Суспензия дисперсная среда. Степень дисперсности

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.
Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.
То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой . Она может состоять из нескольких веществ.
Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой . Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).
И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.
В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов


Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:
1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты-киты, и т. д.;
3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.
Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.
Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.
Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.
Их подразделяют на золи (коллоидные растворы) и гели (студни).
1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.
Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света.

Это явление называют эффектом Тиндаля . Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом .

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.
Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).
Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.
Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так, воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.
Растворы подразделяют на:
молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);
молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);
ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K 2 S0 4 , HN0 3 , НС1О 4).
Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым, который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.
Более точное определение раствора таково:
Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.

Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

Вопросы для закрепления:
1. Что такое дисперсные системы?
2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?
3. Расскажите о значении различных дисперсных систем в быту.
4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.

Дисперсные системы.

Дисперсные системы широко распространены в природе и с давних времен используются человеком в его жизнедеятельности. Практически любой живой организм либо представляет собой дисперсную систему, либо содержит их в различных формах.

Пример: свободнодисперсные системы (нет сплошных жестких структур - золи): кровь, лимфа, желудочный и кишечный соки, спинномозговая жидкость и т.д.

связнодисперсные системы (есть жесткие пространственные структуры - гели): протоплазма, мембраны клеток, мышечное волокно, хрусталик глаза и т.д.

Дисперсные системы активно применяют в медицине, это в первую очередь коллоидные растворы, аэрозоли, кремы, мази. Биохимические процессы в организме протекают в дисперсных системах. Усвоение пищи связано с переходом питательных веществ в растворенное состояние. Биожидкости (дисперсные системы) участвуют в транспорте питательных веществ (жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов (мочевины, билирубина, углекислого газа).

Знание закономерностей физико-химических процессов в дисперсных системах важно будущим врачам как для изучения медико-биологических и клинических дисциплин, так и для более глубокого понимания процессов, протекающих в организме, и сознательного изменения их в желаемом направлении.

Дисперсные системы – это многокомпонентные системы, в которых одни вещества в виде мелких частиц распределены в другом веществе. Вещество, которое распределяется, называется дисперсной фазой. Вещество, в котором распределяется дисперсная фаза, называется дисперсионной средой.

Пример: водный раствор глюкозы

молекулы глюкозы – дисперсная фаза

вода – дисперсионная среда

Дисперсность – величина, характеризующая размер взвешенных частиц в дисперсных системах. Она обратна диаметру частиц дисперсной фазы. Чем меньше размер частиц, тем больше дисперсность.

Классификация дисперсных систем.



Дисперсные системы классифицируют по пяти признакам.

1. По степени дисперсности:

· грубодисперсные

Д = 10 4 – 10 6 м –1 , характеризуются неустойчивостью, непрозрачностью.

Пример: суспензии, эмульсии, пены, взвеси.

· коллоидно-дисперсные

Д = 10 7 – 10 9 м –1 , могут быть прозрачными и мутными, обладать устойчивостью и быть неустойчивыми.

Пример: коллоидные растворы, растворы высокомолекулярных соединений.

· молекулярно-дисперсные и ионно-дисперсные

Д = 10 10 – 10 11 м –1 , характеризуются прозрачностью и устойчивостью.

Пример: растворы низкомолекулярных соединений.

2. По наличию физической поверхности раздела между дисперсной фазой и дисперсионной средой:

· гомогенные (однофазные системы, граница раздела отсутствует.

Пример: растворы низкомолекулярных и высокомолекулярных соединений.

· гетерогенные

существует граница раздела между дисперсной фазой и дисперсионной средой.

Пример: коллоидные растворы и грубодисперсные системы.

3. По характеру взаимодействия между дисперсной фазой и дисперсионной средой:

· лиофильные

между дисперсной фазой и дисперсионной средой существует сродство.

Пример: все гомогенные системы.

· лиофобные

между дисперсной фазой и дисперсионной средой слабое взаимодействие или отсутствует.

Пример: все гетерогенные системы.

4. По агрегатному состоянию дисперсной фазы и дисперсионной среды:

дисп.фаза дисп.среда газообразная твердая жидкая
газообразная смесь газов (воздух) табачный дым пыль мучная, космическая аэрозоли туман пар облака
жидкая растворенный в крови CO 2 , O 2 , N 2 , пены минеральные воды фруктовые газированные напитки коллоидные растворы суспензии растворы ВМС растворы НМС эмульсии: молоко масло сливочное маргарин кремы мази нефть
твердая твердые пены (пенопласт, активированный уголь) ионообменные смолы молекулярные сита сплавы металла цветные стекла, хрусталь драгоценные камни (рубин, аметист) суппозитории (лечебные свечи) кристаллогидраты минералы с жидкими включениями (жемчуг, опал) влажные почвы

5. По природе дисперсионной среды:

Истинные растворы.

Истинный раствор – это гомогенная лиофильная дисперсная система с размерами частиц 10 –10 – 10 –11 м.

Истинные растворы – это однофазные дисперсные системы, они характеризуются большой прочностью связи между дисперсной фазой и дисперсионной средой. Истинный раствор сохраняет гомогенность неопределенно долгое время. Истинные растворы всегда прозрачны. Частицы истинного раствора не видны даже в электронный микроскоп. Истинные растворы хорошо диффундируют.

Компонент, агрегатное состояние которого не изменяется при образовании раствора, называют растворителем (дисперсионная среда), а другой компонент – растворенным веществом (дисперсная фаза).

При одинаковом агрегатном состоянии компонентов растворителем считается компонент, количество которого в растворе преобладает.

В растворах электролитов вне зависимости от соотношения компонентов электролиты рассматриваются как растворенные вещества.

Истинные растворы подразделяются:

· по типу растворителя: водные и неводные

· по типу растворенного вещества: растворы солей, кислот, щелочей, газов и т.д.

· по отношению к электрическому току: электролиты и неэлектролиты

· по концентрации: концентрированные и разбавленные

· по степени достижения предела растворимости: насыщенные и ненасыщенные

· с термодинамической точки зрения: идеальные и реальные

· по агрегатному состоянию: газообразные, жидкие, твердые

Истинные растворы бывают:

· ионно-дисперсные (дисперсная фаза – гидратированные ионы): водный раствор NaCl

· молекулярно-дисперсные (дисперсная фаза – молекулы): водный раствор глюкозы

Ионы каждый в отдельности или совместно выполняют определённые функции в организме. Решающая роль в переносе воды в организме принадлежит ионам Na + и Cl – , т.е участвуют в водно-солевом обмене. Ионы электролитов участвуют в процессах поддержания постоянства осмотического давления, установления кислотно-щелочного равновесия, в процессах передачи нервных импульсов, в процессах активации ферментов.

С позиции живых систем наибольший интерес представляют растворы, в которых растворителем является вода.

В ней растворяется огромное число веществ. Она не только растворитель, который обеспечивает молекулярное рассеяние веществ по всему организму. Она также является участником многих химических и биохимических процессов в организме. Например, гидролиза, гидратации, набухания, транспорта питательных и лекарственных веществ, газов, антител и т.п.

В организме происходит непрерывный обмен воды и растворённых в ней веществ. Вода составляет основную массу любого живого существа. Её содержание в теле человека меняется с возрастом: у эмбриона человека – 97%, у новорождённого – 77%, у взрослых мужчин – 61%, у взрослых женщин – 54%, у стариков старше 81 года – 49,8%. Большая часть воды в организме находится внутри клеток (70%), около 23% – межклеточной воды, а остальная (7%) – находится внутри кровеносных сосудов и в составе плазмы крови.

Всего в организме 42 л воды. В сутки поступает в организм и выводится из него 1,5 – 3 л воды. Это нормальный водный баланс организма.

Главный путь выведения воды из организма – почки. Потеря 10 – 15% воды опасна, а 20 – 25% смертельна для организма.

Важнейшей характеристикой раствора является его концентрация.

Способы выражения концентрации растворов:

1. Массовая доля w(х) – величина, равная отношению массы растворённого вещества m(x) к массе раствора m(p-p)

w (x) = × 100%

2. Молярная концентрация раствора с (х) – величина, равная отношению количества вещества n(х), содержащегося в растворе, к объёму этого раствора V(р-р).

с (х) = [моль/л], где n(х) = [моль]

Миллимолярный раствор – раствор с молярной концентрацией равной 0,001 моль/л

Сантимолярный раствор – раствор с молярной концентрацией равной 0,01 моль/л

Децимолярный раствор – раствор с молярной концентрацией равной 0,1 моль/л

3. Молярная концентрация эквивалента с ( x) – величина, равная отношению количества вещества эквивалента n ( x) в растворе к объёму этого раствора.

c ( x) = [моль/л], где n ( x) = [моль], а М( x) = × М(x)

Эквивалент – это реальная или условная частица вещества х , которая в данной кислотно-основной реакции эквивалентна одному иону водорода или в данной ОВР – одному электрону.

Число эквивалентности z и фактор эквивалентности f = . Фактор эквивалентности показывает, какая доля реальной частицы вещества х эквивалентна одному иону водорода или одному электрону. Число эквивалентности z равно для:

а) кислот – основности кислоты H 2 SO 4 z = 2.

б) оснований – кислотности основания Aℓ(OH) 3 z = 3.

в) солей – произведению степени окисления (с.о.) металла на число его атомов в молекуле Fe 2 (SO 4) 3 z = 2 × 3 = 6.

г) окислителей – числу присоединенных электронов

Mn +7 + 5ē → Mn +2 z = 5

д) восстановителей – числу отданных электронов

Fe +2 – 1ē → Fe +3 z = 1

4. Моляльная концентрация b(x) – величина, равная отношению количества вещества к массе растворителя (кг)

b(x) = = [моль/кг]

5. Молярная доля c(x i) равна отношению количества вещества данного компонента к суммарному количеству всех компонентов раствора

Формулы взаимосвязи концентраций:

с ( x) = c (x) × z

У растворов имеется ряд свойств, которые не зависят от природы растворенного вещества, а зависят только от его концентрации. Наиболее важным является осмос.

Благодаря осмосу через мембраны клеток органов и тканей осуществляется сложный процесс обмена веществ организма с внешней средой.

Диффузия – процесс самопроизвольного выравнивания концентрации в единице объема.

Осмос – односторонняя диффузия молекул растворителя через полупроницаемую мембрану из растворителя в раствор или из раствора с меньшей концентрацией в раствор с большей концентрацией.

раствор растворитель

Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса - обратной диффузии растворителя. Обратный осмос имеет место при фильтрации плазмы крови в артериальной части капилляра и в почечных клубочках.

Осмотическое давление – давление, которое нужно приложить к раствору, чтобы осмос прекратился.

Уравнение Вант-Гоффа: Р осм = c RT×10 3

Осмотическое давление крови: 780 – 820 кПа

Все растворы, с точки зрения осмотических явлений, можно разделить на 3 группы:

· Изотонические растворы – растворы, имеющие одинаковые осмотические давления и осмолярные концентрации. Примеры: желчь, раствор NaCl (w=0,9%, с=0,15 моль/л), раствор глюкозы (w=7%, с=0,3 моль/л)

Осмолярная концентрация (осмолярность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 литре раствора. с осм, осмоль/л

Осмоляльная концентрация (осмоляльность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 кг растворителя. b осм, осмоль/кг

Для разбавленных растворов осмолярная концентрация совпадает с осмоляльной концентрацией. с осм ≈ b осм

· Гипертонический раствор – раствор с более высокой концентрацией растворенных веществ, следовательно, с более высоким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран вытягивать из него воду. Примеры: кишечный сок, моча.

· Гипотонический раствор – раствор с более низкой концентрацией растворенных веществ, следовательно, с более низким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран терять воду. Примеры: слюна, пот.

Животные и растительные клетки отделены от окружающей среды мембраной. При помещении клетки в различные по осмолярным концентрациям или давлениям растворы будут наблюдаться следующие явления:

· плазмолиз – уменьшение клетки в объеме. При этом клетку помещают в гипертонический раствор. Разность осмотических давлений вызывает перемещение растворителя из клетки в гипертонический раствор.

· лизис – увеличение клетки в объеме. При этом клетку помещают в гипотонический раствор. Разность осмотических давлений вызывает перемещение растворителя в клетку. В случае разрыва эритроцитарных мембран и перехода гемоглобина в плазму явление называется гемолизом.

· изоосмия – объем клетки не изменяется. При этом клетку помещают в изотонический раствор.

С помощью осмотических явлений поддерживается водно-солевой обмен в организме человека. Осмос – это основа механизма работы почек. Изотонический (физиологический) раствор NaCl (0,9%) используется при больших кровопотерях. Гипертонический раствор NaCl (10%) используют при накладывании марлевых повязок на гнойные раны.

Онкотическое давление – это часть осмотического давления, создаваемого белками.

В плазме крови человека составляет лишь около 0,5 % осмотического давления (0,03-0,04 атм или 2,5 – 4,0 кПа). Тем не менее, онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. При заболеваниях, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотическое давление снижается, и это может явиться одной из причин накопления жидкости в межклеточном пространстве, в результате чего развиваются отёки.


Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений вами

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример
Г/Г Газообразная Газообразная Всегда гомогенная смесь (воздух, природный газ)
Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
Г/Ж Газообразная Жидкая Газовые эмульсии и пены
Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

  • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
  • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

В свою очередь, эти системы классифицируются по степени дисперсности .

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

Свободнодисперсные системы

Свободнодисперсные системы по размерам частиц подразделяют на:

Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки , кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков .

Связнодисперсные системы

Пористые материалы

Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

Твёрдые гетерогенные системы

Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман , железобетон , булат , папье-маше . Ныне широко распространены фиброармированные пластики , стеклопластик , металлокерамика , нашедшие применение в самых различных областях техники.

Движение дисперсных систем

Изучением движения дисперсных систем занимается механика многофазных сред . В частности, задачи оптимизации различных теплоэнергетических устройств (паротурбинных установок , теплообменников и др.), а также разработки технологий нанесения различных покрытий делают актуальной проблему математического моделирования пристеночных течений смеси «газ - жидкие капли». В свою очередь, значительное разнообразие структуры пристеночных течений многофазных сред, необходимость учёта различных факторов (инерционность капель, образование жидкой плёнки, фазовые переходы и др.) требуют построения специальных математических моделей многофазных сред, активно разрабатываемых в настоящее время

В окружающем нас мире чистые вещества встречаются крайне редко, в основном большинство веществ на земле и в атмосфере – это разнообразные смеси, содержащие более двух компонентов. Частицы размером примерно от 1 нм (несколько молекулярных размеров) до 10 мкм называются дисперсными (лат. dispergo – рассеивать, распылять). Разнообразные системы (неорганические, органические, полимерные, белковые), в которых хотя бы одно из веществ находится в виде таких частиц, называются дисперсными. Дисперсные - это гетерогенные системы, состоящие из двух или более фаз с сильно развитой поверхностью раздела между ними или смесь, состоящая как минимум из двух веществ, которые совершенно или практически не смешиваются друг с другом и не реагируют друг с другом химически. Одна из фаз – дисперсная фаза – состоит из очень мелких частиц, распределенных в другой фазе – дисперсионной среде.

Дисперсная система

По агрегатному состоянию дисперсные частицы могут быть твердыми, жидкими, газообразными, во многих случаях имеют сложное строение. Дисперсионные среды также бывают газообразными, жидкими и твердыми. В виде дисперсных систем существует большинство реальных тел окружающего нас мира: морская вода, грунты и почвы, ткани живых организмов, многие технические материалы, пищевые продукты и др.

Классификация дисперсных систем

Несмотря на многочисленные попытки предложить единую классификацию этих систем, она до сих пор отсутствует. Причина заключена в том, что в любой классификации принимаются в качестве критерия не все свойства дисперсных систем, а только какое-нибудь одно из них. Рассмотрим наиболее распространенные классификации коллоидных и микрогетерогенных систем.

В любой области знаний, когда приходится сталкиваться со сложными объектами и явлениями, для облегчения и установления определенных закономерностей целесообразно классифицировать их по тем или иным признакам. Это относится и к области дисперсных систем; в разное время для них были предложены различные принципы классификации. По интенсивности взаимодействия веществ дисперсионной среды и дисперсной фазы различают лиофильные и лиофобные коллоиды. Ниже кратко изложены другие приемы классификации дисперсных систем.

Классификация по наличию или отсутствию взаимодействия между частицами дисперсной фазы. Согласно этой классификации дисперсные системы делят на свободнодисперсные и связнодисперсные; классификация применима к коллоидным растворам и к растворам высокомолекулярных соединений.

К свободнодисперсным системам относят типичные коллоидные растворы, суспензии, взвеси, разнообразные растворы высокомолекулярных соединений, которые обладают текучестью, как обычные жидкости и растворы.

К связнодисперсным относят так называемые структурированные системы, в которых в результате взаимодействия между частицами возникает пространственная ажурная сетка-каркас, и система в целом приобретает свойство полутвердого тела. Например, золи некоторых веществ и растворы высокомолекулярных соединений при понижении температуры или с ростом концентрации выше известного предела, не претерпевая внешне каких-либо изменений, утрачивают текучесть - желатинируют (застудневают), переходят в состояние геля (студня). Сюда же можно отнести концентрированные пасты, аморфные осадки.

Классификация по дисперсности. Физические свойства вещества не зависят от размеров тела, но при высокой степени измельчения становятся функцией дисперсности. Например, золи металлов обладают различной окраской в зависимости от степени измельчения. Так, коллоидные растворы золота предельно высокой дисперсности имеют пурпурный цвет, менее дисперсные - синий, еще менее -зеленый. Есть основания полагать, что и другие свойства золей одного и того же вещества меняются по мере измельчения: Напрашивается естественный критерий классификации коллоидных систем по дисперсности, т. е. разделение области коллоидного состояния (10 -5 -10 -7 см ) на ряд более узких интервалов. Такая классификация была в свое время предложена, но она оказалась бесполезной, так как коллоидные системы практически всегда полидисперсны; монодисперсные встречаются очень редко. К тому же степень дисперсности может меняться во времени, т. е. зависит от возраста системы.

В природе не существует элементов, которые были бы чистыми. В основе своей все они представляют собой различные смеси. Они, в свою очередь, могут быть гетерогенными или гомогенными. Образовываются от веществ в агрегатном состоянии, создавая при этом определенную дисперсионную систему, в которой присутствуют различные фазы. Помимо этого, в смесях обычно присутствует дисперсионная среда. Ее сущность заключается в том, что она считается элементом с большим объемом, в котором распределено какое-либо вещество. В дисперсной системе фаза и среда расположены таким образом, чтобы между ними были частицы поверхности раздела. Поэтому она имеет название гетерогенной или неоднородной. Ввиду этого огромным значением обладает действие поверхности, а не частиц в целом.

Классификация дисперсной системы

Фазу, как известно, представляют вещества, имеющие различное состояние. А эти элементы подразделены на несколько видов. Агрегатное состояние дисперсной фазы зависит от сочетания в ней среды, в результате выходит 9 типов систем:

  1. Газ. Жидкость, твердое вещество и рассматриваемый элемент. Гомогенная смесь, туман, пыли, аэрозоли.
  2. Жидкая дисперсная фаза. Газ, твердое вещество, вода. Пены, эмульсии, золи.
  3. Твердая дисперсная фаза. Жидкость, газ и рассматриваемое в этом случае вещество. Почва, средства в медицине или косметике, горные породы.

Как правило, размеры дисперсной системы определяются по величине частиц фазы. Существует следующая классификация:

  • грубые (взвеси);
  • тонкие и истинные).

Частицы дисперсионной системы

Разбирая грубые смеси, можно пронаблюдать, что частицы этих соединений в структуре могут быть заметны невооруженным глазом, ввиду того что их размер составляет более 100 нм. Взвеси, как правило, относятся к системе, в которой дисперсная фаза является разделимой от среды. Это происходит потому, что они считаются непрозрачными. Взвеси делятся на эмульсии (нерастворимые жидкости), аэрозоли (мелкие частицы и твердые вещества), суспензии (твердое вещество в воде).

Коллоидным веществом является любое, у которого есть качество того, чтобы другой элемент равномерно рассеивался по нему. То есть оно присутствует, а точнее входит в состав дисперсной фазы. Это состояние, когда один материал полностью распределяется в другом, а точнее в его объеме. В примере с молоком происходит рассеивание жидкого жира в водном растворе. В этом случае меньшая молекула находится в пределах 1 нанометра и 1 микрометра, что делает его невидимым для оптического микроскопа, когда смесь становится гомогенной.

То есть ни одна часть раствора не имеет большей или меньшей концентрации дисперсной фазы, чем любая другая. Можно сказать, что он является коллоидным по своей природе. Более крупный называется сплошной фазой или дисперсионной средой. Поскольку ее размер и распределение не изменяются, а рассматриваемый элемент распространяется по ней. Типы коллоидов включают аэрозоли, эмульсии, пены, дисперсии и смеси, называемые гидрозолями. Каждая подобная система имеет две фазы: дисперсную и непрерывную фазу.

Коллоиды по истории

Интенсивный интерес к таким веществам присутствовал во всех науках в начале 20-го века. Эйнштейн и другие ученые внимательно изучили их характеристики и приложения. В то время, эта новая область науки была ведущей областью исследований для теоретиков, исследователей и производителей. После пика интереса до 1950 года исследование коллоидов значительно уменьшилось. Интересно отметить, что с недавнего зарождения более высокомощных микроскопов и «нанотехнологий» (исследование объектов определенной крошечной шкалы) вновь возрастает научный интерес к исследованию новых материалов.

Подробнее об этих веществах

Существуют элементы, наблюдаемые как в природе, так и в искусственных растворах, обладающих коллоидными свойствами. Например, майонез, косметический лосьон и смазочные материалы являются типами искусственных эмульсий, а молоко представляет собой подобную смесь, которая встречается в природе. Коллоидные пены включают взбитые сливки и пену для бритья, в то время как съедобные элементы включают масло, зефир и желе. В дополнение к пище эти вещества существуют в виде некоторых сплавов, красок, чернил, детергентов, инсектицидов, аэрозолей, пенополистирола и резины. Даже красивые природные объекты, такие как облака, жемчуг и опалы, обладают коллоидными свойствами, потому что у них есть другое вещество, равномерно распределенное через них.

Получение коллоидных смесей

Увеличивая малые молекулы до диапазона от 1 до 1 микрометра, или путем уменьшения больших частиц до того же размера. Могут быть получены коллоидные вещества. Дальнейшее производство зависит от типа элементов, используемых в дисперсных и непрерывных фазах. Коллоиды ведут себя иначе, чем обычные жидкости. И это наблюдается в транспортных и физико-химических свойствах. Например, мембрана может позволить истинному раствору с твердыми молекулами, присоединенными к жидким, пройти через него. В то время как коллоидное вещество, которое имеет твердое тело, диспергированное через жидкость, будет растягиваться мембраной. Четность распределения является однородной до точки микроскопического равенства в промежутке по всему второму элементу.

Истинные растворы

Коллоидная дисперсия имеет представление в виде гомогенной смеси. Элемент состоит из двух систем: непрерывной и дисперсной фазы. Это указывает на то, что этот случай связан с ибо они напрямую связаны с указанной выше смесью, состоящей из нескольких веществ. В коллоиде вторая имеет структуру мельчайших частиц или капель, которые равномерно распределены в первой. От 1 нм до 100 нм - это размер, составляющий дисперсную фазу, а точнее частиц, по меньшей мере в одном измерении. В таком диапазоне дисперсная фаза - это с указанными размерами можно назвать примерные элементы, подходящие под описание: коллоидные аэрозоли, эмульсии, пены, гидрозоли. Подвержены воздействию химического состава поверхности в значительной степени частицы или капли, присутствующие в рассматриваемых составах.

Коллоидные растворы и системы

Следует учитывать факт того, что размеры дисперсной фазы - это трудноизмеримая переменная в системе. Растворы иногда характеризуются собственными свойствами. Чтобы было легче воспринимать показатели составов, коллоиды их напоминают и выглядят почти так же. Например, если имеет диспергированную в жидкости, твердую форму. В результате через мембрану не будут проходить частицы. В то время когда иные компоненты вроде растворенных ионов или молекул способны пройти сквозь нее. Если анализировать проще, то получается, что растворенные компоненты проходят через мембрану, а с рассматриваемой фазой коллоидные частицы не смогут.

Появление и исчезновение цветовых характеристик

Из-за эффекта Тиндалля некоторые подобные вещества полупрозрачны. В структуре элемента он является рассеянием света. Другие системы и составы бывают с каким-то оттенком или вовсе быть непрозрачными, с определенным цветом, пусть некоторые даже с неярким. Многие знакомые вещества, в том числе масло, молоко, сливки, аэрозоли (туман, смог, дым), асфальт, краски, краски, клей и морская пена, являются коллоидами. Эта область исследования была введена в 1861 году шотландским ученым Томасом Грэмом. В некоторых случаях коллоид можно рассматривать как однородную (не гетерогенную) смесь. Это связано с тем, что различие между «растворенным» и «зернистым» веществом иногда может быть предметом подхода.

Гидроколлоидные типы веществ

Данный компонент определяется как коллоидная система, в которой частицы диспергируются в воде. Гидроколлоидные элементы в зависимости от количества жидкости могут принимать различные состояния, например, гель или золь. Бывают необратимыми (односоставными) или обратимыми. Например, агар, второй тип гидроколлоида. Может существовать в состоянии геля и золя, и чередуются между состояниями с добавлением или удалением тепла.

Многие гидроколлоиды получены из природных источников. Например, карраген экстрагируется из водорослей, желатин имеет бычий жир, а пектин из кожуры цитрусовых и яблочного жмыха. Гидроколлоиды используются в пищевых продуктах главным образом для воздействия на текстуру или вязкость (соус). Также применяются для ухода за кожей или как заживляющее средство после ранения.

Сущностные характеристики коллоидных систем

Из этой информации видно, что коллоидные системы - это подраздел дисперсной сферы. Они, в свою очередь, могут быть растворами (золями) или гелями (студни). Первые в большинстве случаев создаются на основе живой химии. Вторые формируются под осадками, которые возникают в процессе коагуляции золей. Растворы могут быть водными с органическими веществами, со слабыми или сильными электролитами. Размеры частиц дисперсной фазы коллоидов от 100 до 1 нм. Их невозможно увидеть невооруженным глазом. В результате отстаивания фазу и среду сложно разделить.

Классификация по типам частиц дисперсной фазы

Многомолекулярные коллоиды. Когда при растворении атомы или более мелкие молекулы веществ (имеющих диаметр менее 1 нм) объединяются вместе для образования частиц подобных размеров. В этих золях дисперсная фаза - это структура, которая состоит из агрегатов атомов или молекул с молекулярным размером менее 1 нм. Например, золото и сера. В этих удерживаются вместе силами Ван-дер-Ваальса. Они обычно имеют лиофильный характер. Это значит значительное взаимодействие частиц.

Высокомолекулярные коллоиды. Это вещества, имеющие молекулы большого размера (так называемые макромолекулы), которые при растворении образуют определенный диаметр. Такие вещества называются макромолекулярными коллоидами. Эти элементы, образующие диспергированную фазу, обычно представляют собой полимеры, имеющие очень высокие молекулярные массы. Естественные макромолекулы представляют собой крахмал, целлюлозу, белки, ферменты, желатин и т. д. Искусственные включают в себя синтетические полимеры, такие как нейлон, полиэтилен, пластмассы, полистирол и т. д. Они обычно лиофобны, что значит в этом случае слабое взаимодействие частиц.

Связанные коллоиды. Это вещества, которые при растворении в среде ведут себя как нормальные электролиты при низкой концентрации. Но представляют из себя коллоидные частицы с большей ферментной составляющей компонентов из-за образования агрегированных элементов. Образующиеся таким образом частицы заполнителей называются мицеллами. Их молекулы содержат как лиофильные, так и лиофобные группы.

Мицеллы. Представляют собой кластерные или агрегированные частицы, образованные ассоциацией коллоида в растворе. Обычными примерами являются мыла и моющие средства. Образование происходит выше определенной температуры Крафта, и выше определенной критической концентрации мицеллизации. Они способны образовывать ионы. Мицеллы могут содержать до 100 молекул и более, например, стеарат натрия является типичным примером. Когда он растворяется в воде, то дает ионы.