Стивен хокинг краткая история времени знание сила. Стивен Хокинг: Краткая история гения

Благодарности

Книга посвящается Джейн

Я решил попробовать написать популярную книгу о пространстве и времени после того, как прочитал в 1982 г. курс Лёбовских лекций в Гарварде. Тогда уже было немало книг, посвященных ранней Вселенной и черным дырам, как очень хороших, например книга Стивена Вайнберга «Первые три минуты», так и очень плохих, которые здесь незачем называть. Но мне казалось, что ни в одной из них фактически не затрагиваются те вопросы, которые побудили меня заняться изучением космологии и квантовой теории: откуда взялась Вселенная? как и почему она возникла? придет ли ей конец, а если придет, то как? Эти вопросы интересуют всех нас. Но современная наука очень насыщена математикой, и лишь немногочисленные специалисты достаточно владеют последней, чтобы разобраться в этом. Однако основные представления о рождении и дальнейшей судьбе Вселенной можно изложить и без помощи математики так, что они станут понятны даже людям, не получившим научного образования. Это я и пытался сделать в моей книге. Читателю судить о том, насколько я преуспел.
Мне сказали, что каждая включенная в книгу формула вдвое уменьшит число покупателей. Тогда я решил вообще обходиться без формул. Правда, в конце я все-таки написал одно уравнение – знаменитое уравнение Эйнштейна Е=mc^2. Надеюсь, оно не отпугнет половину моих потенциальных читателей.
Если не считать того, что я заболел боковым амиотрофическим склерозом, то почти во всем остальном мне сопутствовала удача. Помощь и поддержка, которые мне оказывали моя жена Джейн и дети Роберт, Люси и Тимоти, обеспечили мне возможность вести довольно-таки нормальный образ жизни и добиться успехов в работе. Мне повезло и в том, что я выбрал теоретическую физику, ибо она вся вмещается в голове. Поэтому моя физическая немощь не стала серьезным минусом. Мои научные коллеги, все без исключения, оказывали мне всегда максимальное содействие.
На первом, «классическом» этапе моей работы моими ближайшими помощниками и сотрудниками были Роджер Пенроуз, Роберт Герок, Брендон Картер и Джордж Эллис. Я благодарен им за помощь и за совместную работу. Этот этап завершился изданием книги «Крупномасштабная структура пространства-времени», которую мы с Эллисом написали в 1973 г. (Хокинг С., Эллис Дж. Крупномасштабная структура пpoстранства-времени. M.: Мир, 1976).
Я бы не советовал читающим следующие далее страницы обращаться к ней за дополнительной информацией: она перегружена математикой и тяжела для чтения. Надеюсь, что с тех пор я научился писать более доступно.
На втором, «квантовом» этапе моей работы, начавшемся в 1974 г., я в основном работал с Гари Гиббонсом, Доном Пэйджем и Джимом Хартлом. Я очень многим им обязан, как и своим аспирантам, которые оказывали мне огромную помощь и в «физическом», и в «теоретическом» смысле этого слова. Необходимость не отставать от аспирантов была чрезвычайно важным стимулом и, как мне кажется, не позволяла мне застрять в болоте.
В работе над книгой мне очень много помогал Брайен Уитт, один из моих студентов. В 1985 г., набросав первый, примерный план книги, я заболел воспалением легких. Пришлось лечь на операцию, и после трахеотомии я перестал говорить, а тем самым почти лишился возможности общаться. Я думал, что не смогу закончить книгу. Но Брайен нс только помог мне ее переработать, но и научил пользоваться компьютерной программой общения Living Center, которую мне подарил Уолт Уолтош, сотрудник фирмы Words Plus, Inc., Саннивейл (шт. Калифорния). С ее помощью я могу писать книги и статьи, а также разговаривать с людьми посредством синтезатора речи, подаренного мне другой саннивейлской фирмой Speech Plus. Дэвид Мэйсон установил на моем кресле-коляске этот синтезатор и небольшой персональный компьютер. Такая система все изменила: мне стало даже легче общаться, чем до того как я потерял голос.
Многим из тех, кто ознакомился с предварительными вариантами книги, я благодарен за советы, касающиеся того, как ее можно было бы улучшить. Так, Петер Газзарди, мой редактор издательства Bantam Books, слал мне письмо за письмом с замечаниями и вопросами по тем местам, которые, по его мнению, были плохо объяснены. Признаться, я был сильно раздражен, получив огромный список рекомендуемых исправлений, но Газзарди оказался совершенно прав. Я уверен, книга стала лучше благодаря тому, что Газзарди тыкал меня носом в ошибки.
Я выражаю глубокую благодарность моим помощникам Колину Уилльямсу, Дэвиду Томасу и Рэймонду Лэфлемму, моим секретарям Джуди Фелле, Энн Ральф, Шерил Биллингтон и Сью Мэйси и моим медсестрам. Я бы ничего не смог достичь, если бы все расходы на научные исследования и необходимую медицинскую помощь не взяли на себя Гонвилл-энд-Кайюс-колледж, Совет по научным и техническим исследованиям и фонды Леверхулма, Мак-Артура, Нуффилда и Ральфа Смита. Всем им я очень благодарен.

Предисловие

Мы живем, почти ничего не понимая в устройстве мира. Не задумываемся над тем, какой механизм порождает солнечный свет, который обеспечивает наше существование, не думаем о гравитации, которая удерживает нас на Земле, не давая ей сбросить нас в пространство. Нас не интересуют атомы, из которых мы состоим и от устойчивости которых мы сами существенным образом зависим. За исключением детей (которые еще слишком мало знают, чтобы не задавать такие серьезные вопросы), мало кто ломает голову над тем, почему природа такова, какова она есть, откуда появился космос и не существовал ли он всегда? не может ли время однажды повернуть вспять, так что следствие будет предшествовать причине? есть ли непреодолимый предел человеческого познания? Бывают даже такие дети (я их встречал), которым хочется знать, как выглядит черная дыра, какова самая маленькая частичка вещества? почему мы помним прошлое и не помним будущее? если раньше и правда был хаос, то как получилось, что теперь установился видимый порядок? и почему Вселенная вообще существует?
В нашем обществе принято, что родители и учителя в ответ на эти вопросы большей частью пожимают плечами или призывают на помощь смутно сохранившиеся в памяти ссылки на религиозные легенды. Некоторым не нравятся такие темы, потому что в них живо обнаруживается узость человеческого понимания.
Но развитие философии и естественных наук продвигалось вперед в основном благодаря подобным вопросам. Все больше взрослых людей проявляют к ним интерес, и ответы иногда бывают совершенно неожиданными для них. Отличаясь по масштабам как от атомов, так и от звезд, мы раздвигаем горизонты исследований, чтобы охватить как очень маленькие, так и очень большие объекты.
Весной 1974 г., примерно за два года до того, как космический аппарат «Викинг» достиг поверхности Марса, я был в Англии на конференции, организованной Лондонским королевским обществом и посвященной возможностям поиска внеземных цивилизаций. Во время перерыва на кофе я обратил внимание на гораздо более многолюдное собрание, проходившее в соседнем зале, и из любопытства вошел туда. Так я стал свидетелем давнего ритуала – приема новых членов в Королевское общество, которое является одним из старейших на планете объединений ученых. Впереди молодой человек, сидевший в инвалидном кресле, очень медленно выводил свое имя в книге, предыдущие страницы которой хранили подпись Исаака Ньютона. Когда он, наконец, кончил расписываться, зал разразился овацией. Стивен Хокинг уже тогда был легендой.

Сейчас Хокинг в Кембриджском университете занимает кафедру математики, которую когда-то занимал Ньютон, а позже П. А. М. Дирак – два знаменитых исследователя, изучавшие один – самое большое, а другой – самое маленькое. Хокинг – их достойный преемник. Эта первая популярная книга Хокипга содержит массу полезных вещей для широкой аудитории. Книга интересна не только широтой своего содержания, она позволяет увидеть, как работает мысль ее автора. Вы найдете в ней ясные откровения о границах физики, астрономии, космологии и мужества.
Но это также книга о Боге… а может быть, об отсутствии Бога. Слово «Бог» часто появляется на ее страницах. Хокинг отправляется на поиски ответа на знаменитый вопрос Эйнштейна о том, был ли у Бога какой-нибудь выбор, когда он создавал Вселенную. Хокинг пытается, как он сам пишет, разгадать замысел Бога. Тем более неожиданным оказывается вывод (по меньшей мере временный), к которому приводят эти поиски: Вселенная без края в пространстве, без начала и конца во времени, без каких-либо дел для Создателя.
Карл Саган, Корнеллский университет, Итака, шт. Нью-Йорк.

1. Наше представление о Вселенной

Как-то один известный ученый (говорят, это был Бертран Рассел) читал публичную лекцию об астрономии. Он рассказывал, как Земля обращается вокруг Солнца, а Солнце, в свою очередь, обращается вокруг центра огромного скопления звезд, которое называют нашей Галактикой. Когда лекция подошла к концу, из последних рядов зала поднялась маленькая пожилая леди и сказала: «Все, что вы нам говорили, – чепуха. На самом деле наш мир – это плоская тарелка, которая стоит па спине гигантской черепахи». Снисходительно улыбнувшись, ученый спросил: «А на чем держится черепаха?» – «Вы очень умны, молодой человек, – ответила пожилая леди. – Черепаха – на другой черепахе, та – тоже на черепахе, и так все ниже и ниже».
Такое представление о Вселенной как о бесконечной башне из черепах большинству из нас покажется смешным, но почему мы думаем, что сами знаем лучше? Что нам известно о Вселенной, и как мы это узнали? Откуда взялась Вселенная, и что с ней станется? Было ли у Вселенной начало, а если было, то что происходило до начала? Какова сущность времени? Кончится ли оно когда-нибудь? Достижения физики последних лет, которыми мы частично обязаны фантастической новой технике, позволяют наконец получить ответы хотя бы на отдельные из таких давно поставленных вопросов. Пройдет время, и эти ответы, может быть, станут столь же очевидными, как то, что Земля вращается вокруг Солнца, а может быть, столь же нелепыми, как башня из черепах. Только время (чем бы оно ни было) решит это.
Еще в 340 г. до н. э. греческий философ Аристотель в своей книге «О небе» привел два веских довода в пользу того, что Земля не плоская тарелка, а круглый шар. Во-первых, Аристотель догадался, что лунные затмения происходят тогда, когда Земля оказывается между Луной и Солнцем. Земля всегда отбрасывает на Луну круглую тень, а это может быть лишь в том случае, если Земля имеет форму шара. Будь Земля плоским диском, ее тень имела бы форму вытянутого эллипса, если только затмение не происходит всегда именно в тот момент, когда Солнце находится точно на оси диска. Во-вторых, по опыту своих путешествий греки знали, что в южных районах Полярная звезда на небе располагается ниже, чем в северных. (Поскольку Полярная звезда находится над Северным полюсом, она будет прямо над головой наблюдателя, стоящего на Северном полюсе, а человеку на экваторе покажется, что она на линии горизонта). Зная разницу в кажущемся положении Полярной звезды в Египте и Греции, Аристотель сумел даже вычислить, что длина экватора равна 400 000 стадиев. Что такое стадий, точно неизвестно, но он близок к 200 метрам, и, стало быть, оценка Аристотеля примерно в 2 раза больше значения, принятого сейчас. У греков был еще и третий довод в пользу шарообразной формы Земли: если Земля не круглая, то почему же мы сначала видим паруса корабля, поднимающиеся над горизонтом, и только потом сам корабль?
Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды обращаются вокруг нее по круговым орбитам. Он так полагал, ибо в соответствии со своими мистическими воззрениями Землю считал центром Вселенной, а круговое движение – самым совершенным. Птолемей во II веке развил идею Аристотеля в полную космологическую модель. Земля стоит в центре, окруженная восемью сферами, несущими на себе Луну, Солнце и пять известных тогда планет: Меркурий, Венеру, Марс, Юпитер и Сатурн (рис. 1.1). Сами планеты, считал Птолемей, движутся по меньшим кругам, скрепленным с соответствующими сферами. Это объясняло тот весьма сложный путь, который, как мы видим, совершают планеты. На самой последней сфере располагаются неподвижные звезды, которые, оставаясь в одном и том же положении друг относительно друга, движутся по небу все вместе как единое целое. Что лежит за последней сферой, не объяснялось, но во всяком случае это уже не было частью той Вселенной, которую наблюдает человечество.


Модель Птолемея позволяла неплохо предсказывать положение небесных тел на небосводе, но для точного предсказания ему пришлось принять, что траектория Луны в одних местах подходит к Земле в 2 раза ближе, чем в других! Это означает, что в одном положении Луна должна казаться в 2 раза большей, чем в другом! Птолемей знал об этом недостатке, но тем не менее его теория была признана, хотя и не везде. Христианская Церковь приняла Птолемееву модель Вселенной как не противоречащую Библии, ибо эта модель была очень хороша тем, что оставляла за пределами сферы неподвижных звезд много места для ада и рая. Однако в 1514 г. польский священник Николай Коперник предложил еще более простую модель. (Вначале, опасаясь, наверное, того, что Церковь объявит его еретиком, Коперник пропагандировал свою модель анонимно). Его идея состояла в том, что Солнце стоит неподвижно в центре, а Земля и другие планеты обращаются вокруг него по круговым орбитам. Прошло почти столетие, прежде чем идею Коперника восприняли серьезно. Два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника, несмотря на то что предсказанные Коперником орбиты не совсем совпадали с наблюдаемыми. Теории Аристотеля– Птолемея пришел конец в 1609 г., когда Галилей начал наблюдать ночное небо с помощью только что изобретенного телескопа. Направив телескоп на планету Юпитер, Галилей обнаружил несколько маленьких спутников, или лун, которые обращаются вокруг Юпитера. Это означало, что не все небесные тела должны обязательно обращаться непосредственно вокруг Земли, как считали Аристотель и Птолемей. (Разумеется, можно было по-прежнему считать, что Земля покоится в центре Вселенной, а луны Юпитера движутся по очень сложному пути вокруг Земли, так что лишь кажется, будто они обращаются вокруг Юпитера. Однако теория Коперника была значительно проще.) В то же время Иоганн Кеплер модифицировал теорию Коперника, исходя из предположения, что планеты движутся не по окружностям, а по эллипсам (эллипс – это вытянутая окружность). Наконец-то теперь предсказания совпали с результатами наблюдений.
Что касается Кеплера, то его эллиптические орбиты были искусственной (ad hoc) гипотезой, и притом «неизящной», так как эллипс гораздо менее совершенная фигура, чем круг. Почти случайно обнаружив, что эллиптические орбиты хорошо согласуются с наблюдениями, Кеплер так и не сумел примирить этот факт со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил. Объяснение пришло лишь гораздо позднее, в 1687 г., когда Исаак Ньютон опубликовал свою книгу «Математические начала натуральной философии». Ньютон в ней не только выдвинул теорию движения материальных тел во времени и пространстве, но и разработал сложные математические методы, необходимые для анализа движения небесных тел. Кроме того, Ньютон постулировал закон всемирного тяготения, согласно которому всякое тело во Вселенной притягивается к любому другому телу с тем большей силой, чем больше массы этих тел и чем меньше расстояние между ними. Это та самая сила, которая заставляет тела падать на землю. (Рассказ о том, что Ньютона вдохновило яблоко, упавшее ему на голову, почти наверняка недостоверен. Сам Ньютон сказал об этом лишь то, что мысль о тяготении пришла, когда он сидел в «созерцательном настроении», и «поводом было падение яблока»). Далее Ньютон показал, что, согласно его закону, Луна под действием гравитационных сил движется по эллиптической орбите вокруг Земли, а Земля и планеты вращаются по эллиптическим орбитам вокруг Солнца.
Модель Коперника помогла избавиться от Птолемеевых небесных сфер, а заодно и от представления о том, что Вселенная имеет какую-то естественную границу. Поскольку «неподвижные звезды» не изменяют своего положения на небе, если не считать их кругового движения, связанного с вращением Земли вокруг своей оси, естественно было предположить, что неподвижные звезды – это объекты, подобные нашему Солнцу, только гораздо более удаленные.
Ньютон понимал, что по его теории тяготения звезды должны притягиваться друг к другу и поэтому, казалось бы, не могут оставаться совсем неподвижными. Не должны ли они упасть друг на друга, сблизившись в какой-то точке? В 1691 г. в письме Ричарду Бентли, еще одному выдающемуся мыслителю того времени, Ньютон говорил, что так действительно должно было бы произойти, если бы у нас было лишь конечное число звезд в конечной области пространства. Но, рассуждал Ньютон, если число звезд бесконечно и они более или менее равномерно распределены по бесконечному пространству, то этого никогда не произойдет, так как нет центральной точки, куда им нужно было бы падать.
Эти рассуждения – пример того, как легко попасть впросак, ведя разговоры о бесконечности. В бесконечной Вселенной любую точку можно считать центром, так как по обе стороны от нее число звезд бесконечно. Лишь гораздо позже поняли, что более правильный подход – взять конечную систему, в которой все звезды падают друг на друга, стремясь к центру, и посмотреть, какие будут изменения, если добавлять еще и еще звезд, распределенных приблизительно равномерно вне рассматриваемой области. По закону Ньютона дополнительные звезды в среднем никак не повлияют на первоначальные, т. е. звезды будут с той же скоростью падать в центр выделенной области. Сколько бы звезд мы ни добавили, они всегда будут стремиться к центру. В наше время известно, что бесконечная статическая модель Вселенной невозможна, если гравитационные силы всегда остаются силами взаимного притяжения.
Интересно, каким было общее состояние научной мысли до начала XX в.: никому и в голову не пришло, что Вселенная может расширяться или сжиматься. Все считали, что Вселенная либо существовала всегда в неизменном состоянии, либо была сотворена в какой-то момент времени в прошлом примерно такой, какова она сейчас. Отчасти это, может быть, объясняется склонностью людей верить в вечные истины, а также особой притягательностью той мысли, что, пусть сами они состарятся и умрут, Вселенная останется вечной и неизменной.
Даже тем ученым, которые поняли, что ньютоновская теория тяготения делает невозможной статическую Вселенную, не приходила в голову гипотеза расширяющейся Вселенной. Они попытались модифицировать теорию, сделав гравитационную силу отталкивающей на очень больших расстояниях. Это практически не меняло предсказываемого движения планет, но зато позволяло бесконечному распределению звезд оставаться в равновесии, так как притяжение близких звезд компенсировалось отталкиванием от далеких. Но сейчас мы считаем, что такое равновесие оказалось бы неустойчивым. В самом деле, если в какой-то области звезды чуть-чуть сблизятся, то силы притяжения между ними возрастут и станут больше сил отталкивания, так что звезды будут и дальше сближаться. Если же расстояние между звездами чуть-чуть увеличится, то перевесят силы отталкивания и расстояние будет нарастать.
Еще одно возражение против модели бесконечной статической Вселенной обычно приписывается немецкому философу Генриху Олберсу, который в 1823 г. опубликовал работу, посвященную этой модели. На самом деле многие современники Ньютона занимались той же задачей, и статья Олберса была даже не первой среди работ, в которых высказывались серьезные возражения. Ее лишь первой стали широко цитировать. Возражение таково: в бесконечной статической Вселенной любой луч зрения должен упираться в какую-нибудь звезду. Но тогда небо даже ночью должно ярко светиться, как Солнце. Контраргумент Олберса состоял в том, что свет, идущий к нам от далеких звезд, должен ослабляться из-за поглощения в находящемся на его пути веществе.
Но в таком случае само это вещество должно нагреться и ярко светиться, как звезды. Единственная возможность избежать вывода о ярко, как Солнце, светящемся ночном небе – предположить, что звезды сияли не всегда, а загорелись в какой-то определенный момент времени в прошлом. Тогда поглощающее вещество, возможно, еще не успело разогреться или же свет далеких звезд еще не дошел до нас. Но возникает вопрос: почему зажглись звезды?
Конечно, проблема возникновения Вселенной занимала умы людей уже очень давно. Согласно ряду ранних космогонии и иудейско-христианско-мусульманским мифам, наша Вселенная возникла в какой-то определенный и не очень отдаленный момент времени в прошлом. Одним из оснований таких верований была потребность найти «первопричину» существования Вселенной. Любое событие во Вселенной объясняют, указывая его причину, т. е. другое событие, произошедшее раньше; подобное объяснение существования самой Вселенной возможно лишь в том случае, если у нее было начало. Другое основание выдвинул Блаженный Августин (православная Церковь считает Августина блаженным, а Католическая – святым. – прим. ред.). в книге «Град Божий». Он указал на то, что цивилизация прогрессирует, а мы помним, кто совершил то или иное деяние и кто что изобрел. Поэтому человечество, а значит, вероятно, и Вселенная, вряд ли очень долго существуют. Блаженный Августин считал приемлемой дату сотворения Вселенной, соответствующую книге «Бытия»: приблизительно 5000 год до нашей эры. (Интересно, что эта дата не так уж далека от конца последнего ледникового периода – 10 000 лет до н. э., который археологи считают началом цивилизации).
Аристотелю же и большинству других греческих философов не нравилась идея сотворения Вселенной, так как она связывалась с божественным вмешательством. Поэтому они считали, что люди и окружающий их мир существовали и будут существовать вечно. Довод относительно прогресса цивилизации ученые древности рассматривали и решили, что в мире периодически происходили потопы и другие катаклизмы, которые все время возвращали человечество к исходной точке цивилизации.
Вопросы о том, возникла ли Вселенная в какой-то начальный момент времени и ограничена ли она в пространстве, позднее весьма пристально рассматривал философ Иммануил Кант в своем монументальном (и очень темном) труде «Критика чистого разума», который был издан в 1781 г. Он назвал эти вопросы антиномиями (т. е. противоречиями) чистого разума, так как видел, что в равной мере нельзя ни доказать, ни опровергнуть ни тезис о необходимости начала Вселенной, ни антитезис о ее вечном существовании. Тезис Кант аргументировал тем, что если бы у Вселенной не было начала, то всякому событию предшествовал бы бесконечный период времени, а это Кант считал абсурдом. В поддержку антитезиса Кант говорил, что если бы Вселенная имела начало, то ему предшествовал бы бесконечный период времени, а тогда спрашивается, почему Вселенная вдруг возникла в тот, а не другой момент времени? На самом деле аргументы Канта фактически одинаковы и для тезиса, и для антитезиса. Он исходит из молчаливого предположения, что время бесконечно в прошлом независимо от того, существовала или не существовала вечно Вселенная. Как мы увидим ниже, до возникновения Вселенной понятие времени лишено смысла. На это впервые указал Блаженный Августин. Когда его спрашивали, чем занимался Бог до того, как создал Вселенную, Августин никогда не отвечал в том духе, что, мол, Бог готовил ад для тех, кто задает подобные вопросы. Нет, он говорил, что время – неотъемлемое свойство созданной Богом Вселенной и поэтому до возникновения Вселенной времени не было.
Когда большинство людей верило в статическую и неизменную Вселенную, вопрос о том, имела она начало или нет, относился, в сущности, к области метафизики и теологии. Все наблюдаемые явления можно было объяснить как с помощью теории, в которой Вселенная существует вечно, так и с помощью теории, согласно которой Вселенную сотворили в какой-то определенный момент времени таким образом, чтобы все выглядело, как если бы она существовала вечно. Но в 1929 г. Эдвин Хаббл сделал эпохальное открытие: оказалось, что в какой бы части неба ни вести наблюдения, все далекие галактики быстро удаляются от нас. Иными словами, Вселенная расширяется. Это означает, что в более ранние времена все объекты были ближе друг к другу, чем сейчас. Значит, было, по-видимому, время, около десяти или двадцати тысяч миллионов лет назад, когда они все находились в одном месте, так что плотность Вселенной была бесконечно большой. Сделанное Хабблом открытие перевело вопрос о том, как возникла Вселенная, в область компетенции науки.
Наблюдения Хаббла говорили о том, что было время – так называемый большой взрыв, когда Вселенная была бесконечно малой и бесконечно плотной. При таких условиях все законы науки теряют смысл и не позволяют предсказывать будущее. Если в еще более ранние времена и происходили какие-либо события, они все равно никак не смогли бы повлиять на то, что происходит сейчас. Из-за отсутствия же наблюдаемых следствий ими можно просто пренебречь. Большой взрыв можно считать началом отсчета времени в том смысле, что более ранние времена были бы просто не определены. Подчеркнем, что такое начало отсчета времени очень сильно отличается от всего того, что предлагалось до Хаббла. Начало времени в неизменяющейся Вселенной есть нечто, что должно определяться чем-то, существующим вне Вселенной; для начала Вселенной нет физической необходимости. Сотворение Богом Вселенной можно в своем представлении относить к любому моменту времени в прошлом. Если же Вселенная расширяется, то могут существовать физические причины для того, чтобы она имела начало. Можно по-прежнему представлять себе, что именно Бог создал Вселенную – в момент большого взрыва или даже позднее (но так, как если бы произошел большой взрыв). Однако было бы абсурдно утверждать, что Вселенная возникла раньше большого взрыва. Представление о расширяющейся Вселенной не исключает создателя, но налагает ограничения на возможную дату его трудов!

Стивен Хокинг, Леонард Млодинов

Кратчайшая история времени

Предисловие

Всего четыре буквы отличают название этой книги от заголовка той, что была впервые опубликована в 1988 году. «Краткая история времени» 237 недель оставалась в списке бестселлеров лондонской «Санди таймс», каждый 750-й житель нашей планеты, взрослый или ребенок, приобрел ее. Замечательный успех для книги, посвященной самым сложным проблемам современной физики. Впрочем, это не только самые сложные, но и самые волнующие проблемы, потому что они адресуют нас к фундаментальным вопросам: что нам действительно известно о Вселенной, как мы обрели это знание, откуда произошла Вселенная и куда движется? Данные вопросы составляли главный предмет «Краткой истории времени» и стали фокусом настоящей книги. Спустя год после публикации «Краткой истории времени» начали поступать отклики от читателей всех возрастов и профессий со всего мира. Многие из них высказывали пожелание, чтобы увидела свет новая версия книги, которая, сохранив суть «Краткой истории времени», объясняла бы наиболее важные понятия более просто и занимательно. Хотя кое-кто, по-видимому, ожидал, что это будет «Пространная история времени», отзывы читателей недвусмысленно показывали: очень немногие из них жаждут познакомиться с объемистым трактатом, излагающим предмет на уровне университетского курса космологии. Поэтому, работая над «Кратчайшей историей времени», мы сохранили и даже расширили основополагающую суть первой книги, но постарались в то же время оставить неизменными ее объем и доступность изложения. Это и в самом деле кратчайшая история, поскольку некоторые сугубо технические аспекты нами опущены, однако, как нам представляется, данный пробел с лихвой восполнен более глубокой трактовкой материала, который поистине составляет сердцевину книги.

Мы также воспользовались возможностью обновить сведения и включить в книгу новейшие теоретические и экспериментальные данные. «Кратчайшая история времени» описывает прогресс, который был достигнут на пути создания полной объединенной теории за последнее время. В частности, она касается новейших положений теории струн, корпускулярно-волнового дуализма и выявляет связь между различными физическими теориями, свидетельствующую, что объединенная теория существует. Что же касается практических исследований, книга содержит важные результаты последних наблюдений, полученных, в частности, с помощью спутника СОВЕ (Cosmic Background Explorer - «Исследователь фонового космического излучения») и космического телескопа Хаббла.

Глава первая

РАЗМЫШЛЯЯ О ВСЕЛЕННОЙ

Мы живем в странной и замечательной Вселенной. Неординарное воображение требуется, чтобы оценить возраст ее, размеры, неистовство и даже красоту. Место, занимаемое людьми в этом безграничном космосе, может показаться ничтожным. И все же мы пытаемся понять, как устроен весь этот мир и как мы, люди, смотримся в нем.

Несколько десятилетий назад известный ученый (некоторые говорят, что это был Бертран Рассел) выступал с публичной лекцией по астрономии. Он рассказал, что Земля обращается вокруг Солнца, а оно, в свою очередь, - вокруг центра обширной звездной системы, называемой нашей Галактикой. В конце лекции маленькая пожилая леди, сидевшая в задних рядах, встала и заявила:

Вы рассказывали нам здесь полную ерунду. В действительности мир - это плоская плита, покоящаяся на спине гигантской черепахи.

Улыбнувшись с чувством превосходства, ученый спросил:

А на чем стоит черепаха?

Вы очень умный молодой человек, очень, - ответила старая леди. - Она стоит на другой черепахе, и так дальше, до бесконечности!

Сегодня большинство людей нашло бы довольно смешной такую картину Вселенной, эту нескончаемую башню из черепах. Но что заставляет нас думать, будто мы знаем больше?

Забудьте на минуту то, что вы знаете - или думаете, что знаете, - о космосе. Вглядитесь в ночное небо. Чем представляются вам все эти светящиеся точки? Может, это крошечные огоньки? Нам трудно догадаться, чем они в действительности являются, потому что эта действительность слишком далека от нашего повседневного опыта.

Если вы часто наблюдаете за ночным небом, то, вероятно, замечали в сумерках над самым горизонтом ускользающую искорку света. Это Меркурий, планета, разительно отличающаяся от нашей собственной. Сутки на Меркурии длятся две трети его года. На солнечной стороне температура зашкаливает за 400°С, а глубокой ночью падает почти до - 200°С.

Но как бы ни отличался Меркурий от нашей планеты, еще труднее вообразить обыкновенную звезду - колоссальное пекло, ежесекундно сжигающее миллионы тонн вещества и разогретое в центре до десятков миллионов градусов.

Другая вещь, которая с трудом укладывается в голове, это расстояния до планет и звезд. Древние китайцы строили каменные башни, чтобы увидеть их поближе. Вполне естественно считать, что звезды и планеты находятся намного ближе, чем в действительности, - ведь в повседневной жизни мы никогда не соприкасаемся с громадными космическими расстояниями.

Расстояния эти настолько велики, что нет смысла выражать их в привычных единицах - метрах или километрах. Вместо них используются световые годы (световой год - путь, который свет проходит за год). За одну секунду луч света преодолевает 300 000 километров, так что световой год - это очень большое расстояние. Ближайшая к нам (после Солнца) звезда - Проксима Центавра - удалена примерно на четыре световых года. Это так далеко, что самый быстрый из проектируемых ныне космических кораблей летел бы к ней около десяти тысяч лет. Еще в древности люди пытались постичь природу Вселенной, но они не обладали возможностями, которые открывает современная наука, в частности математика. Сегодня мы располагаем мощными инструментами: мыслительными, такими как математика и научный метод познания, и технологическими, вроде компьютеров и телескопов. С их помощью ученые собрали воедино огромное количество сведений о космосе. Но что мы действительно знаем о Вселенной и как мы это узнали? Откуда она появилась? В каком направлении развивается? Имела ли начало, а если имела, что было до него? Какова природа времени? Придет ли ему конец? Можно ли вернуться назад во времени? Недавние крупные физические открытия, сделанные отчасти благодаря новым технологиям, предлагают ответы на некоторые из этих давних вопросов. Возможно, когда-нибудь эти ответы станут столь же очевидными, как обращение Земли вокруг Солнца, - или, быть может, столь же курьезными, как башня из черепах. Только время (чем бы оно ни было) это покажет.

Британский ученый Стивен Хокинг, известный как самая яркая звезда в современной астрофизике, умер в возрасте 76 лет.

Хокинг относится к числу ученых, которые оказали наибольшее влияние на современное понимание Вселенной своим изучением черных дыр и научно-популярными произведениями, такими как «Краткая история времени». Родившийся в 1942 г., британец считался одним из величайших умов в мире и, по мнению некоторых, был самым известным ученым в современном мире. Для других ученых он был символом неограниченных возможностей человеческого разума.

«Его уход оставил интеллектуальный вакуум. Но он не пустой. Думайте об этом как своего рода энергии, проникающей в ткань пространства-времени, которое не поддается измерению» , написал в твиттере всемирно известный астрофизик и научный автор Нил Деграсс Тайсон.

В возрасте 21 года профессору Хокингу диагностировали редкую форму болезни моторных нейронов, и врачи отводили ему всего несколько лет жизни. Его заболевание, однако, развивалось необычно медленно, благодаря чему он работал более полувека, будучи прикованным к инвалидной коляске. Фактически Хокинг был медицинским чудом – только 5 процентов людей, которые имеют такую форму болезни, живут более десяти лет после постановки диагноза, а он жил с ней более пяти десятилетий. Он сам говорил, что его физическое состояние не было существенным препятствием для его научной работы в области теоретической физики и даже в некотором смысле помогало ему.

Хокинг потерял голос после тяжелой пневмонии и осложнений. Какое-то время единственным для него способом общения было произношение слов буквально по буквам, поднимая брови, когда кто-то указывал на правильную букву на специальной карточке. Позже компьютерный эксперт из Калифорнии по имени Уолт Уолтоу отправил ему свою компьютерную программу под названием «Эквалайзер», с помощью которой профессор мог выбирать слова из меню на экране, управляемым кнопкой в его руке. Это, в сочетании с синтезатором речи, стало «электронным» голосом – торговой маркой Хокинга.

Болезнь не мешала его личной жизни. В 1965 г. он женился на своей юношеской любви Джейн Уайлд, хотя на тот момент ему уже был поставлен страшный диагноз. Их брак длился 26 лет и закончился недопониманием, но Хокинг стал отцом троих детей.

В 1995 г. он заключил свой второй брак с Элейн Мейсон, медсестрой, которая затем заботилась о нем. Они оставались вместе до 2006 г.
Хокинг со своей второй женой Элейн Мейсон

Британский ученый был известен своей работой над черными дырами и относительностью, и относится к числу ученых, которые в наибольшей степени повлияли на современное понимание Вселенной.

В возрасте 17 лет Хокинг получил место в Оксфорде. В 1971 г. вместе с сэром Роджером Пенроузом они дали математическое обоснование, подкрепляющее теорию Большого взрыва: они показали, что если теория относительности верна, то в пространстве-времени должна существовать точка червоточины. Они также создали теорию Хокинга-Пенроуза о раннем развитии Вселенной после Большого взрыва и ее экспоненциальном расширении после состояния с гораздо более высокой температурой и плотностью.
Хокинг считал, что будущее человеческого вида находится в космосе.

Хокинг также предполагал, что сразу после Большого взрыва образовались первичные черные дыры, которые почти мгновенно испарились. Позже он обнаружил, что черные дыры излучают энергию и испаряются – явление, которое позже стало известно как «Излучение Хокинга».

На протяжении многих лет он работал над другими теориями о черных дырах, в том числе о том, что через них возможен переход в другие Вселенные.

В начале 80-х он выдвинул предположение, что, хотя Вселенная не имеет границ, она имеет конечный размер в пространстве-времени. Математическое доказательство этой теории было дано чуть позже. По его словам, Вселенная безгранична, но конечна.

Работа Стивена Хокинга в области астрофизики ставит его в ряды самых престижных ученых в современном мире. Он был удостоен 12-и почетных титулов, ордена Британской империи и Президентской медали Свободы США. В течение 30 лет он был Лукасовским профессором математики Кембриджского университета – должность, которую занимал Исаак Ньютон и другие известные ученые. Хотя в 2009 г. Хокинг ушел в отставку, он продолжал работать в университете. Барак Обама вручает Хокингу американскую Президентскую медаль Свободы

Его труды по популяризации науки принесли ему широкую известность и славу. Книга «Краткая история времени», изданная в 1988 году, была бестселлером в рейтинге «Санди таймс» на протяжении 237 недель – почти пять лет – с более 10 миллионами копий и переводом на десятки языков. Книга описывает на понятном языке структуру, происхождение и развитие Вселенной, исследуя такие явления, как Большой взрыв и основы квантовой механики.

В интервью для New Scientist незадолго до своего 70-летия физик сказал, что одним из величайших достижений физики в его карьере было открытие спутником COBE малых вариаций температуры реликтового излучения (космического микроволнового фона), оставшихся после Большого взрыва.

Хокинг верил, что будущее человеческого вида находится в космосе. Он неоднократно заявлял, что люди не выживут, если будут оставаться только на Земле из-за нашего инвазивного характера.

Его уникальная жизнь неоднократно привлекала внимание документалистов и кинорежиссеров, а в 2014 г. о нем был снят биографический фильм «Вселенная Стивена Хокинга» с Эдди Редмэйном в роли Хокинга. Кроме того, ученый появился в нескольких телевизионных шоу, в том числе The Simpsons, Red Dwarf и The Big Bang Theory.
На премьере биографического фильма «Вселенная Стивена Хокинга»

Кроме научной работы Хокинг также был известен своими дальновидными высказываниями. Вот некоторые из них:

Моя цель проста. Это полное понимание вселенной, почему она такая, какая есть, и почему она существует вообще.

На мой взгляд, мозг – это компьютер, который перестает работать, когда его компоненты выходят из строя. Нет рая или загробной жизни для сломанных компьютеров; это сказочная история для людей, боящихся темноты.

Я считаю, что самое простое объяснение в том, что Бога нет. Никто не создал Вселенную, и никто не руководит нашей судьбой. Это приводит меня к глубокому осознанию того, что, вероятно, нет ни рая, ни загробной жизни. У нас есть одна жизнь, чтобы оценить великий дизайн Вселенной, и за это я чрезвычайно благодарен.

Не забывайте смотреть на звезды, а не под ноги.

Жизнь была бы трагичной, если бы не была смешной.

Мои ожидания были сведены к нулю, когда мне был 21 год. Все с тех пор стало бонусом.

Люди, которые хвастаются своим уровнем интеллекта, – неудачники.

Мы лишь прогрессивный вид обезьян на маленькой планете очень маленькой звезды. Но мы можем понять вселенную. Это превращает нас в нечто особенное.

Метки: ,

Осилил книжку Стивена Хокинга "Кратчайшая история времени". Сам автор многим примелькался - это тот самый гениальный физик, прикованный к инвалидному креслу.

Книжка интересная, написана хорошо и доступно. Что особенно поразило воображение в моём кратком изложении:
1) Если вы проложите на географической карте линейкой прямую линию между двумя точками, то эта прямая не будет являться кратчайшим расстоянием между двумя точками. Кратчайшей будет кривая в виде арки, радиус которой равен радиусу Земли.
2) В присутствии материи четырехмерное пространство-время искажается, вызывая искривление траекторий тел в трехмерном пространстве. Хотя это трудно изобразить, масса Солнца искривляет пространство-время таким образом, что Земля, следуя по кратчайшему пути в четырехмерном пространстве-времени, представляется нам движущейся по почти круговой орбите в трехмерном пространстве.
3) Общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Если один из близнецов живет на вершине горы, а другой - у моря, первый будет стареть быстрее второго.
4) Если бы мы знали состояние системы в данный момент и знали бы законы развития системы, мы бы могли предсказывать положение системы в любой момент времени. Так вот, принцип непределённости Гейзенберга обобщённо гласит, что как бы мы не пыжились, мы ни хрена не можем определить состояние Вселенной в настоящий момент. И это не связано с уровнем развития науки. Это ближе к философскому принципу - мы в принципе не можем познать положение любой системы в любой конкретный момент. Мы знаем в любой момент либо скорость частицы, либо её расположение. Ровно одно из двух, но никак не оба значения сразу.
Следовательно, смиритесь - любое предсказание в нашей Вселенной принципе невозможно. С чисто философской точки зрения. Любое.
5) Если мы пошлём электрон в стену, и на пути у него поставим две щели для прохода, то он, сцуко, пройдёт через обе щели сразу. Пауза для осмысления. В общем, электрон может находиться во всех возможных положениях одновременно. Ибо, тварь такая мелкая, он не только частица, а когда ему захочется - ещё и волна. Привязка электрона к конкретным орбитам атома связана ровно с тем, что именно на этих орбитах электро не интерферирует сам с собой, т.е. не гасит сам себя. Ещё раз - электрон, летя от одной точки до другой, летит по всем возможным траекториям сразу. Он по сути способен находиться во всех точках пространства одновременно, и только там его нет, где он сам с собой интерферирует.
6) Чисто теоретически, путешествие во времени в прошлое возможно. Решение уравнений теории относительности показывает, что да, это так. Одно но - для пуешествия назад во времени обязательно нужно двигаться быстрее скорости света. И наоборот - движение быстрее скорости света невозможно без одновременного движения в прошлое.
Те, кто в курсе, что нельзя двигаться быстрее скорости света, облегчённо вздыхают. Но есть ещё одна проблема - чисто, опять-таки, гипотетически, путешествие быстрее сокрости света тоже является возможным. Возможным в случае существования кротовых дыр в пространстве-времени. А чёртовы уравнения покаывают, что да, такие дыры могут существовать. А раз могут, то где-то существуют.
7) Новейшая теория, которая просто обалденно описывает последние открытия в науке и предвосхищает их - это теория струн. Ничего особенного, просото всё, что предсказывается этой теорией, подтверждается потом экспериментами один в один. И это конкретно напрягает. Напрягает, ибо теория струн берёт в качестве допущения одно маленькое утверждение - мы живём не в четырёхмерном мире, а в 26-мерном. Причём, 4 измерения развёрнуты, и мы по ним можем передвигаться, а ещё 22 - свёрнуты в точку. Физики бы с радостью отказались от этой теории, но ничего более внятного в плане математики пока не придумали, а эксперименты продолжают идеально совпадать с предсказаниями, выдвинутыми на основании этой теории.

В общем, сдаётся мне, что Вселенная наша, как тот электрон, способна находиться во всех состояниях одновременно, за исключением тех состояний, в которых она сама себя интерферирует. И я сейчас одновременно нахожусь в Краснодаре и в Москве и на Альфе-центавре. И одновременно с этим нет меня вообще. Но мысль ента явно достойна разжёвывания в отдельной заумной философской книжке.

Обывателю наша планета Земля зачастую кажется спокойной и созерцательной. Иногда даже создается впечатление стабильности, неподвижности. Гораздо глубже смотрит на явления и объекты британский ученый Стивен Хокинг. «История времени» - два его бестселлера дружелюбно и просто (без формул) знакомят читателей с фундаментальными положениями астрофизики и

В начале книги прочитав о Земле, как о башне, установленной на черепахах (иронично), мы в ее конце видим уже другую картину: гигантский шар, вращающийся вокруг оси с головокружительной скоростью 1,5 тыс. км/час и несущийся по орбите вокруг Солнца со скоростью 100 000 км/час. И все это проистекает в нелинейном, изменчивом пространстве и времени!

Книга 1. «Краткая история времени»

В 1988 году выходит в свет «Краткая история времени». ее автор, знакомит самых разных читателей со взглядами современной астрофизики на Вселенную. Ему удалось пробудить воображение людей, заинтересовать их.

Реально ли время? Какие глобальные процессы движут Вселенную? Связаны ли прошлое и будущее? Постепенно, в трех смысловых частях книги он пишет: вначале - об астрофизических воззрениях до теории Эйнштейна, затем - обобщения в русле общей теории Эйнштейна, и наконец - следует микротеория, а именно -

Постепенно наращивает свой уровень абстракции книга «Кратчайшая история времени». Стивен Хокинг, впрочем, выдерживает популярный стиль, нужный для понимания читателем-непрофессионалом. Им дается внятное разъяснение необычным для нашего быта вещам: искривлению пространства, искривлению лучей света, расширяющейся Вселенной. Мысли ученого оригинальны, и в то же время - понятны. Он последовательно подводит нас к выводу, что Вселенная существует и эволюционирует согласно принципу стрелы времени (направлению развития, обеспечивающему постоянное возрастание энтропии).

Книга 2. «Кратчайшая история времени»

В 2005 году ученым написана новая работа - «Кратчайшая история времени». Стивен Хокинг в этой емкой и захватывающей книге также рассказывает о «механизме Вселенной».

Было ли ее написание банальным «сиквелом»? Нет! Ведь буквально накануне, в 2004 году, ее автор совершил переворот в астрофизике, изменив принципы базовой теории «черных дыр» (потухших звезд, сжатых до предельной степени - сингулярности). Поэтому изменилась и представляемая ученым модель мира. По-новому изложена, сравнительно с предыдущей книгой глава - о Большом Взрыве, черных дырах, а также Саму структуру черной дыры по-другому показывает «Кратчайшая история времени». (Стивен Хокинг математическими уравнениями доказал, что горизонт событий черной дыры - гораздо шире и он обладает энтропией, проявляющейся в радиации.) Изложение материала не только включило идеи предыдущей книги, но и существенно обогатило теорию взаимосвязи пространства и времени. Здесь можно встретить обобщение научных опытов с использованием спутника COBE и космического телескопа Хаббла. Вполне понятно раскрыта «теория струн», ценность которой полагает в предельно широком обобщении: характеризовать сразу все элементарные частицы. На понятном уровне показаны новейшие выводы математического моделирования (принцип корпускулярно-волнового дуализма).

Выводы

Кто же он такой - Стивен Хокинг? Профессор астрофизики, отец троих детей. Его теория стала прорывом в квантовой физике. Маститые ученые мужи считают его «номером один» в этой области. А еще Стивен Хокинг практически обездвижен уже более 20 лет. Причем амиотрофический склероз постоянно прогрессирует. Кроме того, вследствие перенесенного осложнения после воспаления легких у него удалена часть трахеи, что напрочь лишает ученого возможности говорить. Он ездит в Кембридж на инвалидном кресле с аккумуляторами. Его мозг мощно и системно работает. С помощью чувствительных датчиков пользуясь компьютером, профессор набирает фразы, которые потом озвучиваются встроенным в кресло Вся его жизнь, это - мысли, неосязаемые окружающими, а расшифрованные компьютером, и их яркое выражение - книга «Кратчайшая история времени». Стивен Хокинг является одним из наиболее уважаемых в Британии людей. Точнее, он - третий, после чемпиона мира по регби Уилкинсона и футболиста Бэкхэма. Мужество и интеллект этого человека действительно вызывают восхищение.