Среднее статистическое значение формула. Виды средних

В статистике используют различные виды средних величин, которые делятся на два больших класса:

Степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);

Структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины – средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый– 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для опреде-

ления средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где xi – варианты осредняемого признака, fi – частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как?fi, а время, затраченное на весь путь, – как? fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi – отдельные варианты; n – число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Виды степенных средних


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где – средняя величина; – индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние – мода (Мо) и медиана (Ме).

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; fm_ 1 – частота предшествующего интервала; fm+ 1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; f – число членов ряда;

M-1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили – на 10 равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×...×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;
h Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo – нижнее значение модального интервала;
m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m Mo -1 – то же для интервала, предшествующего модальному;
m Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

H=X max - X min .

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Предыдущая

Лекция 5. Средние величины

Понятие средней величины в статистике

Средняя арифметическая и ее свойства

Другие виды степенных средних величин

Мода и медиана

Квартили и децили

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и крайне важно е, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Средняя величина (в статистике) – обобщающий показатель, характеризующий типичный размер или уровень общественных явлений в расчете на единицу совокупности при прочих равных условиях.

С помощью метода средних решаются следующие основные задачи :

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально - экономических явлений.

4. Анализ размещения социально-экономических явлений в пространстве.

Статистические средние рассчитываются на базе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). При этом статистическая средняя будет объективна и типична, в случае если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). К примеру, в случае если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величинœе признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. К примеру, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста͵ формы обслуживания, здоровья и т.д.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов базовых. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и данный признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всœестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом крайне важно располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

Средняя арифметическая;

Средняя геометрическая;

Средняя гармоническая;

Средняя квадратическая;

Средняя хронологическая.

Понятие средней величины в статистике - понятие и виды. Классификация и особенности категории "Понятие средней величины в статистике" 2017, 2018.

Кафедра статистики

КУРСОВАЯ РАБОТА

ТЕОРИЯ СТАТИСТИКИ

На тему: Средние величины

Выполнил: Номер группы: СТП - 72

Юнусова Гульназия Чамилевна

Проверил: Серьга Людмила Константиновна


Введение

1. Сущность средних величин, общие принципы применения

2. Виды средних величин и сфера их применения

2.1 Степенные средние величины

2.1.1 Средняя арифметическая величина

2.1.2 Средняя гармоническая величина

2.1.3 Средняя геометрическая величина

2.1.4 Средняя квадратическая величина

2.2. Структурные средние величины

2.2.1 Медиана

3. Основные методологические требования правильного расчета средних величин

Заключение

Список использованной литературы


Введение

История практического применения средних насчитывает десятки столетий. Основная цель расчета средней состояла в изучении пропорций между величинами. Значимость расчетов средних величин возросла в связи с развитием теории вероятностей и математической статистики. Решение многих теоретических и практических задач было бы невозможно без расчетов средней и оценки колеблемости индивидуальных значений признака.

Ученые разных направлений стремились дать определение средней. Например, выдающийся французский математик О.Л.Коши (1789 - 1857) считал, что средней нескольких величин является новая величина, заключающаяся между наименьшей и наибольшей из рассматриваемых величин.

Однако создателем теории средних следует считать бельгийского статистика А. Кетле (1796 - 1874). Им предпринята попытка определить природу средних величин и закономерностей, в них проявляющихся. Согласно Кетле, постоянные причины действуют одинаково (постоянно) на каждое изучаемое явление. Именно они делают эти явления похожими друг на друга, создают общее для всех их закономерности.

Следствием учения А. Кетле об общих и индивидуальных причинах явилось выделения средних величин в качестве основного приема статистического анализа. Он подчеркивал, что статистические средние представляют собой не просто меру математического измерения, а категорию объективной действительности. Типическую, реально существующую среднюю он отождествлял с истинной величиной, отклонения от которой могут быть только случайными.

Ярким выражением изложенного взгляда на среднюю является его теория «среднего человека», т.е. человека среднего роста, веса, силы, среднего объема грудной клетки, емкости легких, средней остроты зрения и обычным цветом лица. Средние характеризуют «истинный» тип человека, все отклонения от этого типа указывают на уродливость или болезнь.

Взгляды А.Кетле получили дальнейшее развитие в работах немецкого статистика В.Лексиса (1837 - 1914).

Другая разновидность идеалистической теории средних основана на философии махизма. Ее основатель английский статистик А. Боули (1869 - 1957). В средних он видел способ наиболее простого описания количественных характеристик явления. Определяя значение средних или, как он выражается, «их функцию», Боули на первый план выдвигает махистский принцип мышлений. Так, он писал, что функция средних ясна: она заключается в том, чтобы выражать сложную группу при помощи немногих простых чисел. Ум не в состоянии сразу охватить величины миллионов статистических данных, они должны быть сгруппированы, упрощены, приведены к средним.

Последователем А.Кетле был и итальянский статистик К.Джини (1884-1965), автор крупной монографии «Средние величины». К.Джини подверг критике определение средней, данное советским статистиком А.Я. Боярским, и сформулировал свое: «Средняя нескольких величин является результатом действий, выполняемых по определенному правилу над данными величинами, и представляет собой либо одну из данных величин, которая не больше и не меньше всех остальных (средняя действительная или эффективная), либо какую-либо новую величину, промежуточную между наименьшей и наибольшей из данных величин (счетная средняя)».

В данной курсовой работе мы подробно рассмотрим основные проблемы теории средних величин. В первой главе выявим сущность средних величин и общие принципы применения. Во второй главе рассмотрим виды средних величин и сферу их применения на конкретных примерах. В третьей главе будут рассмотрены основные методологические требования расчета средних величин.


1. Сущность средних величин, общие принципы применения

Средние величины являются одними изнаиболее распространенных обобщающих статистических показателей. Они имеютсвоей целью одним числом охарактеризовать статистическую совокупность состоящуюиз меньшинства единиц. Средние величины тесно связаны с законом больших чисел.Сущность этой зависимости заключается в том, что при большом числе наблюденийслучайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.

Средняя величина - это обобщающий показатель, характеризующий типический уровень явления в конкретных условиях места и времени. Он выражает уровень признака, типический для каждой единицы совокупности.

Средняя является объективной характеристикой только для однородных явлений. Средние для неоднородных совокупностей называются огульными и могут применяться только в сочетании с частными средними однородных совокупностей.

Средняя применяется в статистических исследованиях для оценки сложившегося уровня явления, для сравнения между собой нескольких совокупностей по одному и тому же признаку, для исследования динамики развития изучаемого явления во времени, для изучения взаимосвязей явлений.

Средние широко применяются в различных плановых, прогнозных, финансовыхрасчетах.

Главное значение средних величин состоит в их обобщающей функции,т.е. замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений. Всем известны особенности развития современных людей, проявляющиеся в том числе и в более высоком росте сыновей по сравнению с отцами, дочерей в сравнении с матерями в том же возрасте. Но как измерить это явление?

В разных семьях наблюдаются самые различные соотношения роста старшего и младшего поколения. Далеко не всякий сын выше отца и не каждая дочь выше матери. Но если измерить средний рост многих тысяч лиц, то по среднему росту сыновей и отцов, дочерей и матерей можно точно установить и сам факт акселерации, и типичную среднюю величину увеличения роста за одно поколение.

На производство одного и того же количества товара определенного вида и качества разные производители (заводы, фирмы) затрачивают неодинаковое количество труда и материальных ресурсов. Но рынок осредняет эти затраты, и стоимость товара определяется средним расходом ресурсов на производство.

Погода в определенном пункте земного шара в один и тот же день в разные годы может быть очень различной. Например, в Санкт-Петербурге 31 марта температура воздуха за сто с лишним лет наблюдений колебалась от -20,1° в 1883 г. до +12,24° в 1920 г. Примерно такие же колебания и в другие дни года. По таким индивидуальным данным о погоде в какой-то произвольно взятый год нельзя составить представление о климате Санкт-Петербурга. Характеристики климата - это средние за длительный период характеристики погоды - температуры воздуха, его влажность, скорость ветра, сумма осадков, число часов солнечного сияния за неделю, месяц и весь год и т.д.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности. Так, можно говорить об измерении типичного роста русских девушек рождения 1973 г. по достижении ими 20-летнего возраста. Типичной характеристикой будет средняя величина надоя молока от коров черно-пестрой породы на первом году лактации при норме кормления 12,5 кормовой единицы в сутки.

Однако неправильно сводить роль средних величин только характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно неоднородные явления, как, например, урожайность всех зерновых культур по территории всей России. Или рассмотрим такую среднюю, как среднее потребление мяса на душу населения: ведь среди этого населения и дети до одного года, вовсе не потребляющие мяса, и вегетарианцы, и северяне, и южане, шахтеры, спортсмены и пенсионеры. Еще более ясна нетипичность такого среднего показателя, как произведенный национальный доход в среднем на душу населения.

Средняя величина национального дохода на душу, средняя урожайность зерновых по всей стране, среднее потребление разных продуктов питания - это характеристики государства, как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.п.), так и динамические системы, протяженные во времени (год, десятилетие, сезон и т.п.).

Примером системной средней, характеризующей период времени, может служить средняя температура воздуха в Санкт-Петербурге за 1992 г., равная +6,3°. Эта средняя обобщает крайне разнородные температуры зимних морозных дней и ночей, летних жарких дней, весны и осени. 1992 г. был теплым годом, его средняя температура не является типичной для Санкт-Петербурга. В качестве типической среднегодовой температуры воздуха в городе следует использовать многолетнюю среднюю, скажем, за 30 лет с 1963 по 1992 г., которая равна +5,05°. Эта средняя является типической средней, так как обобщает однородные величины; средние годовые температуры одного и того же географического пункта, варьирующие за 30 лет от +2,90° в 1976 г. до +7,44° в 1989 г.

Общая теория статистики: конспект лекции Коник Нина Владимировна

2. Виды средних величин

2. Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратиче-ская, средняя кубическая);

2) структурные средние (мода, медиана). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней – средняя арифметическая. Средней арифметической называется такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. В общем случае ее вычисление сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый – 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз для определения средней выработки одного рабочего, следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где x i – варианты осредняемого признака, f – частота, которая показывает, сколько раз встречается i-е значение в совокупности.

Применяя формулу средней арифметической взвешенной, получаем:

Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум взаимосвязанным показателям, для одного из которых надо вычислить среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя не известны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитываться по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысла и единственным обобщающим показателем может служить только другой вид средней – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя не известны, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Если при использовании средней гармонической веса всех вариантов (f ;) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где х – отдельные варианты;

n – число вариантов осредняемого признака.

Например простую среднюю гармоническую можно применить к скорости, если равны отрезки пути, пройденные с разной скоростью.

Любая средняя величины должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной средней скоростью) не должно измениться общее расстояние.

Формула средней определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым. Поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической, в статистике используются и другие виды (формы) средней. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения их окажутся одинаковыми, здесь действует правило мажорантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина.

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле:

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и исчисляется по формуле:

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и исчисляется по формуле:

а средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где x – средняя величина;

х – индивидуальное значение;

n – число единиц изучаемой совокупности;

k – показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности, и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов. Поэтому, кроме рассмотренных средних, в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные (или описательные) средние – мода (Мо) и медиана (Ме).

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

f m – частота интервала;

f m1 – частота предшествующего интервала;

f m+1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (n+1) /2с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

f m – частота интервала;

f– число членов ряда;

? m -1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Из книги Золотой стандарт: теория, история, политика автора Коллектив авторов

И. М. Кулишер Краткая история денежного обращения от средних веков до нового времени Печатается по изданию: Кулишер И. М. История экономического быта Западной Европы. Челябинск: Социум, 2004. Т. I, с. 368-90; т. II, с.

Из книги Теория бухгалтерского учета: конспект лекций автора Дараева Юлия Анатольевна

1. Виды инвентаризации Инвентаризация – это проверка фактического наличия имущества предприятия. К имуществу предприятия, как правило, относятся: основные средства; нематериальные активы, прочие запасы, денежные средства, финансовые обязательства, отраженных в

Из книги Торговая система трейдера: фактор успеха автора Сафин Вениамин Ильтузарович

Глава 5 Создание торговых систем на основе скользящих средних 5.1. Введение О торговых системах, основанных на скользящих средних, написано почти в каждой книге по техническому анализу. И многие начинающие трейдеры пытаются работать на бирже, используя эти системы. Однако

Из книги Forex – это просто автора Каверина Ирина

Схождение-расхождение скользящих средних Схождение-расхождение скользящих средних (Moving Averages Convergence Divergence, MACD) представляет собой простой осциллятор от двух экспоненциально сглаженных скользящих средних. Изображается в виде линии (см. рис. 9.1).Чтобы четко обозначить

автора Щербина Лидия Владимировна

20. Назначение и виды статистических показателей и величин Различают два вида показателей экономиче–ского и социального развития общества: плановые и отчетные. Плановые показатели представляют со–бой определенные конкретные значения показате–лей. Отчетные

Из книги Общая теория статистики автора Щербина Лидия Владимировна

24. Виды средних величин В статистике используют различные виды сред–них величин, которые делятся на два больших класса:1) степенные средние (средняя гармоническая, сред–няя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);2)

Из книги Экономика предприятия: конспект лекций автора

4. Виды цен Ценовая система – единая упорядоченная совокупность различных видов цен, обслуживающих и регулирующих экономические отношения между различными участниками национального и мирового рынков.Дифференциация цен по отраслям и сферам обслуживания экономики

Из книги Экономика предприятия автора Душенькина Елена Алексеевна

31. Виды цен Ценовая система – совокупность различных видов цен, обслуживающих и регулирующих экономические отношения между различными участниками национального и мирового рынков.Дифференциация цен по отраслям и сферам обслуживания экономики строится на основе учета

автора Коник Нина Владимировна

1. Назначение и виды статистических показателей и величин Природа и содержание статистических показателей соответствуют тем экономическим и социальным явлениям и процессам, которые их отражают. Все экономические и социальные категории или понятия носят абстрактный

Из книги Общая теория статистики: конспект лекции автора Коник Нина Владимировна

2. Виды средних величин В статистике используют различные виды средних величин, которые делятся на два больших класса:1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратиче-ская, средняя кубическая);2) структурные

автора

28. Виды относительных величин Рассмотрим следующие виды относительных величин.1. Относительная величина выполнения договорных обязательств – это показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах. Расчет

Из книги Теория статистики автора Бурханова Инесса Викторовна

29. Общая характеристика средних величин Средняя величина – это обобщающая характеристика единиц совокупности по какому-либо варьирующему признаку.Средняя величина – это один из распространенных приемов обобщений.Средние величины позволяют сравнивать уровни одного и

Из книги Теория статистики автора Бурханова Инесса Викторовна

30. Виды средних величин Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.В изучении средних величин применяются следующие показатели и

Из книги Теория статистики автора Бурханова Инесса Викторовна

44. Другие агрегатные индексы: индекс выполнения плана, среднеарифметический и среднегармонический индекс, индексысредних величин 1. Индекс выполнения плана. При его вычислении фактические данные сопоставляются с плановыми, причем весами индекса могут быть показатели

Из книги Недвижимость. Как ее рекламировать автора Назайкин Александр

Из книги Ключевые стратегические инструменты автора Эванс Воган

18. Сглаживание с помощью скользящих средних Инструмент«Жизнь похожа на американские горки, и поэтому просто катайся в ней», – напевал Ронан Китинг. Это утверждение относится, скорее всего, не только к жизни, но и к рынку. Там тоже надо иногда просто кататься.Когда