Свойства квадратичной функции y ax2 bx c. Показательная функция – свойства, графики, формулы

Презентация «Функция y=ax 2 , ее график и свойства» является наглядным пособием, которое создано для сопровождения объяснения учителя по данной теме. В данной презентации подробно рассматривается квадратичная функция, ее свойства, особенности построения графика, практическое приложение используемых методов решения задач в физике.

Предоставляя высокую степень наглядности, данный материал поможет учителю повысить эффективность обучения, даст возможность более рационально распределить время на уроке. При помощи анимационных эффектов, выделения понятий и важных моментов цветом, внимание учеников акцентируется на изучаемом предмете, достигается лучшее запоминание определений и хода рассуждения при решении задач.


Презентация начинается с ознакомления с названием презентации и понятием квадратичной функции. Подчеркивается важность данной темы. Ученикам предлагается запомнить определение квадратичной функции как функциональной зависимости вида y=ax 2 +bx+c, в которой является независимой переменной, а - числа, при этом a≠0. Отдельно на слайде 4 отмечается для запоминания, что областью определения данной функции является вся ось действительных значений. Условно данное утверждения обозначается D(x)=R.


Примером квадратичной функции является важное ее приложение в физике - формула зависимости пути при равноускоренном движении от времени. Параллельно на уроках физики ученики изучают формулы различных видов движения, поэтому умение решать подобные задачи им будет необходимо. На слайде 5 ученикам напоминается, что при движении тела с ускорением и на начало отсчета времени известен пройденный путь и скорость движения, то функциональная зависимость, представляющая такое движение, будет выражаться формулой S=(at 2)/2+v 0 t+S 0 . Ниже приводится пример превращения данной формулы в заданную квадратичную функцию, если значения ускорения =8, начальной скорости =3 и начального пути =18. В этом случае функция приобретет вид S=4t 2 +3t+18.


На слайде 6 рассматривается вид квадратичной функции y=ax 2 , в котором она представляется при. Если же =1, то квадратичная функция имеет вид y=x 2 . Отмечается, что графиком данной функции будет парабола.

Следующая часть презентации посвящена построению графика квадратичной функции. Предлагается рассмотреть построение графика функции y=3x 2 . Сначала в таблице отмечается соответствие значений функции значениям аргумента. Отмечается, что отличие построенного графика функции y=3x 2 от графика функции y=x 2 в том, что каждое значение ее будет больше соответствующего в три раза. В табличном представлении эта разница хорошо отслеживается. Рядом в графическом представлении также хорошо заметна разница в сужении параболы.


На следующем слайде рассматривается построение графика квадратичной функции y=1/3 x 2 . Для построения графика необходимо в таблице указать значения функции в ряде ее точек. Отмечается, что каждое значение функции y=1/3 x 2 меньше соответствующего значения функции y=x 2 в 3 раза. Данная разница, кроме таблицы, хорошо видна и на графике. Ее парабола более расширена относительно оси ординат, чем парабола функции y=x 2 .


Примеры помогают усвоить общее правило, согласно которому можно затем более просто и быстро производить построение соответствующих графиков. На слайде 9 выделено отдельно правило, что график квадратичной функции y=ax 2 можно построить в зависимости от значения коэффициента растяжением или сужением графика. Если a>1, то график растягивается от оси х в раз. Если же 0

Вывод о симметричности графиков функций y=ax 2 и y=-ax2 (при ≠0) относительно оси абсцисс отдельно выделен на слайде 12 для запоминания и наглядно отображен на соответствующем графике. Далее понятие о графике квадратичной функции y=x 2 распространяется на более общий случай функции y=ax 2 , утверждая, что такой график также будет называться параболой.


На слайде 14 рассматриваются свойства квадратичной функции y=ax 2 при положительном. Отмечается, что ее график проходит через начало координат, а все точки, кроме, лежат в верхней полуплоскости. Отмечена симметричность графика относительно оси ординат, уточняя, что противоположным значениям аргумента соответствуют одинаковые значения функции. Указано, что промежуток убывания данной функции (-∞;0], а возрастание функции выполняется на промежутке. Значения данной функции охватывают всю положительную часть действительной оси, нулю она равна в точке, а наибольшего значения не имеет.

На слайде 15 описываются свойства функции y=ax 2 , если отрицательный. Отмечается, что ее график также проходит через начало координат, но все его точки, кроме, лежат в нижней полуплоскости. Отмечена симметричность графика относительно оси, и противоположным значениям аргумента соответствуют равные значения функции. Возрастает функция на промежутке, убывает на. Значения данной функции лежат в промежутке, нулю она равна в точке, а наименьшего значения не имеет.


Обобщая рассмотренные характеристики, на слайде 16 выводится, что ветви параболы направлены вниз при, а вверх - при. Парабола симметрична относительно оси, а вершина параболы располагается в точке ее пересечения с осью. У параболы y=ax 2 вершина - начало координат.

Также важный вывод о преобразованиях параболы отображается на слайде 17. На нем представлены варианты преобразований графика квадратичной функции. Отмечено, что график функции y=ax 2 преобразуется симметричным отображением графика относительно оси. Также возможно сжатие или растяжение графика относительно оси.

На последнем слайде делаются обобщающие выводы о преобразованиях графика функции. Представлены выводы о том, что график функции получается симметрическим преобразованием относительно оси. А график функции получается из сжатием или растяжением исходного графика от оси. При этом растяжение от оси в раз наблюдается в случае, когда. Сжатием к оси в 1/a раз график образуется в случае.


Презентация «Функция y=ax 2 , ее график и свойства» может быть использована учителем в качестве наглядного пособия на уроке алгебры. Также данное пособие хорошо раскрывает тему, давая углубленное понимание предмета, поэтому может быть предложена для самостоятельного изучения учениками. Также данный материал поможет учителю дать объяснение в ходе дистанционного обучения.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Содержание

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

y = a x при различных значениях основания a .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем сильнее убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Методическая разработка урока алгебры в 9 классе.

Плохой учитель преподносит истину, хороший учит её добывать.

А.Дистервег

Учитель : Нетикова Маргарита Анатольевна, учитель математики ГБОУ школа №471 Выборгского района Санкт- Петербурга.

Тема урока: «График функции y = ax 2 »

Тип урока: урок усвоения новых знаний.

Цель: научить учащихся строить график функцииy = ax 2 .

Задачи:

Обучающие: сформировать умение строить параболу y = ax 2 и установить закономерность между графиком функции y = ax 2

и коэффициентом а.

Развивающие: развитие познавательных умений, аналитического и сравнительного мышления, математической грамотности, способности обобщать и делать выводы.

Воспитывающие: воспитание интереса к предмету, аккуратности, ответственности, требовательности к себе и другим.

Планируемые результаты:

Предметные: уметь по формуле определять направление ветвей параболы и строить её с помощью таблицы.

Личностные: уметь отстаивать свою точку зрения и работать в парах, в коллективе.

Метапредметные: уметь планировать и оценивать процесс и результат своей деятельности, обрабатывать информацию.

Педагогические технологии: элементы проблемного и опережающего обучения.

Оборудование: интерактивная доска, компьютер, раздаточные материалы.

1.Формула корней квадратного уравнения и разложение квадратного трёхчлена на множители.

2.Сокращение алгебраических дробей.

3.Свойства и график функции y = ax 2 , зависимость направления ветвей параболы, её «растяжения» и «сжатия» вдоль оси ординат от коэффициента a .

Структура урока.

1.Организационная часть.

2.Актуализация знаний:

Проверка домашнего задания

Устная работа по готовым чертежам

3.Самостоятельная работа

4.Объяснение нового материала

Подготовка к изучению нового материала (создание проблемной ситуации)

Первичное усвоение новых знаний

5.Закрепление

Применение знаний и умений в новой ситуации.

6.Подведение итогов урока.

7.Домашнее задание.

8.Рефлексия урока.

Технологическая карта урока алгебры в 9 классе по теме: «График функции y = ax 2 »


Этапы урока

Задачи этапа

Деятельность учителя

Деятельность учащихся

УУД

1.Организационная часть

1 минута


Создание рабочего настроения в начале урока

Здоровается с учениками,

проверяет их подготовку к уроку, отмечает отсутствующих, записывает на доске дату.


Готовятся к работе на уроке, приветствуют учителя

Регулятивные:

организация учебной деятельности.


2.Актуализация знаний

4 минуты


Проверить выполнение домашнего задания, повторить и обобщить изученный на прошлых уроках материал и создать условия для успешного выполнения самостоятельной работы.

Собирает тетради у шести учеников (выборочно по два с каждого ряда) для проверки домашнего задания на оценку (приложение 1), затем работает с классом на интерактивной доске

(приложение 2) .


Шесть учащихся сдают на проверку тетради с домашним заданием, затем отвечают на вопросы фронтального опроса (приложение 2) .

Познавательные:

приведение знаний в систему.

Коммуникативные:

умение прислушиваться к мнению окружающих.

Регулятивные:

оценивание результатов своей деятельности.

Личностные:

оценивание уровня усвоения материала.


3.Самостоятельная работа

10 минут


Проверить умение раскладывать на множители квадратный трёхчлен, сокращать алгебраические дроби и описывать некоторые свойства функций по её графику.

Раздаёт учащимся карточки с индивидуальным дифференцированным заданием (приложение 3) .

и листочки для решения.


Выполняют самостоятельную работу, самостоятельно выбирая уровень сложности упражнений по баллам.

Познавательные:

Личностные:

оценивание уровня усвоения материала и своих возможностей.


4.Объяснение нового материала

Подготовка к изучению нового материала

Первичное усвоение новых знаний


Создание благоприятной обстановки для выхода из проблемной ситуации,

восприятия и осмысления нового материала,

самостоятельного

прихода к правильному выводу


Итак, вы умеете строить график функции y = x 2 (графики заранее построены на трёх досках). Назовите основные свойства этой функции:

3. Координаты вершины

5. Промежутки монотонности

Чему в данном случае равен коэффициент при x 2 ?

На примере квадратного трёхчлена вы видели, что это совершенно не обязательно. Каким он может быть по знаку?

Приведите примеры.

Как будут выглядеть параболы с другими коэффициентами, вам предстоит узнать самим.

Лучший способ изучить

что-либо–это открыть самому.

Д.Пойа

Делимся на три команды (по рядам), выбираем капитанов, которые выходят к доске. Задание для команд написано на трёх досках, соревнование начинается!

В одной системе координат построить графики функций

1 команда:

а)y=x 2 б)y= 2x 2 в)y= x 2

2 команда:

а)y= - x 2 б)y=-2x 2 в)y= - x 2

3 команда:

а)y=x 2 б)y=4x 2 в)y=-x 2

Задание выполнено!

(приложение 4) .

Найдите функции, обладающие одинаковыми свойствами.

Капитаны советуются со своими командами.

От чего это зависит?

А чем же эти параболы всё-таки различаются и почему?

От чего зависит «толщина» параболы?

От чего зависит направление ветвей параболы?

Будем условно называть график а) «исходным». Представьте себе резинку: если её растягивать, она становится тоньше. Значит, график б) получен растяжением исходного графика вдоль оси ординат.

Как получен график в)?

Значит, при x 2 может стоять любой коэффициент, который влияет на конфигурацию параболы.

Вот и тема нашего урока звучит так:

«График функции y = ax 2 »


1. R

4. Ветви вверх

5. Убывает на (-

Возрастает на }