее с данными веществами довольно своеобразны. Сначала рассмотрим, что происходит при смешивании рассматриваемого неметалла со щелочью. Например, если взять шесть моль и добавить к ним три моль серы, получим два моль сульфида калия, один моль сульфита данного металла и три моль воды. Такого рода реакцию можно выразить следующим уравнением: 6КОН + 3S = 2K 2 S + K2SO 3 + 3Н 2 О. По такому же принципу происходит взаимодействие, если добавить Далее рассмотрим поведение серы при добавлении к ней концентрированного раствора сульфатной кислоты. Если взять один моль первого и два моль второго вещества, получим следующие продукты: триоксид серы в количестве три моль, а также воду - два моль. Данная химическая реакция может осуществиться только при нагревании реагентов до высокой температуры.

Получение рассматриваемого неметалла

Существует несколько основных способов, с помощью которых можно добыть серу из разнообразных веществ. Первый метод - выделение ее из пирита. Химическая формула последнего - FeS 2 . При нагревании данного вещества до высокой температуры без доступа к нему кислорода можно получить другой сульфид железа - FeS - и серу. Уравнение реакции записывается в следующем виде: FeS 2 = FeS + S. Второй способ получения серы, который часто используется в промышленности, - это сжигание сульфида серы при условии небольшого количества кислорода. В таком случае можно получить рассматриваемый неметалл и воду. Для проведения реакции нужно взять компоненты в молярном соотношении два к одному. В результате получим конечные продукты в пропорциях два к двум. Уравнение данной химической реакции можно записать следующим образом: 2H 2 S + О 2 = 2S + 2Н 2 О. Кроме того, серу можно получить в ходе разнообразных металлургических процессов, к примеру, при производстве таких металлов, как никель, медь и другие.

Использование в промышленности

Самое широкое свое применение рассматриваемый нами неметалл нашел в химической отрасли. Как уже упоминалось выше, здесь он используется для получения из него сульфатной кислоты. Кроме того, сера применяется как компонент для изготовления спичек, благодаря тому, что является легковоспламеняющимся материалом. Незаменима она и при производстве взрывчатых веществ, пороха, бенгальских огней и др. Кроме того, серу используют в качестве одного из ингредиентов средств для борьбы с вредителями. В медицине ее применяют в качестве компонента при изготовлении лекарств от кожных заболеваний. Также рассматриваемое вещество используется при производстве разнообразных красителей. Кроме того, ее применяют при изготовлении люминофоров.

Электронное строение серы

Как известно, все атомы состоят из ядра, в котором находятся протоны - позитивно заряженные частицы - и нейтроны, т. е. частицы, имеющие нулевой заряд. Вокруг ядра вращаются электроны, заряд которых негативный. Чтобы атом был нейтральным, в его структуре должно быть одинаковое количество протонов и электронов. Если же последних больше, это уже отрицательный ион - анион. Если же наоборот - количество протонов больше, чем электронов - это положительный ион, или катион. Анион серы может выступать в качестве кислотного остатка. Он входит в состав молекул таких веществ, как сульфидная кислота (сероводород) и сульфиды металлов. Анион образуется в ходе электролитической диссоциации, которая происходит при растворении вещества в воде. При этом молекула распадается на катион, который может быть представлен в виде иона металла либо водорода, а также катион - ион кислотного остатка либо гидроксильной группы (ОН-).

Так как порядковый номер серы в таблице Менделеева - шестнадцать, то можно сделать вывод, что в ее ядре находится именно такое количество протонов. Исходя из этого, можно сказать, что и электронов, вращающихся вокруг, тоже шестнадцать. Количество же нейтронов можно узнать, отняв от молярной массы порядковый номер химического элемента: 32 - 16 = 16. Каждый электрон вращается не хаотично, а по определенной орбите. Так как сера - химический элемент, который относится к третьему периоду таблицы Менделеева, то и орбит вокруг ядра три. На первой из них расположено два электрона, на второй - восемь, на третьей - шесть. Электронная формула атома серы записывается следующим образом: 1s2 2s2 2p6 3s2 3p4.

Распространенность в природе

В основном рассматриваемый химический элемент встречается в составе минералов, которые являются сульфидами разнообразных металлов. В первую очередь это пирит - соль железа; также это свинцовый, серебряный, медный блеск, цинковая обманка, киноварь - сульфид ртути. Кроме того, сера может входить и в состав минералов, структура которых представлена тремя и более химическими элементами.

Например, халькопирит, мирабилит, кизерит, гипс. Можно рассмотреть каждый из них более подробно. Пирит - это сульфид феррума, или FeS 2 . Он обладает светло-желтой окраской с золотистым блеском. Данный минерал можно часто встретить как примесь в лазурите, который широко используется для изготовления украшений. Это связано с тем, что данные два минерала зачастую имеют общее месторождение. Медный блеск - халькоцит, или халькозин - представляет собой синевато-серое вещество, похожее на металл. и серебряный блеск (аргентит) имеют схожие свойства: они оба внешне напоминают металлы, имеют серую окраску. Киноварь - это коричневато-красный тусклый минерал с серыми вкраплениями. Халькопирит, химическая формула которого CuFeS 2 , - золотисто-желтый, его еще называют золотой обманкой. Цинковая обманка (сфалерит) может иметь окраску от янтарной до огненно-оранжевой. Мирабилит - Na 2 SO 4 x10H 2 O - прозрачные либо белые кристаллы. Его еще называют применяют в медицине. Химическая формула кизерита - MgSO 4 xH 2 O. Он выглядит как белый либо бесцветный порошок. Химическая формула гипса - CaSO 4 x2H 2 O. Кроме того, данный химический элемент входит в состав клеток живых организмов и является важным микроэлементом.

Физико-химические основы процесса горения серы.

Сжигание S происходит с выделением большого количества теплоты: 0,5S 2г + О 2г = SО 2г, ΔН = -362,43 кДж

Горение – комплекс химических и физических явлений. В устройстве для сжигания приходится иметь дело со сложными полями скоростей, концентраций и температур, которые трудно поддаются математическому описанию.

Горение расплавленной S зависит от условий взаимодействия и сгорания отдельных капель. Эффективность процесса горения определяется временем полного сгорания каждой частички серы. Горению серы, которое происходит только в газовой фазе, предшествует испарение S, смешение её паров с воздухом и прогрев смеси до t, обеспечивающей необходимую скорость реакции. Поскольку интенсивнее испарение с поверхности капли начинается лишь при определенной t – каждая капля жидкой серы должна быть нагрета до этой t. Чем выше t, тем больше времени потребуется для прогрева капли. Когда над поверхностью капли образуется горючая смесь паров S и воздуха предельной концентрации и t, происходит воспламенение. Процесс горения капли S зависит от условий горения: t и относительной скорости газового потока, и физико-хим-х свойств жидкой S (например, наличие в S твердых примесей золы), и состоит из стадий: 1-смешение капель жидкой S с воздухом; 2-прогрев этих капель и испарение; 3-термическое расщепление паров S; 4-образование газовой фазы и её воспламенение; 5-горение газовой фазы.

Эти стадии протекают почти одновременно.

В результате прогрева капля жидкой S начинает испаряться, пары S диффундируют к зоне горения, где при высокой t начинают активно реагировать с О 2 воздуха, происходит процесс диффузионного горения S с образованием SО 2 .

При высоких t скорость реакции окисления S больше скорости физических процессов, поэтому общая скорость процесса горения определяется процессами массо- и теплоотдачи.

Молекулярная диффузия определяет спокойный, сравнительно медленный процесс горения, а турбулентная ускоряет его. С уменьшением размера капель сокращается время их испарения. Мелкое распыление частиц серы и равномерное распределение их в воздушном потоке увеличивает поверхность контакта, облегчает нагрев и испарение частиц. При горении каждой единичной капли S в составе факела следует различать 3 периода: I -инкубационный; II -интенсивного горения; III -период догорания.



При горении капли с ее поверхности происходят выбросы пламени, напоминающие собой солнечные вспышки. В отличие от обычного диффузионного горения с выбросом языков пламени с поверхности горящей капли получило название «взрывного горения».

Горение капли S в диффузионном режиме осуществляется путем испарения молекул с поверхности капли. Скорость испарения зависит от физических свойств жидкости и t окружающей среды, а определяется характеристикой скорости испарения. В дифференциальном режиме S горит в I и III периодах. Взрывное горение капли наблюдается только в периоде интенсивного горения во II периоде. Продолжительность периода интенсивного горения пропорциональна кубу начального диаметра капли. Это вызвано тем, что взрывное горение является следованием процессов, протекающих в объеме капли. Характеристика скорости горения вычисл. по ф-ле: К = /τ сг;

d н – начальный диаметр капли, мм; τ – время полного сгорания капли, с.

Характеристика скорости горения капли равна сумме характеристик диффузионного и взрывного горения: К = К вз + К диф; Квз = 0,78∙ехр(-(1,59∙р) 2,58); К диф = 1,21∙р +0,23; К Т2 = К Т1 ∙ехр(Е а /R∙(1/Т 1 – 1/Т 2)); К Т1 – константа скорости горения при t 1 = 1073 К. К Т2 – конст. скорости грения при t отличной от t 1 . Е а – энергия активации (7850 кДж/моль).



Т.О. основными условиями эффективного горения жидкой S являются: подвод всего необходимого количества воздуха к устью факела, мелкое и равномерное распыление жидкой S, турбулентность потока и высокая t.

Общая зависимость интенсивности испарения жидкой S от скорости газа и t: К 1 = a∙V/(b+V); a, b – константы, зависящие от t. V – скор. газа, м/с. При более высоких t зависимость интенсивности испарения S от скорости газа им вид: К 1 = К о ∙ V n ;

t, о С lgК о n
4,975 0,58
5,610 0,545
6,332 0,8

При увеличении t от 120 до 180 о С интенсивность испарения S возрастает в 5-10 раз, а т 180 до 440 о С в 300-500 раз.

Интенсивность испарения при скорости газа 0,104 м/с определяется: = 8,745 – 2600/Т (при 120-140 о С); = 7,346 –2025/Т (при 140-200 о С); = 10,415 – 3480/Т (при 200-440 о С).

Чтобы определить интенсивность испарения S при любой t от 140 до 440 о С и скорости газа в пределах 0,026-0,26 м/с, её сначала находят для скорости газа 0,104 м/с и пересчитывают на другую скорость: lg = lg + n ∙ lgV `` /V ` ; Сравнение значения интенсивности испарения жидкой серы и скорости горения говорит о том, что интенсивность горения не может превысить интенсивность испарения при температуре кипения серы. Это подтверждает правильность механизма горения, по которому сера сгорает только в парообразном состоянии. Константа скорости окисления паров серы (реакция протекает по уравнению второго порядка) определяется кинетическим уравнением: -dС S /d = К∙С S ∙С О2 ; С S – концентрация паров S; С О2 – конц-я паров О 2 ; К – константа скорости реакции. Общую концентрацию паров S и О 2 оп-ют: С S = а(1-х); С О2 = b – 2ах; а – начальная концентрация паров S; b – начальная конц-я паров О 2 ; х – степень окисления паров S. Тогда:

К∙τ = (2,3 /(b – 2a)) ∙ (lg(b – ax/b(1 - x)));

Константа скорости реакции окисления S до SО 2: lgK = В – А/Т;

о С 650 - 850 850 - 1100
В 3,49 2,92
А

Капли серы d < 100мкм сгорают в диффузионном режиме; d>100мкм во взрывном, на участке 100-160 мкм время горения капель не увеличивается.

Т.о. для интенсификации пр-са горения целесообразно распыливать серу на капли d=130-200имкм, что требует затрат дополнительной энергии. При сжигании одного и того же кол-ва S получ. SО 2 тем концентрированней, чем меньше объем печного газа и чем выше его t.

1 – С О2 ; 2 – С SО2

На рис.показана приближенная зависимость между t и концентрацией SO 2 в печном газе, образовавшемся при адиабатическом сжигании серы в воздухе. На практике получают высококонцентрированную SO 2 ограниченную тем, что при t > 1300 быстро разрушается футеровка печи и газоходов. Кроме того в этих условиях могут происходить побочные реакции между O 2 и N 2 воздуха с образованием оксидов азота, который является нежелательной примесью в SO 2 , поэтому обычно в серных печах поддерживается t=1000-1200. А печные газы содержат 12-14 об% SO 2 . Из одного объема O 2 образуется один объем SO 2 , поэтому максимальное теоретическое содержание SO 2 в обжиговом газе при сжигании S в воздухе 21%. При сжигании S в воздухе обжиг. O 2 содержание SO 2 в газовой смеси может возрастать в зависимости от концентрации O 2 . Теоретическое содержание SO 2 при сжигании S в чистом O 2 может достигнуть 100%. Возможный состав обжиговых газа, полученного при сжигании S в воздухе и в различных кислородо-азотных смесях представлена на рисунке:

Печи для сжигания серы.

Сжигание S в сернокислотном произ-ве осущ-т в печах в распыленном или тв сост-ии. Для сжигания расплавл-ой S исп-т форсуночные, циклонные и вибрацион-е печи. Наиболее широко примен-ся циклонные и форсуночные. Эти печи классиф-ют по признакам: - по типу установленных форсунок (механич-е, пневматич-е, гидравлич-е) и их располож-ю в печи (радиальное, тангенсальное); - по наличие экранов внутри топочных камер; - по исполнению (гориз-ые, вертик-е); - по располож-ю вход-х отверстий для подачи воздуха; - по устройствам для перемеш-я потоков возд-а с парами S; - по оборуд-ю для испльз-я тепла горения S; - по кол-ву камер.

Форсуночная печь (рис)

1 - стальной цилиндр, 2 - футеровка. 3 - асбест, 4 - перегородки. 5 -форсунка для распыления топлива, 6-форсунки для распы­ления серы,

7 - короб для подвода воздуха в печь.

Имеет достаточно простую конструкцию, просто в обслуж-ии, в ней образ-ся газ, постоян-й концен-ии SO 2 . К серьезным недост-м относят: постепен-е разруш-е перегородок из-за выс-х t; низкое теплонапряж-е камеры горения; трудность получ-я газа высокой концен-ии, т.к. исп-ся большой избыток возд-а; зависимость проц-а проведения сжигания от кач-ва распыления S; значит-ый расход топлива при пуске и разогреве печи; сравнит-но большие габариты и масса, и как следствие значит-е капиталовлож-я, производ-ные площади, эксплуатационные расходы и большие потери тепла в окр-ю среду.

Более совершен-ми явл-ся циклонные печи .

1 - форкамера, 2 - воздушный короб, 3, 5 - камеры до­жигания, 4. 6-пережимные кольца, 7, 9 - сопла для подачи воздуха, 8, 10 - форсунки для подачи серы.

Дост-ва: тангенциальный ввод возд-а и S; обеспечивает равномерное сжигание S в печи за счет лучшей турбулизации потоков; возмож-ть получения концен-го технологич-го газа до 18об% SO 2 ; высокое тепловое напряж-е топочного простр-ва (4,6 10 6 Вт/м 3); объем апп-та уменьш-ся в 30-40раз по сравн-ю с объемом форсуночной печи той же производительности; постоян-ая концен-я SO 2 ; простое регулиров-я проц-а горения S и его автоматизация; малые затраты времени и горючего материала на разогрев и пуск печи после длит-ой остан-ки; меньшее содержание оксидов азота после печи. Основные нед-ки связаны с высок t в проц-е горения; возможно растрескивание футеровки и сварных швов; неудовлет-е распыление S приводит к проскоку ее паров в т/обмен-м оборуд-ии после печи, а след-но к коррозии оборуд-я и непостоянству t на входе в т/обмен-е оборуд.

Расплавлен-я S может поступать в печь через форсунки с тангенсальным или осевым располож-ем . При осевом располож-ии форсунок зона горения нах-ся ближе к периферии. При танген-м – ближе к центру, благодаря чему уменьш-ся действие высоких t на футеровку. (рис) Скорость газового потока сост-ет 100-120м/с – это создает благоприят-е условие для массо- и теплообмена, и возраст-т скорость горения S.

Вибрацион-е печи (рис) .

1 – головка печи горелки; 2 – возвратные клапаны; 3 – вибрационный канал.

При вибрац-м горении периодически измен-ся все парам-ры проц-а (давл в камере, скорость и состав газовой смеси, t). Устр-во для вибрац. горения S наз-ся печь-горелка. Перед печью происходит смешение S и возд-а, и они под-ся через обратные клапаны (2) в головку печи-горелки, где происх-т сжигание смеси. Подача сырья осущ-ся порциями (проц-с циклический). В этом варианте печи существенно увелич-ся теплонапряж-е и скорость горения, но перед зажиганием смеси необ-мо хорошее смешение распыленной S с возд-м, чтобы проц-с пошел мгновенно. В этом случае продукты горения хорошо перемеш-ся, газовая пленка SO 2 , окружающая частицы S разруш-ся и облегчает доступ новых порций О 2 в зоне горения. В такой печи образующийся SO 2 не сод-т не сгоревших частиц, его концен-я на вых высока.

Для циклон-й печи в сравнении с форсуночной харак-но в 40-65раз большее тепловое напряж-е, возм-ть получения более концен-ного газа и большая паропроизводит-ть.

Важнейшим оборуд-м для печей сжигания жид S явл форсунки, кот должны обеспечить тонкое и равномерное распыление жид S, хорошее смешение ее с возд-м в самой форсунке и за ней, быстрое регулиров-е расхода жид S с сохран-ем необх-го соотнош-я ее с возд-м, устойчивость определ-ой формы, длины факела, а так же иметь прочную конструкцию, надежную и удобную в эксплуатации. Для бесперебойной работы форсунок важно, чтобы S была хорошо очищена от золы и битумов. Форсунки бывают механич-го (жид под собствен давл) и пневматич-го (в распылении еще участвует воздух) действия.

Утилизация теплоты горения серы.

Реакция сильно экзотермическая, в результате происходит выделение большого количества тепла и тем-ра газа на выходе из печей составляет 1100-1300 0 С. Для контактного окисления SO 2 тем-ра газа на входе в 1-ый слой кат-ра не должна превышать 420 - 450 0 С. Поэтому перед стадией окисления SO 2 необходимо охлаждение газового потока и утилизации избыточного тепла. В серно-кислотных системах работающих на сере для утилизации теплоты наибольшее распостронение получили водотрубные котлы утилизаторы с естественной циркуляцией тепла. СЭТА – Ц (25 - 24); РКС 95/4,0 – 440.

Энерготехнологический котел РКС 95/4,0 – 440 водотрубный, с естественной циркуляцией, газоплотный котел, рассчитан на работу с наддувом. Котел состоит из испарительных устройств 1-ой 2-ой ступени, вынесенных экономайзеров 1,2 ступени, вынесенных пароперегревателей 1,2 ступени, барабана, топок для сжигания серы. Топка предназначена для сжигания до 650 т жид. Серы в сутки. Топка состоит из двух циклонов, соед-ых относительно др. друга под углом 110 0 и переходной камеры.

Внутренний корпус диаметром 2,6 м, свободно опирается на опоры. Внешний корпус диаметром 3 м. Кольцевое пространство обр-ое внутренним и внешним корпусом вводится воздух, который затем через сопла поступает в камеру сгорания. Сера подается в топку при помощи 8 серных форсунок по 4 на каждом циклоне. Сжигание серы происходит в закрученном газовоздушном потоке. Завихрение потока достигается тангинсиальным вводом воздуха в топочный циклон через воздушные сопла по 3 в каждом циклоне. Количество воздуха регулируется заслонками с электроприводом на каждом воздушном сопле. Переходная камера предназначена для направления газового потока из горизонтальных циклонов в вертикальный газоход испарительного устройства. Внутренняя поверхность топки футирована мулито-корундовым кирпичем марки МКС – 72, толщиной 250 мм.

1 – циклоны

2 - переходная камера

3 – испарительные устройства

Зависимость степени диссоциации паров серы от температуры.  

Горение серы представляет собой сложный процесс в связи с тем, что сера имеет молекулы с разным числом атомов в различных аллотропных состояниях и большой зависимостью ее физико-химических свойств от температуры. Механизм реакции и выход продуктов изменяется как от температуры, так и от давления кислорода.  

Пример зависимости точки росы от содержания С02 в продуктах горения.  

Горение серы в 80 з возможно по различным причинам. Твердо установленной теории этого процесса пока не имеется. Предполагается, что частично это происходит в самой топке при высокой температуре и при достаточном избытке воздуха. Исследования в этом направлении (рис. 66) показывают, что при малых избытках воздуха (порядка сст 1 05 и ниже) образование 80 з в газах резко снижается.  

Горение серы в кислороде протекает при 280 С, а на воздухе - при 360 С.  


Горение серы происходит во всем объеме печи. При этом газы получаются более концентрированными и переработка их осуществляется в аппаратах меньших габаритов, а очистка газов почти исключается. Двуокись серы, получаемая при сжигании серы, кроме производства серной кислоты, применяется в ряде отраслей промышленности для очистки погонов нефти как холодильный агент, в производстве сахара и др. SCb перевозится в стальных баллонах и цистернах в жидком состоянии. Ожижение SO2 производится сжатием предварительно осушенного и охлажденного газа.  

Горение серы происходит во всем объеме печи и заканчивается в камерах, образованных перегородками 4, куда подается дополнительное количество воздуха. Из этих камер выводится горячий печной газ, содержащий сернистый ангидрид.  

Горение серы очень легко налбюдать в механических печах. На верхних этажах печей, где в горящем материале много FeS2, все пламя окрашено в синий цвет - это характерное пламя горения серы.  

Процесс горения серы описывается уравнением.  

За горением серы наблюдают через смотровое стекло в стенке печи. Температуру расплавленной серы следует поддерживать в пределах 145 - 155 С. Если продолжать повышать температуру, вязкость серы постепенно увеличивается и при 190 С она превращается в густую темно-коричневую массу, что крайне затрудняет ее перекачивание и разбрызгивание.  

При горении серы на один атом серы приходится одна молекула кислорода.  

Схема комбинированной контактно-башенной системы с использованием в качестве сырья для получения башенной кислоты природной.  

При горении серы в печи получают обжиговый сернистый газ с содержанием около 14 % S02 и температурой на выходе из печи около 1000 С. С этой температурой газ поступает в котел-утилизатор 7, где путем снижения его температуры до 450 С получают пар. В контактный аппарат 8 необходимо направлять сернистый газ с содержанием около 8 % SO2, поэтому после котла-утилизатора часть газа или весь обжиговый газ разбавляют до 8 % SO2 подогретым в теплообменнике 9 воздухом. В контактном аппарате окисляется 50 - 70 % сернистого ангидрида до серного ангидрида.  

Сера / Sulphur (S)
Атомный номер 16
Внешний вид простого вещества светло-желтое хрупкое твердое вещество, в чистом виде без запаха
Свойства атома
Атомная масса
(молярная масса)
32,066 а. е. м. (г/моль)
Радиус атома 127 пм
Энергия ионизации
(первый электрон)
999,0 (10,35) кДж/моль (эВ)
Электронная конфигурация 3s 2 3p 4
Химические свойства
Ковалентный радиус 102 пм
Радиус иона 30 (+6e) 184 (-2e) пм
Электроотрицательность
(по Полингу)
2,58
Электродный потенциал 0
Степени окисления 6, 4, 2, -2
Термодинамические свойства простого вещества
Плотность 2,070 г/см³
Молярная теплоёмкость 22,61 Дж/(K·моль)
Теплопроводность 0,27 Вт/(м·K)
Температура плавления 386 K
Теплота плавления 1,23 кДж/моль
Температура кипения 717,824 K
Теплота испарения 10,5 кДж/моль
Молярный объём 15,5 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a=10,437 b=12,845 c=24,369 Å
Отношение c/a
Температура Дебая n/a K
S 16
32,066
3s 2 3p 4
Сера

Се́ра (Sulphur — обозн.«S» в таблице Менделеева) — высокоэлектроотрицательный элемент, проявляет неметаллические свойства. В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде

Природные минералы серы

Сера является шестнадцатым по химической распространенности элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде. Важнейшие природные соединения серы FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

История открытия и происхождение названия

Сера (Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников.

Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте.

В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом точно происхождение серы не установлено, но как сказано выше этот элемент использовался до Рождества Христова, а значит знаком людям с давних времен.

Происхождение названия

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» — светло-желтый. Возможно родство «серы» с древнееврейским «серафим» — множественным числом от «сераф» — букв. сгорающий, а сера хорошо горит. В древнерусском и старославянском «сера» — вообще горючее вещество, в том числе и жир.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.

Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (то есть одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-H2O и ангидрита CaSО4 в серу и кальцит СаСО3.

Данная теория создана в 1935 году советскими учеными Л. М. Миропольским и Б. П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 году в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.

Разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Получение

Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землей. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

В 1890 г. Герман Фраш, предложил плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 — 4227 тыс. тонн и категории C2 — 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

Производители

Основными производителями серы в России являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие ее как побочный продукт при очистке газа.

Физические свойства

Природный сросток кристаллов самородной серы

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов серы. Наиболее стабильны циклические молекулы S 8 , имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество желтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета. Формулу пластической серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде. Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.S + O 2 = SO 2

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S 2 O 2 , молекулярной серы S 2 , свободных атомов серы S и свободных радикалов моноокиси серы SO.

При взаимодействии с металлами образует сульфиды. 2Na + S = Na 2 S

При добавлении к этим сульфидам серы образуются полисульфиды: Na 2 S + S = Na 2 S 2

При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом:
C + 2S = CS 2 (сероуглерод)

Сера при нагревании растворяется в щёлочах — реакция диспропорционирования
3S + 6KOH = K 2 SO 3 + 2K 2 S + 3H 2 O

Пожароопасные свойства серы

Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углем, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

Средства тушения: распыленная вода, воздушно-механическая пена.

Обнаружение горения серы является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Горение происходит при низкой температуре. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространенными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

Так как воздух по объему состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объема кислорода получается один объем SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха и объемное содержание SO2 в газовой смеси меньше теоретически возможного составляя обычно 14…15 %.

Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C

Пожары на складах серы

В декабре 1995 года на открытом складе серы предприятия, расположенного в городе Сомерсет Вест Западной Капской провинции Южно-Африканской Республики произошел крупный пожар, погибли два человека.

16 января 2006 г. около пяти вечера на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250-ти квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.

15 марта 2007 рано утром на ООО «Балаковский завод волоконных материалов» произошел пожар на закрытом складе серы. Площадь пожара составила 20 кв.м. На пожаре работало 4 пожарных расчета с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.

4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.

В апреле 2008 недалеко от поселка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчетов и спасатели. В тот момент, когда пожарные оказались около склада, горела еще не вся сера, а только ее небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землей и залиты водой.

В июле 2009 в Днепродзержинске горела сера. Пожар произошел на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.