Строение и функции ядра. Клетка - это

По сравнению с другими клетками гаметы выполняют уникальные функции. Они обеспечивают передачу наследственной информации между поколениями особей, что поддерживает жизнь во времени. Гаметы – это одно из направлений дифферен-цировки клеток многоклеточного организма, направленное на процесс размножения. Это высокодифференцированные клетки, ядра которых содержат всю необходимую наследственную информацию для развития нового организма.

По сравнению с соматическими клетками (эпителиальными, нервными, мышечными) гаметы имеют ряд характерных особенностей. Первое отличие – наличие в ядре гаплоидного набора хромосом, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного набора (гаметы человека, например, содержат по 23 хромосомы; при слиянии гамет после оплодотворения формируется зигота, которая содержит 46 хромосом – нормальное количество для человеческих клеток).

Второе отличие – необычное ядерно-цитоплазматическое соотношение (т. е. отношение объема ядра к объему цитоплазмы). У яйцеклеток оно снижено за счет того, что имеется много цитоплазмы, где содержится питательный материал (желток) для будущего зародыша. В сперматозоидах, наоборот, ядерно-цито-плазматическое соотношение высокое, так как мал объем цитоплазмы (почти вся клетка занята ядром). Этот факт находится в соответствии с основной функцией сперматозоида – доставкой наследственного материала к яйцеклетке.

Третье отличие – низкий уровень обмена веществ в гаметах. Их состояние похоже на анабиоз. Мужские половые клетки вообще не вступают в митоз, а женские гаметы получают эту способность только после оплодотворения (когда они уже перестают быть гаметами и становятся зиготами) или воздействия фактора, индуцирующего партеногенез.

Несмотря на наличие ряда общих черт, мужские и женские половые клетки значительно отличаются друг от друга, что обусловлено различием в выполняемых функциях.

2. Строение и функции яйцеклетки

Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;

3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.

По количеству желтка в яйцеклетке она может быть алеци-тальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо– или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.

Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша.

Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.

Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.

3. Строение и функции сперматозоидов

Сперматозоид – это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет. Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50–70 мкм (самые крупные они у тритона – до 500 мкм). Все сперматозоиды несут отрицательный электрический заряд, что препятствует их склеиванию в сперме. Количество сперматозоидов, образующихся у особи мужского пола, всегда колоссально. Например, эякулят здорового мужчины содержит около 200 млн сперматозоидов (жеребец выделяет около 10 млрд сперматозоидов).

Строение сперматозоида

По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика. Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акро-сома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы – фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается цент-риоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).

При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.

Сперматозоиды некоторых видов животных имеют акросом-ный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.

Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).

При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.

4. Оплодотворение

Оплодотворение – это процесс слияния половых клеток. В результате оплодотворения образуется диплоидная клетка – зигота, это начальный этап развития нового организма. Оплодотворению предшествует выделение половых продуктов, т. е. осеменение. Существует два типа осеменения:

1) наружное. Половые продукты выделяются во внешнюю среду (у многих пресноводных и морских животных);

2) внутреннее. Самец выделяет половые продукты в половые пути самки (у млекопитающих, человека).

Оплодотворение состоит из трех последовательных стадий: сближения гамет, активации яйцеклетки, слияния гамет (синга-мии), акросомной реакции.

Сближение гамет

С)бусловлено совокупностью факторов, повышающих вероятность встречи гамет: половой активностью самцов и самок, скоординированной во времени, соответствующим половым поведением, избыточной продукцией сперматозоидов, крупными размерами яйцеклеток. Ведущий фактор – выделение гаметами гамонов (специфических веществ, способствующих сближению и слиянию половых клеток). Яйцеклетка выделяет гиногамоны, которые обусловливают направленное движение к ней сперматозоидов (хемотаксис), а сперматозоиды выделяют андрогамоны.

Для млекопитающих также важна длительность пребывания гамет в половых путях самки. Это необходимо для того, чтобы сперматозоиды приобрели оплодотворяющую способность (происходит так называемая капацитация, т. е. способность к акросом-ной реакции).

Акросомная реакция

Акросомная реакция – это выброс протеолитических ферментов (главным образом, гиалуронидазы), которые содержатся в акросоме сперматозоида. Под их влиянием происходит растворение оболочек яйцеклетки в месте наибольшего скопления сперматозоидов. Снаружи оказывается участок цитоплазмы яйцеклетки (так называемый бугорок оплодотворения), к которому прикрепляется только один из сперматозоидов. После этого плазматические мембраны яйцеклетки и сперматозоида сливаются, образуется цитоплазматический мостик, сливаются цитоплазмы обеих половых клеток. Далее в цитоплазму яйцеклетки проникают ядро и центриоль сперматозоида, а его мембрана встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида отделяется и рассасывается, не играя какой-либо существенной роли в дальнейшем развитии зародыша.

Активация яйцеклетки

Активация яйцеклетки происходит закономерно в результате контакта ее со сперматозоидом. Имеет место кортикальная реакция, защищающая яйцеклетку от полиспермии, т. е. проникновения в нее более одного сперматозоида. Она заключается в том, что происходят отслойка и затвердевание желточной оболочки под влиянием специфических ферментов, выделяющихся из кортикальных гранул.

В яйцеклетке изменяется обмен веществ, повышается потребность в кислороде, начинается активный синтез питательных веществ. Завершается активация яйцеклетки началом трансляционного этапа биосинтеза белка (так как м-РНК, т-РНК, рибосомы и энергия в виде макроэргов были запасены еще в овогенезе).

Слияние гамет

У большинства млекопитающих на момент встречи яйцеклетки со сперматозоидом она находится в метафазе II, так как процесс мейоза в ней заблокирован с помощью специфического фактора. У трех родов млекопитающих (лошадей, собак и лисиц) блок осуществляется на стадии диакинеза. Этот блок снимается только после того, как в яйцеклетку проникает ядро сперматозоида. В то время как в яйцеклетке завершается мейоз, ядро проникшего в нее сперматозоида приобретает другой вид – сначала интерфазного, а затем и профазного ядра. Ядро сперматозоида превращается в мужской пронуклеус: в нем удваивается количество ДНК, набор хромосом в нем соответствует n2c (содержит гаплоидный набор редуплицированных хромосом).

После завершения мейоза ядро превращается в женский про-нуклеус и также содержит количество наследственного материала, соответствующее n2c.

Оба пронуклеуса проделывают сложные перемещения внутри будущей зиготы, сближаются и сливаются, образуя синкарион (содержит диплоидный набор хромосом) с общей метафазной пластинкой. Затем формируется общая мембрана, возникает зигота. Первое митотическое деление зиготы приводит к образованию двух первых клеток зародыша (бластомеров), каждая из которых несет диплоидный набор хромосом 2n2c.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Клетка, её строение и функции

2. Вода в жизнедеятельности клетки

3. Обмен веществ и энергии в клетке

4. Питание клетки. Фотосинтез и хемосинтез

5. Генетический код. Синтез белков в клетке

6. Регуляция транскрипции и трансляции в клетке и организме

Список используемой литературы

1. Клетка, её строение и функции

Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки - цитоплазма и ядро.

Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры - органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр.

Клетка состоит из: поверхностного аппарата, цитоплазмы, ядра.

Строение животной клетки

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ, в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ, в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - "силовые станции" клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных - кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки.

Оно покрыто двух мембранной оболочкой с порами, через которые одни вещества проникают в ядро, а другие поступают в цитоплазму.

Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам.

Ядро - место синтеза ДНК, иРНК, рРНК.

Химический состав клетки

Клетка - элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных - животных и растений - построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему - отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10ые и 100ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения - это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы - тироксина, кобальт - в состав витамина В 12 гормон островковой части поджелудочной железы - инсулин - содержит цинк.

Органические вещества клетки

Белки .

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 - 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной.

Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 1010 - 1012.

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка.

В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин - это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса - простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны .

Одна из важнейших - строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10ки и 100ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др.

Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал). клетка мембранный хромосома

Углеводы .

Углеводы, или сахариды - органические вещества с общей формулой (СН 2О)n. У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные .

Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов - гексоз - наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар - из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты .

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития.

Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем - тканей и органов.

Существуют 2 типа нуклеиновых кислот - ДНК и РНК .

ДНК - полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). Схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Рис.1.Расположение нуклеотидов в молекуле ДНК

Из рис.1. видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи.

В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды.

Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое - урацил (У) - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов.

Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы.

Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды .

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде - они гидрофобны.

В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров - энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2О освобождается большое количество энергии - 38,9 кДж (~9,3 ккал).

Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

Жиры и липоиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

2. Вода в жизнедеятельности клетки

Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли)

Обеспечение упругости клетки.

Последствия потери клеткой воды - увядание листьев, высыхание плодов.

Ускорение химических реакций за счет растворения веществ в воде.

Обеспечение перемещения веществ: поступление большинства веществ, в клетку и удаление их из клетки в виде растворов.

Обеспечение растворения многих химических веществ (ряда солей, Сахаров).

Участие в ряде химических реакций.

Участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

Вода. Н 2 О - самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах.

Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами.

Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе.

Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С - половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей.

Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества.

Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос - односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли .

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии.

Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства.

Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (--НРО|~, - Н 2РС>4, --СГ, --НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде - ионов Na+. Участие минеральных солей в обмене веществ.

3 . О бмен веществ и энергии в клетке

Энергетический обмен в клетке

Аденозинтрифосфат (сокр. АТФ , англ. АТР ) - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтезвеществ, деление и т, д. В среднем содержание АТФ в клетке составляет около 0,05% ее массы, но в тех клетках, где затраты АТФ велики (например, в клетках печени, поперечно-полосатых мышц), ее содержание может доходить до 0,5%. Синтез АТФ в клетках происходит главным образом в митохондриях. Как вы помните (см. 1.7), на синтез 1 моля АТФ из АДФ необходимо затратить 40 кДж.

Энергетический обмен в клетке подразделяют на три этапа.

Первый этап - подготовительный.

Во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. Полисахариды распадаются на ди- и моносахариды, белки - до аминокислот, жиры - до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется.

Второй этап - неполное, без кислородное, расщепление веществ.

На этом этапе вещества, образовавшиеся во время подготовительного этапа, разлагаются при помощи ферментов в отсутствие кислорода.

Разберем этот этап на примере гликолиза - ферментативного расщепления глюкозы. Гликолиз происходит в животных клетках и у некоторых микроорганизмов. Суммарно этот процесс можно представить в виде следующего уравнения:

С 6Н 12О 6 + 2Н 3Р 04 + 2АДФ > 2С 3Н 603 + 2АТФ + 2Н 2О

Таким образом, при гликолизе из одной молекулы глюкозы образуются две молекулы, трех - углеродной пировиноградной кислоты (С 3Н 4О 3), которая во многих клетках, например в мышечных, превращается в молочную кислоту (С 3Н 6О 3), причем высвободившейся при этом энергии достаточно для превращения двух молекул АДФ в две молекулы АТФ.

Несмотря на кажущуюся простоту, гликолиз - процесс многоступенчатый, насчитывающий более десяти стадий, катализируемых разными ферментами. Только 40% выделившейся энергии запасается клеткой в виде АТФ, а остальные 60% - рассеиваются в виде тепла. Благодаря много - стадийности гликолиза, выделяющиеся небольшие порции тепла не успевают нагреть клетку до опасного уровня.

Гликолиз происходит в цитоплазме клеток.

У большинства растительных клеток и некоторых грибов второй этап энергетического обмена представлен спиртовым брожением:

С 6Н 12О 6+2Н 3РО 4+2АДФ>2С 2Н 5ОН +2С 02 + 2АТФ + 2H2О

Исходные продукты спиртового брожения те же, что и у гликолиза, но в результате образуется этиловый спирт, углекислый газ, вода и две молекулы АТФ. Есть такие микроорганизмы, которые разлагают глюкозу до ацетона, уксусной кислоты и других веществ, но в любом случае "энергетическая прибыль" клетки составляет две молекулы АТФ.

Третий этап энергетического обмена - полное кислородное расщепление, или клеточное дыхание.

При этом вещества, образовавшиеся на втором этапе, разрушаются до конечных продуктов - СО 2 и Н 2О. Этот этап можно представить себе в следующем виде:

2С 3Н 6О 3 + 6О 2 + 36Н 3РО 4 + 36 АДФ > 6СО 2 + 42 Н 2О + 36АТФ.

Таким образом, окисление двух молекул трех углеродной кислоты, образовавшихся при ферментативном расщеплении глюкозы до СО 2 и Н 2О, приводит к выделению большого количества энергии, достаточного для образования 36 молекул АТФ.

Клеточное дыхание происходит на кристах митохондрий. Коэффициент полезного действия этого процесса выше, чем у гликолиза, и составляет приблизительно 55% . В результате полного расщепления одной молекулы глюкозы образуется 38 молекул АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

4 . П итание клетки. Фотосинтез и хемосинтез

Питание клетки происходит в результате целого ряда сложных химических реакций, в ходе которых вещества, поступившие в клетку из внешней среды (углекислый газ, минеральные соли, вода), входят в состав тела самой клетки в виде белков, сахаров, жиров, масел, азотных и фосфорных соединений.

Все живые организмы, обитающие на Земле, можно подразделить на две группы в зависимости от того, каким образом они получают необходимые им органические вещества.

Первая группа - автотрофы , что в переводе с греческого языка означает "самопитающиеся". Они способны самостоятельно создавать все необходимые им для построения клеток и процессов жизнедеятельности органические вещества из неорганических - воды, углекислого газа и других. Энергию для таких сложных превращений они получают либо за счет солнечного света и называются фототрофами, либо за счет энергии химических превращений минеральных соединений и в этом случае называются хемотрофами. Но и фототрофные, и хемотрофные организмы не нуждаются в поступлении извне органических веществ. К автотрофам относятся все зеленые растения и многие бактерии.

Принципиально иной способ получения необходимых органических соединений у гетеротрофов. Гетеротрофы не могут самостоятельно синтезировать такие вещества из неорганических соединений и нуждаются в постоянном поглощении готовых органических веществ извне. Затем они "перестраивают" полученные извне молекулы для своих нужд.

Гетеротрофные организмы находятся в прямой зависимости от продуктов фотосинтеза, производимых зелеными растениями. Например, питаясь капустой или картофелем, мы получаем вещества, синтезированные в клетках растения за счет энергии солнечного света. Если же мы питаемся мясом домашних животных, то надо помнить, что эти животные питаются растительными кормами: травой, зерном и т. п. Таким образом, их мясо построено из молекул, полученных с растительной пищей.

К гетеротрофам относятся грибы, животные и многие бактерии. Некоторые клетки зеленого растения также гетеро-трофны: клетки камбия, корня. Дело в том, что клетки этих частей растения не способны к фотосинтезу и питаются за счет органических веществ, синтезированных зелеными частями растения.

Питание клетки: лизосомы и внутриклеточное пищеварение

Лизосомы, число которых в одной клетке достигает нескольких сотен, образуют типичное пространство.

Встречаются лизосомы различных форм и размеров; особым разнообразием отличается их внутренняя структура. Это разнообразие отражено в морфологической терминологии. Имеется множество терминов для обозначения частиц, которые нам сейчас известны как лизосомы. Среди них: плотные тельца, остаточные тельца, цитосомы, цитосегресомы и многие др.

С точки зрения химии переваривать пищу означает подвергать ее гидролизу, т.е. при помощи воды расщепить различные связи, посредством которых соединены строительные блоки естественных природных макромолекул. Например, пептидные связи, соединяющие аминокислоты в белках, гликолизные связи, соединяющие сахара в полисахаридах и эфирные связи между кислотами и спиртами. По большей части эти связи весьма устойчивы, разрываются только при жестких условиях температуры и значениях pH (кислая или щелочная среда).

Живые организмы не в состоянии ни создать, ни выдержать подобные условия, а между тем пищу они переваривают без труда. И делают это с помощью особых катализаторов - гидролитических ферментов, или гидролаз, которые секретируются в пищеварительной системе. Гидролазы - специфические катализаторы. Каждая из них расщепляет только строго определенный тип химической связи. Поскольку пища обычно состоит из многих компонентов с разнообразными химическими связями, для пищеварения необходимо одновременное согласованное или последовательное участие различных ферментов. И действительно, пищеварительные соки, секретируемые в желудочно-кишечный тракт, содержат большое число различных гидролаз, что позволяет человеческому организму усваивать множество сложных пищевых продуктов растительного и животного происхождения. Однако, эта способность ограничена, и человеческий организм не в состоянии переваривать целлюлозу.

Эти основные положения относятся, по существу, и к лизосомам. В каждой лизосоме мы находим целую коллекцию различных гидролаз - идентифицировано более 50 видов - которые в совокупности способны полностью или почти полностью переваривать многие из основных природных веществ, включая белки, полисахариды, нуклеиновые кислоты, их комбинации и производные. Однако, как и желудочно-кишечный тракт человека, лизосомы характеризуются некоторыми ограничениями в своей переваривающей способности.

В кишечнике конечные продукты пищеварения (перевариваются), "очищаются" в результате кишечной абсорбции: они удаляются клетками слизистой, обычно при помощи активных насосов, и попадают в кровеносное русло. Нечто подобное происходит и в лизосомах.

Различные мелкие молекулы, образовавшиеся в процессе переваривания переносятся через лизосомальную мембрану в цитоплазму, где их используют метаболические системы клетки.

Но иногда переваривание не происходит или оно неполное и не достигает той стадии, на которой его продукты могут быть очищены. У большинства простейших организмов и низших беспозвоночных подобные ситуации не вызывают особых последствий, т.к. их клетки обладают способностью избавляться от содержимого своих старых лизосом, попросту выбрасывая его в окружающую среду.

У высших животных многие клетки не способны опорожнять свои лизосомы таким образом. Они находятся в состоянии хронического "запора". Именно этот серьезный недостаток лежит в основе многочисленных патологических состояний, связанных с перегрузкой лизосом. Диспепсия, повышенная кислотность, запор и другие расстройства пищеварения.

Афтотрофное питание

Жизнь на Земле зависит от автотрофных организмов. Почти все органические вещества, необходимые для живых клеток, производятся в процессе фотосинтеза.

Фотосинтез (от греч. фотос - свет и синтезис - соединение, сочетание) - превращение зелеными растениями и фотосинтезирующими микроорганизмами неорганических веществ (воды и углекислого газа) в органические за счет солнечной энергии, которая преобразуется в энергию химических связей в молекулах органических веществ.

Фазы фотосинтеза.

В процессе фотосинтеза энергетически бедные вода и углекислый газ превращаются в энергоемкое органическое вещество - глюкозу. При этом солнечная энергия аккумулируется в химических связях этого вещества. Кроме того, в процессе фотосинтеза в атмосферу выделяется кислород, который используется организмами для дыхания.

В настоящее время установлено, что фотосинтез протекает в две фазы - световую и темновую.

В световую фазу благодаря солнечной энергии происходит возбуждение молекул хлорофилла и синтез АТФ.

Одновременно с этой реакцией под действием света разлагается вода (Н 20) с выделением свободного кислорода (02). Этот процесс назвали фотолизом (от греч. фотос - свет и лизис - растворение). Образовавшиеся ионы водорода связываются с особым веществом - переносчиком ионов водорода (НАДФ) и используются в следующей фазе.

Для протекания реакций темповой фазы наличие света необязательно. Источником энергии здесь служат синтезированные в световую фазу молекулы АТФ. В темповой фазе происходит усвоение углекислого газа из воздуха, его восстановление ионами водорода и ооразование глюкозы благодаря использованию энергии АТФ.

Влияние условий среды на фотосинтез.

При фотосинтезе используется только 1% солнечной энергии, падающей на лист. Фотосинтез зависит от целого ряда условий среды. Во-первых, наиболее интенсивно этот процесс протекает под влиянием красных лучей солнечного спектра (рис. 58). Степень интенсивности фотосинтеза определяется по количеству выделившегося кислорода, который вытесняет воду из цилиндра. Скорость фотосинтеза зависит также и от степени освещенности растения. Увеличение продолжительности светового дня приводит к росту продуктивности фотосинтеза, т. е. количества образуемых растением органических веществ.

Значение фотосинтеза.

Продукты фотосинтеза используются:

· организмами в качестве питательных веществ, источника энергии и кислорода для процессов жизнедеятельности;

· в производстве человеком продуктов питания;

· в качестве строительного материала для построек жилищ, в производстве мебели и др.

Человечество своим существованием обязано фотосинтезу.

Все запасы горючего на Земле - это продукты, образованные в результате фотосинтеза. Используя уголь и древесину, мы получаем энергию, которая была запасена в органических веществах при фотосинтезе. Одновременно в атмосферу выделяется кислород.

По подсчетам ученых, без фотосинтеза весь запас кислорода был бы израсходован за 3000 лет.

Хемосинтез .

Кроме фотосинтеза, известен еще один способ получения энергии и синтеза органических веществ из неорганических. Некоторые бактерии способны извлекать энергию путем окисления различных неорганических веществ. Для создания органических веществ им не нужен свет. Процесс синтеза органических веществ из неорганических, проходящий благодаря энергии окисления неорганических веществ, называют хемосинтезом (от лат. хемия - химия и греч. синтезис - соединение, сочетание).

Хемосинтезирующие бактерии были открыты русским ученым С.Н. Виноградским. В зависимости оттого, при окислении, какого вещества выделяется энергия, различают хемосинтезирующие железобактерии, серобактерии и азотобактерии.

5 . Г енетичес кий код. Синтез белков в клетке

Генетический код - единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода следующие:

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов - 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции.

Так, в молекуле иРНК три из них УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одновременно с избыточностью коду присуще свойство однозначности, которое означает, что каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен, т. е. не содержит "знаков препинания". Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов). Например, в иРНК следующая последовательность азотистых оснований АУГГУГЦУУААУГУГ будет считываться только такими триплетами: АУГ, ГУГ, ЦУУ, ААУ, ГУГ, а не АУГ, УГГ, ГГУ, ГУГ и т. Д. или АУГ, ГГУ, УГЦ, ЦУУ и т. д. или еще каким-либо образом (допустим, кодон АУГ, знак препинания Г, кодон УГЦ, знак препинания У и Т. п.).

6. Генетический код универсален, т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Синтез белков в клетке

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т--Т--Т соответствует аминокислоте лизину, отрезок А--Ц--А - цистину, Ц--А--А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. "транскриптик" - переписывание).

2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.

3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.

4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. "хрома" - цвет, "сома" - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами , состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом.

Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами - большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин - 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

6 . Р егуляция транскрипции и трансляции в клетке и организме

Оперон и репрессор.

Известно, что набор хромосом, т. е. набор молекул ДНК, одинаков во всех клетках одного организма.

Следовательно, каждая клетка тела способна синтезировать любое количество каждого белка, свойственного данному организму. К счастью, этого никогда не происходит, так как клетки той или иной ткани должны иметь определенный набор белков, необходимый для выполнения их функции в многоклеточном организме, и ни в коем случае не синтезировать "посторонних" белков, которые свойственны клеткам других тканей.

Так, например, в клетках корня необходимо синтезировать растительные гормоны, а в клетках листа - ферменты для обеспечения фотосинтеза. Почему же в одной клетке не синтезируются сразу все белки, информация о которых имеется в ее хромосомах?

Такие механизмы лучше изучены в клетках прокариот. Несмотря на то, что прокариоты - одноклеточные организмы, их транскрипция и трансляция также регулируются, так как в один момент времени клетка может нуждаться в каком-либо белке, а в другой момент тот же самый белок может стать для нее вреден.

Генетической единицей механизма регуляции синтеза белков следует считать оперон, в состав которого входят один или несколько структурных генов, т. е. генов, несущих информацию о структуре иРНК, которая, в свою очередь, несет информацию о структуре белка. Перед этими генами, в начале оперона, расположен промотор - "посадочная площадка" для фермента РНК-полимеразы. Между промотором и структурными генами в опероне располагается участок ДНК, называемый оператором. Если с оператором связан особый белок - репрессор, то РНК-полимераза не может начать синтез иРНК.

Механизм регуляции синтеза белка у эукариот.

Регуляция работы генов у эукариот, особенно если речь идет о многоклеточном организме, гораздо сложнее. Во-первых, белки, необходимые для обеспечения какой-либо функции, могут быть закодированы в генах различных хромосом (напомним, что у прокариот ДНК в клетке представлена одной-единственной молекулой). Во-вторых, у эукариот сами гены устроены сложнее, чем у прокариот; у них имеются "молчащие" участки, с которых не считывается иРНК, но которые способны регулировать работу соседних участков ДНК. В-третьих, в многоклеточном организме необходимо точно регулировать и координировать работу генов в клетках разных тканей.

Эта координация осуществляется на уровне целого организма и главным образом при помощи гормонов. Они вырабатываются как в клетках желез внутренней секреции, так и в клетках многих других тканей, например нервной. Эти гормоны связываются с особыми рецепторами, расположенными или на клеточной мембране, или внутри клетки. В результате взаимодействия рецептора с гормоном в клетке активируются или, наоборот, репрессируются те или иные гены, и синтез белков в данной клетке меняет свой характер. Например, гормон надпочечников адреналин активирует распад гликогена до глюкозы в клетках мышц, что приводит к улучшению обеспеченности этих клеток энергией. Другой гормон, инсулин, выделяемый поджелудочной железой, напротив, способствует образованию гликогена из глюкозы и запасанию его в клетках печени.

Следует также учесть, что 99,9% ДНК у всех людей одинаковы и только оставшиеся 0,1% определяют неповторимую индивидуальность каждого человека: внешний вид, особенности характера, обмена веществ, склонность к тем или иным заболеваниям, индивидуальная реакция на лекарства и многое другое.

Можно было бы предположить, что часть "неработающих" генов в тех или иных клетках утрачивается, разрушается. Однако целый ряд экспериментов доказал, что это не так. Из клетки кишечника головастика при определенных условиях можно вырастить целую лягушку, что возможно только в том случае, если в ядре этой клетки сохранилась вся генетическая информация, хотя часть ее не выражалась в форме белков, пока клетка входила в состав стенки кишечника. Следовательно, в каждой клетке многоклеточного организма используется только часть генетической информации, содержащейся в ее ДНК, Значит, должны иметь место механизмы, "включающие" или "выключающие" работу того или иного гена в разных клетках.

Общая длина молекул ДНК, содержащихся в 46 хромосомах человека, составляет почти 2 метра. Если бы генетически триплетным кодом были закодированы буквы алфавита, то ДНК одной клетки человека хватило бы для шифровки 1000 толстых томов текста!

Все организмы на Земле состоят из клеток. Существуют одноклеточные и многоклеточные организмы.

Безъядерные организмы называются прокариотами, а имеющие ядра в своих клетках - эукариотами. Снаружи каждая клетка покрыта биологической мембраной. Внутри клетки находится цитоплазма, в которой расположены ядро (у эукариот) и другие органоиды. Ядро заполнено кариоплазмой, в которой располагаются хроматин и ядрышки. Хроматин - это ДНК, связанная с белками, из него во время деления клетки образуются хромосомы.

Хромосомный набор клетки называется кариотипом.

В цитоплазме клеток эукариот расположен цитоскелет - сложная система, выполняющая опорную, двигательную и транспортную функции. Важнейшие органоиды клетки: ядро, эндоплазматическая сеть, комплекс Гольджи, рибосомы, митохондрии, лизосомы, пластиды. Некоторые клетки имеют органоиды движения: жгутики, реснички.

Между клетками прокариот и эукариот имеются значительные различия в строении.

Вирусы представляют собой неклеточную форму жизни.

Для нормальной жизнедеятельности клетки и всего многоклеточного организма необходимо постоянство внутренней среды, получившее название гомеостаза.

Гомеостаз поддерживается реакциями обмена веществ, которые подразделяются на ассимиляцию (анаболизм) и диссимиляцию (катаболизм). Все реакции обмена веществ происходят при участии биологических катализаторов - ферментов. Каждый фермент специфичен, т. е. участвует в регуляции строго определенных процессов жизнедеятельности. Поэтому в каждой клетке "работает" множество ферментов.

Все энергетические затраты любой клетки обеспечиваются за счет универсального энергетического вещества - АТФ. АТФ образуется за счет энергии, выделяющейся при окислении органических веществ. Этот процесс является многоступенчатым, и наиболее эффективно кислородное расщепление, происходящее в митохондриях.

По способу получения необходимых для жизнедеятельности органических веществ все клетки делятся на автотрофы и гетеротрофы. Автотрофы подразделяются на фотосинтетики и хемосинтетики, и все они способны самостоятельно синтезировать необходимые им органические вещества. Гетеротрофы получают большинство органических соединений извне.

Фотосинтез - важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на Земле. В результате фотосинтеза происходит синтез сложных органических соединений за счет энергии излучения Солнца. За исключением хемосинтетиков, все организмы на Земле прямо или косвенно зависят от фотосинтетиков.

Важнейшим процессом, происходящим во всех клетках (за исключением клеток, утерявших ДНК в процессе развития), является синтез белка. Информация о последовательности аминокислот, составляющих первичную структуру белка, заключена в последовательности триплетных сочетаний нуклеотидов ДНК. Ген - участок ДНК, в котором закодирована информация о структуре одного белка. Транскрипция - процесс синтеза иРНК, кодирующей последовательность аминокислот бел ка. иРНК выходит из ядра (у эукариот) в цитоплазму, где в рибосомах происходит формирование аминокислотной цепочки белка. Этот процесс называется трансляцией. В каждой клетке - множество генов, однако клетка использует лишь строго определенную часть генетической информации, что обеспечивается наличием в генах особых механизмов, включающих или выключающих синтез того или иного белка в клетке.

Список используемой литературы

1. Даревский, И.С.; Орлов, Н.Л. Редкие и изчезающие животные. Земноводные и пресмыкающиеся; М.: Высшая школа, 1988. - 463 c.

2. Линней, Карл Философия ботаники; М.: Наука, 1989. - 456 c.

3. Опарин, А.И. Материя. Жизнь. Интеллект; М.: Наука, 1977. - 208 c.

5. Эттенборо, Дэвид Живая планета; М.: Мир, 1988. - 328 c.

Размещено на Allbest.ru

...

Подобные документы

    Основные органеллы клетки. Цитоплазма - полужидкая среда, в которой находятся ядро клетки и все органоиды, ее состав. Схема строения комплекса Гольджи. Органоиды движения включения (реснички и жгутики). Форма и размеры ядра, его главные функции.

    презентация , добавлен 13.11.2014

    Единый план строения клеток организма. Строгая упорядоченность строения ядра и цитоплазмы. Клеточное ядро (вместилище всей генетической информации). Содержимое клеточного ядра (хроматин). Аппарат Гольджи, эндоплазматическая сеть, клеточные структуры.

    реферат , добавлен 28.07.2009

    Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

    презентация , добавлен 27.12.2011

    Эволюционное значение клеточного ядра - компонента эукариотической клетки, содержащего генетическую информацию. Структура ядра: хроматин, ядрышко, кариоплазма и ядерная оболочка. Функции ядра: хранение, передача и реализация наследственной информации.

    презентация , добавлен 21.02.2014

    Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат , добавлен 06.07.2010

    Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация , добавлен 26.11.2013

    История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.

    реферат , добавлен 16.08.2009

    История исследований клетки, самые известные работы всех времен, написанные по данной теме и современные знания. Элементарное строение клетки, ее основные составные части и их функции. Цитоплазма и ее органоиды, назначение комплекса Гольджи и включений.

    реферат , добавлен 07.10.2009

    Строение и функции клеточного ядра. Его форма, состав, строение. Дезоксирибонуклеиновая кислота - носитель наследственной информации. Механизм репликации ДНК. Процесс восстановления природной структуры ДНК, поврежденной при ее нормальном биосинтезе.

    реферат , добавлен 07.09.2015

    Цитоплазма как обязательная часть клетки, заключенная между плазматической мембраной и ядром. Реакция среды и особенности движения цитоплазмы. Значение, функции и структура гиалоплазмы. Виды и роль одно- и двухмембранных органоидов живой клетки.

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

I. Цитология.

II. Строение клетки:

1. мембрана;

3. цитоплазма:

а) органоиды:

1.эндоплазматическая сеть;

2.рибосомы;

3.комплекс Гольджи;

4.лизосомы;

5.клеточный центр;

6.энергетические органоиды.

б) клеточные включения:

1. углеводы;

III. Функции клеток:

1. деление клетки;

2. обмен веществ:

а) пластический обмен;

б) энергетический обмен.

3. раздражимость;

4. роль органических веществ в осуществлении функций клетки:

б) углеводы;

г) нуклеиновые кислоты:

IV. Новые открытия в области клетки.

V. Хабаровские цитологи.

VI. Заключение

Цитология.

Цитология (греч. «цитос» - клетка, «логос» - наука) – наука о клетках. Цитология изучает строение и химический состав клеток, функции клеток в организме животных и растений, размножение и развитие клеток, приспособление клеток к условиям окружающей среды.

Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например, с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой.

Цитология – одна из молодых биологических наук, её возраст около 100 лет. Возраст же термина «клетка» насчитывает около 300 лет.

Исследуя клетку как важнейшую единицу живого, цитология занимает центральное положение в ряду биологических дисциплин. Изучение клеточного строения организмов было начато микроскопами XVII века, в XIX веке была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологии способствовали новые методы: электронная микроскопия, изотопные индикаторы, культивирование клеток и др.

Название «клетка» предложил англичанин Р. Гук ещё в 1665 г., но только в XIX веке началось её систематическое изучение. Несмотря на то, что клетки могут входить в состав различных организмов и органов (бактерий, икринок, эритроцитов, нервов и т.д.) и даже существовать как самостоятельные (простейшие) организмы, в их строении и функциях обнаружено много общего. Хотя отдельная клетка представляет собой наиболее простую форму жизни, строение её достаточно сложно…

Строение клетки.

Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки – цитоплазма и ядро.

Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры – органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр.

Мембрана.

Если рассматривать в микроскоп клетку какого-нибудь растения, например, корешка лука, то видно, что она окружена сравнительно толстой оболочкой. Оболочка совсем другой природы хорошо видна у гигантского аксона кальмара. Но не оболочка выбирает, какие вещества пускать и какие не пускать в аксон. Оболочка клетки служит как бы дополнительным «земляным валом», который окружает и защищает главную крепостную стену – клеточную мембрану с её автоматическими воротами, насосами, специальными «наблюдателями», ловушками и другими удивительными приспособлениями.

«Мембрана – крепостная стена клетки», но только в том смысле, что она ограждает и защищает внутреннее содержимое клетки. Растительную клетку можно отделить от наружной оболочки. Можно разрушить оболочку у бактерий. Тогда может показаться, что они вообще ничем не отделены от окружающего раствора – это просто кусочки студня с внутренними включениями.

Новые физические методы, прежде всего электронная микроскопия, не только позволили с несомненностью установить наличие мембраны, но и рассмотреть некоторые её детали.

Внутреннее содержимое клетки и её мембрана состоят в основном из одних и тех же атомов. Эти атомы – углерод, кислород, водород, азот – расположены в начале таблицы Менделеева. На электронной фотографии тонкого среза клетки мембраны видны в виде двух тёмных линий. Общая толщина мембраны может быть точно измерена с этих снимков. Она равно всего 70-80 А (1А = 10 -8 см), т.е. в 10 тыс. раз меньше толщины человеческого волоса.

Итак, клеточная мембрана – очень мелкое молекулярное сито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминают длинные узкие проходы в крепостной стене средневекового города. Высота и ширина этих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстия встречаются очень редко – поры занимают у некоторых клеток только одну миллионную часть площади мембраны. Это соответствует всего одному отверстию на площади обычного волосяного сита для просеивания муки, т.е. с обычной точки зрения мембрана вовсе не сито.

Ядро.

Ядро - самый заметный и самый большой органоид клетки, который первым привлёк внимание исследователей. Клеточное ядро (лат. nucleus, греч. карион) открыто в 1831 году шотландским учёным Робертом Брауном. Его можно сравнить с кибернетической системой, где имеет место хранение, переработка и передача в цитоплазму огромной информации, заключённой в очень малом объёме. Ядро играет главную роль в наследственности. Ядро выполняет также функцию восстановления целостности клеточного тела (регенерация), является регулятором всех жизненных отправлений клетки. Форма ядра чаще всего шарообразная или яйцевидная. Важнейшей составной частью ядра является хроматин (от греч. хрома – цвет, окраска) – вещество, хорошо окрашивающееся ядерными красками.

Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с эндоплазматической сетью и комплексом Гольджи. На ядерной мембране обнаружены поры, через которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е. поры обеспечивают избирательную проницаемость мембраны.

Внутреннее содержимое ядра составляет ядерный сок, заполняющий пространство между структурами ядра. В ядре всегда присутствует одно или несколько ядрышек. В ядрышке образуются рибосомы. Поэтому между активностью клетки и размером ядрышек существует прямая связь: чем активнее протекают процессы биосинтеза белка, тем крупнее ядрышки и, наоборот, в клетках, где синтез белка ограничен, ядрышки или очень невелики, или совсем отсутствуют.

В ядре расположены нитевидные образования – хромосомы. В ядре клетки тела человека (кроме половых) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству.

Большинство клеток содержит одно ядро, но существуют и многоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клетку нежизнеспособной.

Цитоплазма.

Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3%жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты

Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой.

Органоиды.

Цитоплазма содержит ряд мельчайших структур клетки – органоидов, которые выполняют различные функции. Органоиды обеспечивают жизнедеятельность клетки.

Эндоплазматическая сеть.

Название этого органоида отражает место расположения его в центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки.

ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн, поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е. гладкая (без гран). Граны в эндоплазматической сети ни что иное, как рибосомы. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная ЭПС преобладает в клетках, активно синтезирующих белок. Считают, что агранулярная сеть в большей степени предоставлена в тех клетках, где идёт активный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей её средой.

Рибосомы.

Рибосомы – не мембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё остаётся загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул.

Каждая рибосомы разделена желобком на большую и маленькую части (субъединицы). Часто несколько рибосом объединяются нитью специальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы осуществляют уникальную функцию синтеза белковых молекул из аминокислот.

Комплекс Гольджи.

Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС, где они концентрируются в специальный аппарат – комплекс Гольджи, расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т.д.

Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи (1844 – 1926) и в 1898 году был назван «комплексом (аппаратом) Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок доставляется в требуемое место.

Лизосомы.

Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это органоиды клетки овальной формы, окружённые однослойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает.

Клеточный центр.

Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец – центриолей. Находясь около ядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления.

Энергетические органоиды.

Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют энергетическими станциями клетки. Такое название обуславливается тем, что именно в митохондриях происходит извлечение энергии, заключённой в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки.

На электронных микрофотографиях видно, что митохондрии состоят из двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты, называемые кристами, которые сплошь устланы ферментами. Наличие крист увеличивает общую поверхность митохондрий, что важно для активной деятельности ферментов.

В митохонлриях обнаружены свои специфические ДНК и рибосомы. В связи с этим они самостоятельно размножаются при делении клетки.

Хлоропласты – по форме напоминают диск или шар с двойной оболочкой – наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры – граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды.

Клеточные включения.

К клеточным включениям относятся углеводы, жиры и белки.

Углеводы. Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, гликоген (животный крахмал). Многие углеводы хорошо растворимы в воде и являются основными источниками энергии для осуществления всех жизненных процессов. При распаде одного грамма углеводов освобождается 17,2 кДж энергии.

Жиры. Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщеплении одного грамма жира освобождается 39, 1 кДж энергии.

Белки. Белки являются основными веществами клетки. Белки состоят из углерода, водорода, кислорода, азота, серы. Часто в состав белка входит фосфор. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов (ускорителей течения химических реакций). В одной клетке насчитывается до 1000 разных белков. При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов.

Все эти вещества накапливаются в цитоплазме клетки в виде капель и зёрен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Функции клеток.

Клетка обладает различными функциями: деление клетки, обмен веществ и раздражимость.

Деление клетки.

Деление – это вид размножения клеток. Во время деления клетки хорошо заметны хромосомы. Набор хромосом в клетках тела, характерный для данного вида растений и животных, называется кариотипом.

В любом многоклеточном организме существует два вида клеток – соматические (клетки тела) и половые клетки или гаметы. В половых клетках число хромосом в два раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами – такой набор называется диплоидным и обозначается 2n. Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом в одинарном числе. Такой набор называется гаплоидным и обозначается n.

Наиболее распространённым способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению – в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется её точная копия. Удвоенная хромосома состоит из двух половинок – хроматид. Каждая из хроматид содержит одну молекулу ДНК. В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10-20 часов. Затем наступает процесс деления клетки – митоз.

Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза и телофаза.

В профазе хорошо видны центриоли – органоиды, играющие определённую роль в делении дочерних хромосом. Центриоли делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку – центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

В анафазе дочерние хромосомы расходятся к разным полюсам клетки.

В последней стадии – телофазе – хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все её органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 часа.

В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз – это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Биологическое значение митоза огромно. Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональное развитие, рост, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, эпителия кишечника и пр.), восстановление органов и тканей после повреждения.

Обмен веществ.

Основная функция клетки – обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада. Так, клетки человека поглощают кислород, воду, глюкозу, аминокислоты, минеральные соли, витамины, а выводят углекислый газ, воду, мочевину, мочевую кислоту и т.д.

Набор веществ, свойственный клеткам человека, присущ и многим другим клеткам живых организмов: всем животным клеткам, некоторым микроорганизмам. У клеток зелёных растений характер веществ существенно иной: пищевые вещества у них составляют углекислый газ и вода, а выделяется кислород. У некоторых бактерий, обитающих на корнях бобовых растений (вика, горох, клевер, соя), пищевым веществом служит азот атмосферы, а выводятся соли азотной кислоты. У микроорганизма, селящегося в выгребных ямах и на болотах, пищевым веществом служит сероводород, а выделяется сера, покрывая поверхность воды и почвы жёлтым налётом серы.

Таким образом, у клеток разных организмов характер пищевых и выделяемых веществ различается, но общий закон действителен для всех: пока клетка жива, происходит непрерывное движение веществ – из внешней среды в клетку и из клетки во внешнюю среду.

Обмен веществ выполняет две функции. Первая функция – обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, - аминокислот, глюкозы, органических кислот, нуклеотидов – в клетке непрерывно происходит биосинтез белков, углеводов, липидов, нуклеиновых кислот. Биосинтез – это образование белков, жиров, углеводов и их соединений из более простых веществ. В процессе биосинтеза образуются вещества, свойственные определённым клеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающие их сокращение. Из белков, углеводов, липидов, нуклеиновых кислот формируется тело клетки, её мембраны, органоиды. Реакции биосинтеза особенно активно идут в молодых, растущих клетках. Однако биосинтез веществ постоянно происходит в клетках, закончивших рост и развитие, так как химический состав клетки в течение её жизни многократно обновляется. Обнаружено, что «продолжительность жизни» молекул белков клетки колеблется от 2-3 часов до нескольких дней. После этого срока они разрушаются и заменяются вновь синтезированными. Таким образом, клетка сохраняет функции и химический состав.

Совокупность реакций, способствующих построению клетки и обновлению её состава, носит название пластического обмена (греч. «пластикос» - лепной, скульптурный).

Вторая функция обмена веществ – обеспечение клетки энергией. Любое проявление жизнедеятельности (движение, биосинтез веществ, генерация тепла и др.) нуждаются в затрате энергии. Для энергообеспечения клетки используется энергия химических реакций, которая освобождается в результате расщепления поступающих веществ. Эта энергия преобразуется в другие виды энергии. Совокупность реакций, обеспечивающих клетки энергией, называют энергетическим обменом.

Пластический и энергетический обмены неразрывно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакции энергетического обмена необходим постоянный синтез ферментов, так как «продолжительность жизни» молекул ферментов невелика.

Через пластический и энергетический обмены осуществляется связь клетки с внешней средой. Эти процессы являются основным условием поддержания жизни клетки, источником её роста, развития и функционирования.

Живая клетка представляет собой открытую систему, поскольку между клеткой и окружающей средой постоянно происходит обмен веществ и энергии.

Раздражимость.

Живые клетки способны реагировать на физические и химические изменения окружающей их среды. Это свойство клеток называется раздражимостью или возбудимостью. При этом из состояния покоя клетка переходит в рабочее состояние – возбуждение. При возбуждении в клетках меняется скорость биосинтеза и распада веществ, потребление кислорода, температура. В возбуждённом состоянии разные клетки выполняют свойственные им функции. Железистые клетки образуют и выделяют вещества, мышечные клетки сокращаются, в нервных клетках возникает слабый электрический сигнал – нервный импульс, который может распространяться по клеточным мембранам.

Роль органических соединений в осуществлении функций клетки.

Главная роль в осуществлении функций клетки принадлежит органическим соединениям. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты.

Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев – аминокислот. Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своём составе аминной группы NH 2 .

Белки в обмене веществ занимают особое место. Ф. Энгельс так оценил эту роль белков: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причём с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». И на самом деле, везде, где есть жизнь, находят белки.

Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ, имеют белковую природу.

Углеводы.

Углеводы поступают в организм в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками.

Углеводы – главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счёт углеводов. Конечные продукты обмена углеводов – углекислый газ и вода.

В крови количество глюкозы поддерживается на относительно постоянном уровне (около 0,11%). Уменьшение содержания глюкозы вызывает понижение температуры тела, расстройство деятельности нервной системы, утомление. Повышение количества глюкозы вызывает её отложение в печени в виде запасного животного крахмала – гликогена. Значение глюкозы для организма не исчерпывается её ролью как источника энергии. Глюкоза входит в состав цитоплазмы и, следовательно, необходима при образовании новых клеток, особенно в период роста.

Углеводы имеют важное значение и в обмене веществ центральной нервной системы. При резком снижении количества сахара в крови отмечаются расстройства деятельности нервной системы. Наступают судороги, бред, потеря сознания, изменение деятельности сердца.

Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь.

Жир используется организмом как богатый источник энергии. При распаде одного грамма жира в организме освобождается энергии в два раза больше, чем при распаде такого же количества белков и углеводов. Жиры входят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво и постоянно.

Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т.д.

Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям.

С жирами в организм поступают растворимые в них витамины (витамины A, D, E и др.), имеющие для человека жизненно важное значение.

Нуклеиновые кислоты.

Нуклеиновые кислоты образуются в клеточном ядре. Отсюда и произошло название (лат. «нуклеус» - ядро). Входя в состав хромосом, нуклеиновые кислоты участвуют в хранении и передаче наследственных свойств клетки. Нуклеиновые кислоты обеспечивают образование белков.

Молекула ДНК – дезоксирибонуклеиновая кислота – была открыта в клеточных ядрах ещё в 1868 году швейцарским врачом И.Ф. Мишером. Позднее узнали, что ДНК находится в хромосомах ядра.

Основная функция ДНК – информационная: порядок расположения её четырёх нуклеотидов (нуклеотид - мономер; мономер – вещество, состоящее из повторяющихся элементарных звеньев) несёт важную информацию – определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков, т.е. ДНК является носителем наследственной информации.

РНК – рибонуклеиновая кислота – очень похожа на ДНК и тоже построена из мономерных нуклеотидов четырёх типов. Главное отличие РНК от ДНК – одинарная, а не двойная цепочка молекулы.

Различают несколько видов РНК, все они принимают участие в реализации наследственной информации, хранящейся в молекулах ДНК, через синтез белка.

Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ – универсальный биологический аккумулятор энергии: световая энергия Солнца и энергия, заключённая в потребляемой пище, запасается в молекулах АТФ.

Энергию АТФ (Е) все клетки используют для процессов биосинтеза, движения нервных импульсов, свечений и других процессов жизнедеятельности.

Новые открытия в области клетки.

Раковые клетки.

Два британца и американец разделят Нобелевскую премию за 2001 г. по медицине. Их открытия в области развития клеток, возможно, позволят разработать новые методы борьбы с раком.
Как сообщил представитель Нобелевского комитета, ученые-медики разделят премию в $943 000. 61-летний американец Лиланд Хартвел работает в Исследовательском раковом центре Фреда Хатчисона в Сиэтле. Британцы 58-летний Тимоти Хунт и 52-летний Пол Нурс - сотрудники отделений Королевского фонда исследований рака в Хертфордшире и Лондоне.

Научные открытия, совершенные лауреатами касаются жизненного цикла раковых клеток. В частности, они обнаружили ключевые регуляторы деления клеток - нарушение этого процесса ведет к возникновению раковых клеток. Результаты исследований могут быть использованы при диагностике болезни и имеют важное значение для перспективы создания новых методов лечения рака.
Трое победителей были определены утром 08.10.01 в результате голосования членов комитета, которое прошло в Каролинском институте Стокгольма.

Клонирование.

Клонированная овца Долли явила миру технологию получения из взрослой клетки точной копии животного. А значит, принципиально возможным стало получить точную копию человека.

И теперь человечество встало перед вопросом: что будет, если кто-нибудь эту возможность реализует?..

Если вспомнить про трансплантацию органов, которая позволяет заменить одну или несколько "запчастей", то клонирование теоретически позволяет обеспечить полную замену "агрегата" под названием человеческий организм.

Да это же решение проблемы личного бессмертия! Ведь благодаря клонированию из собственных планов на жизнь можно исключить болезнь, инвалидность и даже смерть!

Звучит славно, не правда ли? Особенно, если учесть, что копии должны быть живыми и находиться при этом в таких условиях, чтобы как минимум не портились. Представляете себе эти "склады" живых человеческих "запчастей"?

А есть ведь еще и "польза" вторая - использование клонирования не только для получения органов, но и для проведения исследований и экспериментов на живом "материале".

Однако буквально все - от ученых до простой публики - сознают, что выращивание человека на "запчасти" порождает немало вопросов этического плана. Уже сейчас мировое сообщество располагает документами, согласно которым подобное не должно быть позволено. Конвенция о правах человека устанавливает принцип: "Интересы и благо человеческого существа должны иметь приоритет над односторонне рассматриваемыми интересами общества и развития науки".

Российское законодательство также устанавливает весьма жесткие ограничения на использование человеческого материала. Так, в предлагаемой медиками поправке к проекту "Закона о репродуктивных правах граждан и гарантиях их осуществления" содержится такай пункт: "Человеческий эмбрион не может быть целенаправленно получен или клонирован в научных, фармакологических или лечебных целях".

Вообще, дискуссии по этому поводу в мире идут достаточно бурные. Если американские эксперты из федеральной комиссии по биотехнологиям еще только начинают изучать правовые и этические аспекты этого открытия и представлять его на суд законодателей, то Ватикан остался верен своей прежней позиции, заявив о неприемлемости вмешательства человека в процессы репродукции и вообще - в генетический материал человека и животного. Исламские теологи выражают озабоченность тем, что клонирование людей нарушит и без того разрываемый противоречиями институт брака. Индуисты и буддисты мучительно размышляют над тем, как соотнести клонирование с проблемами кармы и дхармы.

Всемирная организация здравоохранения /ВОЗ/ также негативно относится к клонированию собственно человека. Генеральный директор ВОЗ Хироси Накадзима считает, что "использование клонирования для производства человека неприемлемо с этической точки зрения". Специалисты ВОЗ исходят из того, что применение метода клонирования к людям нарушило бы такие фундаментальные принципы медицинской науки и права, как уважение человеческого достоинства и безопасность человеческого генетического потенциала.

Вместе с тем ВОЗ не против исследований в области клонирования клеток, поскольку это могло бы принести пользу, в частности, для диагностики и изучения рака. Не возражают медики и против клонирования животных, которое может содействовать изучению болезней, поражающих людей. При этом ВОЗ считает, что хотя клонирование животных способно принести существенные выгоды медицине, нужно быть все время начеку, помня о возможных негативных последствиях - таких, например, как перенос заразных болезней от животных человеку.

Опасения, высказываемые по поводу клонирования в современных культурах Запада и Востока, вполне объяснимы. Как бы суммируя их, известный французский цитобиолог Пьер Шамбон предлагает ввести 50-летний мораторий на вторжение в хромосомы человека, если это не направлено на устранение генетических дефектов и заболеваний.

А вот еще вопрос не из маловажных: клонируется ли душа? Можно ли вообще считать искусственного человека личностью, наделенной ею?

Точка зрения церкви на этот счет абсолютно однозначна. "Даже если такой искусственный человек будет создан руками ученых, у него не будет души, а значит, это не человек, а зомби", - считает священник Храма Вознесения Христова отец Олег.

Но и в возможность создания клонированного человека представитель церкви не верит, так как убежден, что только Бог может сотворить человека. "Чтобы в клетке ДНК, помимо чисто биологических и механических соединений начался процесс роста живого человеческого существа, наделенного душой, в этом должен участвовать святой дух, а такого при искусственном зарождении жизни нет».

Хабаровские цитологи.

Вопросами цитологии и гистологии в Хабаровском крае занимались сотрудники Медицинского института (ныне Дальневосточный Государственный Медицинский Университет – ДВГМУ).

У истоков стоял Алов Иосиф Александрович, заведующий кафедрой гистологии в 1952 – 1961 гг. С 1962 по 1982 гг. заведовал лабораторией гистологии в Институте Морфологии Человека АМН СССР в г. Москва.

Ныне кафедру гистологии возглавляет Рыжавский Борис Яковлевич (с 1979 года), защитивший докторскую диссертацию в 1985 году.

Основными направлениями работы кафедры гистологии являются следующие:

Овариоэктология (удаление яичника) и её влияние на формирование нормальной морфологии коры больших полушарий у потомства (определяют особые количественные показатели, например, ростовые индексы и т.п.)

Влияние алкоголя и ноотропных препаратов на потомство

Исследование плаценты и её патологий в ходе эмбриогенеза и влияние этих отклонений на дальнейший онтогенез.

Используются главным образом классические гистологические методики для решения этих задач.

Также вопросами, связанными с клеткой и тканями, занимается Центральная научно-исследовательская лаборатория (ЦНИЛ) при ДВГМУ, возглавляемая профессором Сергеем Серафимовичем Тимошиным, под руководством которого защищены 3 докторских и 18 кандидатских диссертаций. По его инициативе и непосредственном участии в Хабаровском крае была создана первая радио иммунологическая лаборатория. Внедрена в практику здравоохранения методика определения гормонов и биологически-активных веществ радио иммунным и иммуноферментным методами, что позволяет осуществлять раннюю диагностику ряда заболеваний, в том числе онкологических.

Заключение.

Клетка – это самостоятельное живое существо. Она питается, двигается в поисках пищи, выбирает, куда идти и чем питаться, защищается и не пускает внутрь из окружающей среды неподходящие вещества и существа. Всеми этими способностями обладают одноклеточные организмы, например, амёбы. Клетки, входящие в состав организма, специализированы и не обладают некоторыми возможностями свободных клеток.

Клетка – самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению. Клетка является основным «кирпичиком жизни». Вне клетки жизни нет.

Живая клетка является основой всех форм жизни на Земле – животной и растительной. Исключения – а, как известно, исключения лишний раз подтверждают правила – составляют лишь вирусы, однако и они не могут функционировать вне клеток, которые представляют собой «дом», где «живут» эти своеобразные биологические образования.

Список используемой литературы:

1. Батуева А.С. «Биология. Человек», учебник для 9 класса.

2. Вернандский В.И. «Проблемы биогеохимии».

3. Воронцов Н.Н., Сухорукова Л.Н. «Эволюция органического мира».

4. Дубинин Н., Губарев В. «Нить жизни».

5. Затула Д.Г., Мамедова С.А. «Вирус – друг или враг?».

6. Карузина И.П. «Учебное пособие по основам генетики».

7. Либерман Е.А. «Живая клетка».

8. Полянский Ю.И. «Общая биология», учебник для 10-11 классов.

9. Прохоров А.М. «Советский энциклопедический словарь».

10. Скулачёв В. «Рассказы о биоэнергетике».

11. Хрипкова А.Г., Колесов Д.В., Миронов В.С., Шепило И.Н. «Физиология человека».

12. Цузмер А.М., Петришина О.Л. «Биология, человек и его здоровье».

13. Чухрай Е.С. «Молекула, жизнь, организм».

14. Штрбанова С. «Кто мы? Книга о жизни, клетках и учёных».

Вопрос 1. Каковы функции ядра клетки?
Ядро в клетке выполняет основные функции:
1. хранение и воспроизведение наследственной информации, которая хранится в ядре в виде молекул ДНК, входящих в состав хромосом;
2. регуляция обмена веществ в клетке осуществляется благодаря тому, что в ядре содержится наследственная информация о строении клеточных белков в составе ядерных хромосом.

Вопрос 2. Какие организмы относятся к прокариотам?
Прокариоты - это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, сине-зеленые водоросли (цианобактерии) и археи.

Вопрос 3. Как устроена ядерная оболочка?
Ядерная оболочка – отделяет содержимое ядра от цитоплазмы. Ядерная оболочка состоит из двух мембран: наружной и внутренней, которые соединяются вместе в области пор. При повышении скорости обменных процессов между ядром и цитоплазмой количество пор увеличивается, т.е. можно судить об активности ядра по количеству пор. Из ядра через ядерные поры выходят: иРНК, тРНК, субъединицы рибосом. В ядро из цитоплазмы поступают ядерные и рибосомальные белки, нуклеотиды, жиры, углеводы, АТФ, вода и ионы. Наружная ядерная оболочка соединяется с гранулярной эндоплазматической сетью. Внутренняя ядерная оболочка контактирует с кариоплазмой (ядерным соком), лишена рибосом и в некоторых местах соединяется с хроматином.

Вопрос 4. Что собой представляет хроматин?
Хроматин – это комплекс ДНК и белков, в основном гистоновых. Молекулы гистонов с ДНК образуют группы – нуклеосомы. Молекула ДНК, соединенная с нуклеосомой, образует ДНП (дезоксирибонуклеопротеид)– это наименьшая единица хромосомы. В состав хроматина входят РНК, ионы Ca2+ и Mg2+, а также фермент ДНК-полимераза, необходимый для репликации ДНК. Во время деления ядра хроматин спирализуется и становится видимым в световой микроскоп, т.е. начинают формироваться хромосомы (греч.chromo - цвет, soma - тело.).

Вопрос 5. Каковы функции ядрышек?
Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки ядра. Форма их, размеры и количество зависит от функционального состояния ядра. В клетке, выполняющей функцию синтеза большого количества белка, в ядре будет несколько ядрышек или они будут крупные и рыхлые, т.е. функция ядрышка – это синтез рРНК и сборка малой и большой субъединиц рибосом. В составе ядрышка находится: 80% белка, 10-15% РНК, небольшое количество ДНК и другие химические компоненты. В профазу деления клетки субъединицы рибосом через ядерные поры выходят в цитоплазму, ДНК ядрышка упаковывается на хромосомы, имеющие вторичную перетяжку или ядрышковый организатор, и соответственно, ядрышко как структура распадается и становится не видимой структурой, поэтому иногда говорят, что оно «растворяется».

Вопрос 6. Из чего состоит хромосома?
Хромосома представляет собой молекулу ДНК, соединенную с особым белком, придающим ей компактность.

Вопрос 7. Где располагаются хромосомы у бактерий?
В клетках бактерий нет оформленного ядра. Генетический аппарат бактерий представлен одной кольцевой молекулой ДНК (бактериальной хромосомой), которая присоединена в определенном месте к клеточной мембране и занимает в цитоплазме пространство, называемое нуклеоидом.

Вопрос 8. Что такое кариотип?
Кариотипом - это определенный набор хромосом, характерный для данного вида организмов. Кариотип характеризуется не только числом хромосом, но и их размерами, формой, расположением центромера.

Вопрос 9. Как называется набор хромосом в соматических клетках?
Как правило, соматические клетки содержат двойной набор хромосом, который называется диплоидным.

Вопрос 10. Какой набор хромосом в гаметах?
Гаметы содержат только по одной хромосоме каждого вида, т. е. имеют одинарный набор хромосом, который называется гаплоидным.

Вопрос 11. Какой гаплоидный набор хромосом в клетках рака, если диплоидный равен 118?
Если диплоидный набор хромосом в клетках равен 118, то гаплоидный будет в два раза меньше - 59 (118/2=59).

Вопрос 12. Может ли диплоидный набор содержать нечетное число хромосом?
Диплоидный набор хромосом может содержать нечетное количество хромосом. Существуют организмы, у которых в соматических клетках имеется только одна половая хромосома. Например, у некоторых насекомых (клопы, кузнечики) самки гомогаметны (XX), а самцы имеют только одну половую хромосому (ХО).