Способы решения диофантовых уравнений. Как решить линейное диофантово уравнение

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

«Тобольская государственная социально-педагогическая академия

им. Д.И. Менделеева»

Кафедра математики, ТиМОМ

Некоторые диофантовы уравнения

Курсовая работа

студента III курса ФМФ

Матаева Евгения Викторовича

Научный руководитель:

к.ф.-м.н.Валицкас А.И.

Оценка: ____________

Тобольск – 2011

Введение……………………………………………………………………........ 2

§ 1. Линейные диофантовы уравнения………………………………….. 3

§ 2. Диофантово уравнение x 2 y 2 = a ………………………………….....9

§ 3. Диофантово уравнение x 2 + y 2 = a …………………………………... 12

§ 4. Уравнение х 2 + х + 1 = 3у 2 …………………………………………….. 16

§ 5. Пифагоровы тройки………………………………………………….. 19

§ 6. Великая теорема Ферма………………………………………………23

Заключение……………………………………………………………….….....29

Список литературы........... ………………………………………………..30

ВВЕДЕНИЕ

Диофантово уравнение – это уравнение вида P (x 1 , … , x n ) = 0 , где левая часть представляет собой многочлен от переменных x 1 , … , x n с целыми коэффициентами. Любой упорядоченный набор (u 1 ; … ; u n ) целых чисел со свойством P (u 1 , … , u n ) = 0 называется (частным) решением диофантова уравнения P (x 1 , … , x n ) = 0 . Решить диофантово уравнение – значит найти все его решения, т.е. общее решение этого уравнения.

Нашей целью будет научиться находить решения некоторых диофантовых уравнений, если эти решения имеется.

Для этого, необходимо ответить на следующие вопросы:

а. Всегда ли диофантово уравнение имеет решение, найти условия существования решения.

б. Имеется ли алгоритм, позволяющий отыскать решение диофантова уравнения.

Примеры: 1. Диофантово уравнение 5 x – 1 = 0 не имеет решений.

2. Диофантово уравнение 5 x – 10 = 0 имеет решение x = 2 , которое является единственным.

3. Уравнение ln x – 8 x 2 = 0 не является диофантовым.

4. Часто уравнения вида P (x 1 , … , x n ) = Q (x 1 , … , x n ) , где P (x 1 , … , x n ) , Q (x 1 , … , x n ) – многочлены с целыми коэффициентами, также называют диофантовыми. Их можно записать в виде P (x 1 , … , x n ) – Q (x 1 , … , x n ) = 0 , который является стандартным для диофантовых уравнений.

5. x 2 y 2 = a – диофантово уравнение второй степени с двумя неизвестными x и y при любом целом a. Оно имеет решения при a = 1 , но не имеет решений при a = 2 .

§ 1. Линейные диофантовы уравнения

Пусть a 1 , … , a n , с Z . Уравнение вида a 1 x 1 + … + a n x n = c называется линейным диофантовым уравнением с коэффициентами a 1 , … , a n , правой частью c и неизвестными x 1 , … , x n . Если правая часть с линейного диофантова уравнения нулевая, то такое диофантово уравнение называется однородным.

Наша ближайшая цель – научиться находить частные и общие решения линейных диофантовых уравнений с двумя неизвестными. Очевидно, что любое однородное диофантово уравнение a 1 x 1 + … + a n x n = 0 всегда имеет частное решение (0; … ; 0).

Очевидно, что линейное диофантово уравнение, все коэффициенты которого равны нулю, имеет решение только в случае, когда его правая часть равна нулю. В общем случае имеет место следующая

Теорема (о существовании решения линейного диофантова уравнения). Линейное диофантово уравнение a 1 x 1 + … + a n x n = c , не все коэффициенты которого равны нулю, имеет решение тогда и только тогда, когда НОД(a 1 , … , a n ) | c.

Доказательство. Необходимость условия очевидна: НОД(a 1 , … , a n ) | a i (1 i n ) , так что НОД(a 1 , … , a n ) | (a 1 x 1 + … + a n x n ) , а значит, делит и

c = a 1 x 1 + … + a n x n .

Пусть D = НОД(a 1 , … , a n ) , с = Dt и a 1 u 1 + … + a n u n = D – линейное разложение наибольшего общего делителя чисел a 1 , … , a n . Умножая обе части на t , получим a 1 (u 1 t ) + … + a n (u n t ) = Dt = c , т.е. целочисленная

n -ка (x 1 t ; … ; x n t) является решением исходного уравнения с n неизвестными.

Теорема доказана.

Эта теорема даёт конструктивный алгоритм для нахождения частных решений линейных диофантовых уравнений.

Примеры: 1. Линейное диофантово уравнение 12x+21y = 5 не имеет решений, поскольку НОД(12, 21) = 3 не делит 5 .

2. Найти частное решение диофантова уравнения 12x+21y = 6 .

Очевидно, что теперь НОД(12, 21) = 3 | 6 , так что решение существует. Запишем линейное разложение НОД(12, 21) = 3 = 122 + 21(–1) . Поэтому пара (2; –1) – частное решение уравнения 12x+21y = 3 , а пара (4; –2) – частное решение исходного уравнения 12x+21y = 6 .

3. Найти частное решение линейного уравнения 12x + 21y – 2z = 5 .

Так как (12, 21, –2) = ((12, 21), –2) = (3, –2) = 1 | 5 , то решение существует. Следуя доказательству теоремы, вначале найдём решение уравнения (12,21)х–2у=5 , а затем, подставив линейное разложение наибольшего общего делителя из предыдущей задачи, получим решение исходного уравнения.

Для решения уравнения 3х – 2у = 5 запишем линейное разложение НОД(3, –2) = 1 = 31 – 21 очевидно. Поэтому пара чисел (1; 1) является решением уравнения 3 x – 2 y = 1 , а пара (5; 5) – частным решением диофантова уравнения 3х – 2у = 5 .

Итак, (12, 21)5 – 25 = 5 . Подставляя сюда найденное ранее линейное разложение (12, 21) = 3 = 122 + 21(–1) , получим (122+21(–1))5 – 25 = 5 , или 1210 + 21(–5) – 25 = 5 , т.е. тройка целых чисел (10; –5; 5) является частным решением исходного диофантова уравнения 12x + 21y – 2z = 5 .

Теорема (о структуре общего решения линейного диофантова уравнения). Для линейного диофантова уравнения a 1 x 1 + … + a n x n = c справедливы следующие утверждения:

(1) если = (u 1 ; … ; u n ), = (v 1 ; … ; v n ) – его частные решения, то разность (u 1 – v 1 ; … ; u n – v n ) – частное решение соответствующего однородного уравнения a 1 x 1 + … + a n x n = 0 ,

(2) множество частных решений линейного диофантова однородного уравнения a 1 x 1 + … + a n x n = 0 замкнуто относительно сложения, вычитания и умножения на целые числа,

(3) если M – общее решение данного линейного диофантова уравнения, а L – общее решение соответствующего ему однородного диофантова уравнения, то для любого частного решения = (u 1 ; … ; u n ) исходного уравнения верно равенство M = + L .

Доказательство. Вычитая равенство a 1 v 1 + … + a n v n = c из равенства a 1 u 1 + … + a n u n = c , получим a 1 (u 1 – v 1 ) + … + a n (u n – v n ) = 0 , т. е. набор

(u 1 – v 1 ; … ; u n – v n ) – частное решение линейного однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 . Таким образом, доказано, что

= (u 1 ; … ; u n ), = (v 1 ; … ; v n ) M L .

Это доказывает утверждение (1).

Аналогично доказывается утверждение (2):

, L z Z L z L .

Для доказательства (3) вначале заметим, что M + L . Это следует из предыдущего: M+L .

Обратно, если = (l 1 ; … ; l n ) L и = (u 1 ; … ; u n ) M , то M :

a 1 (u 1 + l 1 )+ …+a n (u n + l n ) = (a 1 u 1 + … + a n u n )+(a 1 l 1 + … + a n l n ) = c + 0 = c .

Таким образом, + L M , и в итоге M = + L .

Теорема доказана.

Доказанная теорема имеет наглядный геометрический смысл. Если рассмотреть линейное уравнение a 1 x 1 + … + a n x n = c , где х i R , то как известно из геометрии, оно определяет в пространстве R n гиперплоскость, полученную из плоскости L c однородным уравнением a 1 x 1 + … +a n x n =0 , проходящей через начало координат, сдвигом на некоторый вектор R n . Поверхность вида + L называют также линейным многообразием с направляющим пространством L и вектором сдвига . Таким образом, доказано, что общее решение М диофантова уравнения a 1 x 1 + … + a n x n = c состоит из всех точек некоторого линейного многообразия, имеющих целые координаты. При этом координаты вектора сдвига тоже целые, а множество L решений однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 состоит из всех точек направляющего пространства с целыми координатами. По этой причине часто говорят, что множество решений произвольного диофантова уравнения образует линейное многообразие с вектором сдвига и направляющим пространством L .

Пример: для диофантова уравнения х – у = 1 общее решение M имеет вид (1+у; у), где у Z , его частное решение = (1; 0) , а общее решение L однородного уравнения х – у = 0 запишется в виде (у; у) , где у Z . Таким образом, можно нарисовать следующую картинку, на которой решения исходного диофантова уравнения и соответствующего однородного диофантова уравнения изображены жирными точками в линейном многообразии М и пространстве L соответственно.

2. Найти общее решение диофантова уравнения 12x + 21y – 2z = 5 .

Частное решение (10; –5; 5) этого уравнения было найдено ранее, найдём общее решение однородного уравнения 12x + 21y – 2z = 0 , эквивалентного диофантову уравнению 12 x + 21 y = 2 z .

Для разрешимости этого уравнения необходимо и достаточно выполнение условия НОД(12, 21) = 3 | 2z, т.е. 3 | z или z = 3t для некоторого целого t . Сокращая обе части на 3 , получим 4x + 7y = 2t . Частное решение (2; –1) диофантова уравнения 4x + 7y = 1 найдено в предыдущем примере. Поэтому (4t ; –2t) – частное решение уравнения 4x + 7y = 2t при любом

t Z . Общее решение соответствующего однородного уравнения

(7 u ; –4 u ) уже найдено. Таким образом, общее решение уравнения 4x + 7y = 2t имеет вид: (4t + 7 u ; –2t – 4 u ) , а общее решение однородного уравнения 12x + 21y – 2z = 0 запишется так:

(4t + 7 u ; –2t – 4 u ; 3t) .

Нетрудно убедиться, что этот результат соответствует сформулированной выше без доказательства теореме о решениях однородного диофантова уравнения а 1 х 1 + … + а n х n = 0 : если Р = , то Р и

(u ; t ) P – общее решение рассматриваемого однородного уравнения.

Итак, общее решение диофантова уравнения 12x + 21y – 2z = 5 выглядит так: (10 + 4t + 7 u ; –5 – 2t – 4 u ; 5 + 3t) .

3. На примере предыдущего уравнения проиллюстрируем другой метод решения диофантовых уравнений от многих неизвестных, который состоит в последовательном уменьшении максимального значения модулей его коэффициентов.

12x + 21y – 2z = 5 12x + (102 + 1)y – 2z = 5

12x + y – 2(z – 10y) = 5

Таким образом, общее решение рассматриваемого уравнения можно записать и так: (x; 5 – 12x + 2u ; 50 – 120x + 21u) , где x, u – произвольные целые параметры.

§ 2. Диофантово уравнение x 2 y 2 = a

Примеры: 1. При a = 0 получаем бесконечное число решений: x = y или x = – y для любого y Z .

2. При a = 1 имеем x 2 y 2 = 1 (x + y )(x y ) = 1 . Таким образом, число 1 разложено в произведение двух целых множителей x + y и x y (важно, что x , y – целые!). Поскольку у числа 1 всего два разложения в произведение целых множителей 1 = 11 и 1 = (–1)(–1) , то получаем две возможности: .

3. Для a = 2 имеем x 2 y 2 = 2 (x + y )(x y ) = 2. Действуя аналогично предыдущему, рассматриваем разложения

2=12=21=(–1)(–2)=(–2)(–1), составляем системы: , которые, в отличие от предыдущего примера, не имеют решений. Так что нет решений и у рассматриваемого диофантова уравнения x 2 y 2 = 2.

4. Предыдущие рассмотрения наводят на некоторые выводы. Решения уравнения x 2 y 2 = a находятся по разложению a = km в произведение целых чисел из системы . Эта система имеет целые решения тогда и только тогда, когда k + m и k m чётны, т.е. когда числа k и m одной чётности (одновременно чётны или нечётны). Таким образом, диофантово уравнение x 2 – y 2 = a имеет решение тогда и только тогда, когда a допускает разложение в произведение двух целых множителей одной чётности. Остаётся только найти все такие a .

Теорема (об уравнении x 2 y 2 = a ). (1) Уравнение x 2 y 2 = 0 имеет бесконечное множество решений .

(2) Любое решение уравнения получается имеет вид , где a = km – разложение числа a в произведение двух целых множителей одной чётности.

(3) Уравнение x 2 y 2 = a имеет решение тогда и только тогда, когда a 2 (mod 4).

Доказательство. (1) уже доказано.

(2) уже доказано.

(3) () Пусть вначале диофантово уравнение x 2 y 2 = a имеет решение. Докажем, что a 2 (mod 4) . Если a = km – разложение в произведение целых чисел одной чётности, то при чётных k и m имеем k = 2 l , m = 2 n и a = km = 4 ln 0 (mod 4) . В случае же нечётных k , m их произведение a также нечётно, разность a – 2 нечётна и не делится на 4 , т.е. снова

a 2 (mod 4).

() Если теперь a 2 (mod 4) , то можно построить решение уравнения x 2 y 2 = a . Действительно, если a нечётно, то a = 1 a – разложение в произведение целых нечётных чисел, так что – решение диофантова уравнения. Если же a чётно, то ввиду a 2 (mod 4) получаем, что 4 | a , a = 4 b = 2(2 b ) – разложение в произведение целых чётных чисел, так что – решение диофантова уравнения.

Теорема доказана.

Примеры: 1. Диофантово уравнение x 2 y 2 = 2012 не имеет решений, т.к. 2010 = 4502 + 2 2 (mod 4).

2. Диофантово уравнение x 2 y 2 = 2011 имеет решения, т.к.

2011 3 (mod 4). Имеем очевидные разложения

2011 = 12011 = 20111 = (–1)(–2011) = (–2011)(–1),

по каждому из которых находим решения (комбинации знаков любые). Других решений нет, т.к. число 2011 простое (?!).

§ 3. Диофантово уравнение x 2 + y 2 = a

Примеры: 1. 0 = 0 2 + 0 2 , 1 = 0 2 + 1 2 , k 2 = 0 2 + k 2 . Таким образом, очевидно, любой квадрат тривиальным образом представим в виде суммы двух квадратов.

2. 2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 8 = 2 2 + 2 2 , 10 = 1 2 + 3 2 , 13 = 2 2 + 3 2 , 17 = 1 2 + 4 2 , 18 = 3 2 + 3 2 , 20 = 2 2 + 4 2 , …

3. Решений нет для a = 3, 6 = 23, 7, 11, 12 = 2 2 3, 14 = 27, 15 = 35, 19, 21 = 37, 22 = 211, 23, 24 = 32 3 , …

Анализ приведённых результатов способен навести на мысль, что отсутствие решений каким-то образом связано с простыми числами вида

4 n +3 , присутствующими в разложении на множители чисел, не представимых в виде сумм двух квадратов.

Теорема (о представлении натуральных чисел суммами двух квадратов). Натуральное число a представимо в виде суммы двух квадратов тогда и только тогда, когда в его каноническом разложении простые числа вида 4 n + 3 имеют чётные показатели степеней.

Доказательство. Вначале докажем, что если натуральное число a представимо в виде суммы двух квадратов, то в его каноническом разложении все простые числа вида 4 n + 3 должны иметь чётные показатели степеней. Предположим, вопреки доказываемому, что a = р 2 k +1 b = x 2 + y 2 , где

р – простое число вида 4 n +3 и b p . Представим числа х и у в виде

х = Dz , y = Dt , где D = НОД(x , y ) = р s w , p w ; z , t , s N 0 . Тогда получаем равенство р 2 k +1 b = D 2 (z 2 + t 2 ) = р 2 s w 2 (z 2 + t 2 ) , т.е. р 2( k s )+1 b = w 2 (z 2 + t 2 ) . В левой части равенства присутствует p (нечётная степень не равна нулю), значит, на простое число p делится один из множителей в правой части. Поскольку p w , то р | (z 2 + t 2 ) , где числа z , t взаимно просты. Это противоречит следующей лемме (?!).

Лемма (о делимости суммы двух квадратов на простое число вида

4 n + 3 ). Если простое число р = 4 n +3 делит сумму квадратов двух натуральных чисел, то оно делит каждое из этих чисел.

Доказательство. От противного. Пусть x 2 + y 2 0(mod p ) , но x 0(mod p ) или y 0 (mod p ) . Поскольку x и y симметричны, их можно менять местами, так что можно предполагать, что x p .

Лемма (об обратимости по модулю p ). Для любого целого числа x , не делящегося на простое число p , существует обратный элемент по модулю p такое целое число 1 u < p , что xu 1 (mod p ).

Доказательство. Число x взаимно простое с p , поэтому можно записать линейное разложение НОД(x , p ) = 1 = xu + pv (u , v Z ) . Ясно, что xu 1(modp ) , т.е. u – обратный элемент к x по модулю p . Если u не удовлетворяет ограничению 1 u < p , то поделив u с остатком на p , получим остаток r u (mod p ) , для которого xr xu 1 (mod p ) и 0 r < p .

Лемма об обратимости по модулю p доказана.

Умножая сравнение x 2 + y 2 0 (mod p ) на квадрат u 2 обратного элемента к x по модулю p , получим 0 = 0u 2 x 2 u 2 + y 2 u 2 = (xu) 2 + (yu) 2 1 + t 2 (mod p).

Таким образом, для t = yu выполнено сравнение t 2 –1 (mod p ) , которое и приведём к противоречию. Ясно, что t p : иначе t 0 (mod p ) и 0 t 2 –1 (mod p ) , что невозможно. По теореме Ферма имеем t p –1 1 (mod p ), что вместе с t 2 –1 (mod p ) и p = 4 n + 3 приводит к противоречию:

1 t p–1 = t 4n+3–1 = t 2(2n+1) = (t 2 ) 2n+1 (–1) 2n+1 = –1 (mod p).

Полученное противоречие показывает, что допущение о x 0 (mod p ) было не верным.

Лемма о делимости суммы двух квадратов на простое число 4 n +3 доказана.

Таким образом, доказано, что число, в каноническое разложение которого входит простое число p = 4 n + 3 в нечётной степени, не представимо в виде суммы двух квадратов.

Докажем теперь, что любое число, в каноническом разложении которого простые числа p = 4 n + 3 участвуют только в чётных степенях, представимо в виде суммы двух квадратов.

Идея доказательства основана на следующем тождестве:

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 ,

которое можно получить из известного свойства модуля комплексных чисел – модуль произведения равен произведению модулей. Действительно,

| z || t | = | zt | | a + bi || c + di | = |(a + bi )(c + di )|

|a + bi| 2 |c + di| 2 = |(ac – bd) + (ad + bc)i| 2

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 .

Из этого тождества следует, что если два числа u, v представимы в виде суммы двух квадратов: u = x 2 + y 2 , v = z 2 + t 2 , то и их произведение uv представимо в виде суммы двух квадратов: uv = (xz yt ) 2 + (xt + yz ) 2 .

Любое натуральное число a > 1 можно записать в виде a = р 1 … р k m 2 , где р i – попарно различные простые числа, m N . Для этого достаточно найти каноническое разложение , записать каждую степень вида r в виде квадрата (r ) 2 при чётном = 2, или в виде r = r (r ) 2 при нечётном = 2 + 1 , а затем сгруппировать отдельно квадраты и оставшиеся одиночные простые числа. Например,

29250 = 23 2 5 3 13 = 2513(35) 2 , m = 15.

Число m 2 обладает тривиальным представлением в виде суммы двух квадратов: m 2 = 0 2 + m 2 . Если доказать представимость в виде суммы двух квадратов всех простых чисел р i (1 i k ) , то используя тождество, будет получено и представление числа a. По условию, среди чисел р 1 , … , р k могут встретиться только 2 = 1 2 + 1 2 и простые числа вида 4 n + 1 . Таким образом, осталось получить представление в виде суммы двух квадратов простого числа р = 4т + 1 . Это утверждение выделим в отдельную теорему (см. ниже)

Например, для a = 29250 = 2513(15) 2 последовательно получаем:

2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 13 = 2 2 + 3 2 ,

25 = (11 – 12) 2 + (12 + 11) 2 = 1 2 + 3 2 ,

2513 = (12 – 33) 2 + (13 + 32) 2 = 7 2 + 9 2 ,

29250 = 2513(15) 2 = (715) 2 + (915) 2 = 105 2 + 135 2 .

Теорема доказана.

§ 4. Уравнение х+ х + 1 = 3у

Займемся теперь уравнением х+x+1=Зу. Оно уже имеет свою историю. В 1950 г. Р. Облат высказал предположение, что, кроме решения

x =у=1 . оно не имеет иных решений в натуральных числах х, у , где х есть нечетное число. В том же году Т. Нагель указал решение x = 313, у =181. Метод, аналогичный изложенному выше для уравнения х+х-2у=0 , позволит нам определить все решения уравнения x +х+1=3у (1)

в натуральных числах x , у. Предположим, что (х, у) есть решение уравнения (1) в натуральных числах, причем х > 1 . Можно легко убедиться, что уравнение(18) не имеет решений в натуральных числах x , у , где х = 2, 3. 4, 5, 6, 7, 8, 9; поэтому должно быть х10.

Покажем, что 12у<7 x +3, 7у>4 x + 2. 4у> 2 x +1 . (2)

Если бы было 12y > 7x+3 , мы имели бы 144у > 49 x +42 x +9 . а так как, в виду (18), 144у= 48 x + 48 x + 48 , то было бы х < 6 x +3 9, откуда

Пункт 5. Линейные диофантовы уравнения с двумя неизвестными.

Обычно, произвольное уравнение (но, как правило, все-таки с целыми коэффициентами) получает титул "диофантово", если хотят подчеркнуть, что его требуется решить в целых числах, т.е. найти все его решения, являющиеся целыми. Имя Диофанта - выдающегося Александрийского математика - появляется здесь не случайно. Диофант интересовался решением уравнений в целых числах еще в третьем веке нашей эры и, надо сказать, делал это весьма успешно.

Отступление про Диофанта и его исторический след.

Третий и последний период античного общества - период господства Рима. Рим завоевал Сиракузы в 212 году, Карфаген - в 146 году, Грецию - в 146, Месопотамию - в 46, Египет - в 30 году до нашей эры. Огромные территории оказались на положении колоний, но римляне не трогали их культуры и экономического устройства пока те исправно платили налоги и поборы. Установленный римлянами на столетия мир, в отличие от всех последующих великих миров и рейхов, принес всей завоеванной территории самый длинный период безвоенного существования, торговли и культурного обмена.

Александрия оказалась центром античной математики. Велись оригинальные исследования, хотя компилирование, пересказ и комментирование становились и стали основным видом научной деятельности. Александрийские ученые, если угодно, приводили науку в порядок, собирая разрозненные результаты в единое целое, и многие труды античных математиков и астрономов дошли до нас только благодаря их деятельности. Греческая наука с ее неуклюжим геометрическим способом выражения при систематическом отказе от алгебраических обозначений угасала, алгебру и вычисления (прикладную математику) александрийцы почерпнули с востока, из Вавилона, из Египта.

Основной труд Диофанта (ок. 250 г.) - "Арифметика". Уцелели только шесть книг оригинала, общее их число - предмет догадок. Мы не знаем, кем был Диофант, - возможно, что он был эллинизированный вавилонянин. Его книга - один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности. В ней впервые встречается систематическое использование алгебраических символов, есть особые знаки для обозначения неизвестного, минуса, обратной величины, возведения в степень. Папирус N 620 Мичиганского университета, купленный в 1921 году, принадлежит эпохе Диофанта и наглядно это подтверждает. Среди уравнений, решаемых Диофантом, мы обнаруживаем такие, как x 2 - 26 y 2 = 1 и x 2 - 30 y 2 = 1, теперь известные нам как частные случаи "уравнения Пелля", причем Диофант интересуется их решениями именно в целых числах.

Книга Диофанта неожиданно оказала еще и огромное косвенное влияние на развитие математической науки последних трех столетий. Дело в том, что юрист из Тулузы Пьер Ферма (1601 - 1665), изучая "Арифметику" Диофанта, сделал на полях этой книги знаменитую пометку: "Я нашел воистину удивительное доказательство того, что уравнение x n + y n = z n при n > 2, не имеет решений в целых числах, однако поля этой книги слишком малы, чтобы здесь его уместить". Это одно из самых бесполезных математических утверждений получило название "Великой теоремы Ферма" и, почему-то, вызвало настоящий ажиотаж среди математиков и любителей (особенно после назначения в 1908 году за его доказательство премии в 100 000 немецких марок). Попытки добить эту бесполезную теорему породили целые разделы современной алгебры, алгебраической теории чисел, теории функций комплексного переменного и алгебраической геометрии, практическая польза от которых уже не подлежит никакому сомнению. Сама теорема, кажется, благополучно доказана в 1995 году; Пьер Ферма, конечно, погорячился на полях "Арифметики", ибо он физически не мог придумать подобного доказательства, требующего колоссальной совокупности математических знаний. Элементарного доказательства великой теоремы Ферма пока никто из жителей нашей планеты найти не смог, хотя над его поиском бились лучшие умы последних трех столетий. Однако, до сих пор тысячи психически нездоровых любителей-"ферматистов" в жажде славы и денег бомбят своими письмами академические институты и университеты и почти ежегодно один из сотрудников кафедры алгебры и дискретной математики Уральского госуниверситета, где я работаю, вынужден вести с таким психом дипломатическую переписку на заранее заготовленном бланке:

"Уважаемый.............................! В Вашем доказательстве на странице №......, в строке №........, содержится ошибка..............................................................".

Пусть требуется решить линейное диофантово уравнение:

ax + by = c ,

где a , b , c О Z ; a и b - не нули.

Попробуем порассуждать, глядя на это уравнение.

Пусть (a , b ) = d . Тогда a = a 1 d ; b = b 1 d и уравнение выглядит так:

a 1 d· x + b 1 d· y = c , т.е. (a 1 x + b 1 y ) = c .

Теперь и ежику ясно, что у такого уравнения имеется решение (пара целых чисел x и y ) только тогда, когда d | c . Поскольку очень хочется решать это уравнение дальше, то пусть d | c . Поделим обе части уравнения на d , успокоимся, и всюду далее будем считать, что (a , b ) = 1. Так можно.

Рассмотрим несколько случаев.

Случай 1. Пусть c = 0, уравнение имеет вид ax + by = 0 - " однородное линейное диофантово уравнение". Немножко потрудившись, находим, что

x = - b a y .

Так как x должен быть целым числом, то y = at , где t - произвольное целое число (параметр). Значит x = - bt и решениями однородного диофантова уравнения ax + by = 0 являются все пары вида {- bt , at }, где t = 0; ±1; ±2;... Множество всех таких пар называется общим решением линейного однородного диофантова уравнения, любая же конкретная пара из этого множества называется частным решением.

Дорогие читатели, не правда ли, что все названия уже до боли знакомы? "Однородное уравнение", "общее решение" - все это мы уже слышали и в курсе линейной алгебры и в лекциях по дифференциальным уравнениям. При разборе следующего случая эта аналогия буквально выпирает на первый план, что, конечно, не случайно, но исследование единства великого государства линейности на материке математики выходит за рамки этой скромной книжки.

Случай 2. Пусть теперь c 0. Этот случай закрывается следующей теоремой.

Теорема. Пусть (a , b ) = 1, { x 0 , y 0 } - частное решение диофантова уравнения ax + by = c . Тогда его общее решение задается формулами:

м
н
о
x = x 0 - bt
y = y 0 + at .

Таким образом, и в теории линейных диофантовых уравнений общее решение неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и некоторого (любого) частного решения неоднородного уравнения. Вот оно - проявление единства линейного мира! (Однажды, перед экзаменом по дифференциальным уравнениям, мне снился кошмар, будто все линейные пространства решений сговорились между собой и требовали от меня прибавить к ним частное решение, так как они не хотели содержать нулевой вектор, а хотели быть линейными многообразиями. Я отказался, а наутро, на экзамене, мне досталась однородная система!)

Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения ax + by = c имеет именно такой вид, какой указан в формулировке теоремы. Пусть { x * , y *} - какое-нибудь решение уравнения ax + by = c . Тогда ax * + by * = c , но ведь и ax 0 + by 0 = c . Следуя многолетней традиции доказательства подобных теорем, вычтем из первого равенства второе и получим:

a (x *- x 0) + b (y *- y 0) = 0

Однородное уравнение. Далее, глядя на случай 1, рассмотрение которого завершилось несколькими строками выше, пишем сразу общее решение: x *- x 0 = - bt , y *- y 0 = at , откуда моментально, используя навыки третьего класса средней школы, получаем:

м
н
о
x * = x 0- bt ,
y * = y 0 + at.

"Все это, конечно, интересно", - скажет читатель, - "Но как же искать то самое частное решение { x 0 , y 0 }, ради которого и затеяна вся возня этого пункта и которое, как теперь выясняется, нам так нужно?". Ответ до глупости прост. Мы договорились, что (a , b ) = 1. Это означает, что найдутся такие u и v из Z , что au + bv = 1 (если вы это забыли, вернитесь в пункт 4), причем эти u и v мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство au + bv = 1 на c и получим: a (uc ) + b (vc ) = c , т.е. x 0 = uc , y 0 = vc . Вот и все!

Пример. Вы - хроноп, придуманный Хулио Кортасаром в книжке "Из жизни хронопов и фамов". Вам нужно расплатиться в магазине за синюю пожарную кишку, ибо красная в хозяйстве уже давно есть. У вас в кармане монеты достоинством только в 7 и 12 копеек, а вам надо уплатить 43 копейки. Как это сделать? Решаем уравнение:

7 x + 12 y = 43

Включаем алгоритм Евклида:

12 = 7· 1 + 5
7 = 5· 1 + 2
5 = 2· 2 + 1
2 = 1· 2

Значит, наибольший общий делитель чисел 7 и 12 равен 1 , а его линейное выражение таково:

1 = 5 - 2· 2 = 5 - (7 - 5) · 2 = (12 - 7) - (7 - (12 - 7) · 2) = 12· 3 + 7· (- 5),

т.е. u = - 5, v = 3. Частное решение:

x 0 = uc = (- 5) · 43 = - 215
y 0 = vc = 3 · 43 = 129.

Итак, вы должны отобрать у кассира 215 семикопеечных монет и дать ему 129 двенадцатикопеечных. Однако процедуру можно упростить, если записать общее решение неоднородного диофантова уравнения:

x = -215 - 12 t
y = 129 + 7 t

и, легко видеть, что при t = - 18, получаются вполне разумные x = 1, y = 3, поэтому дубасить кассира необязательно.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №1

г. Павлово.

Научно-исследовательская работа

Методы решения диофантовых уравнений.

Отделение: физико-математическое

Секция: математика

Выполнил:

ученик 8 А класса Трухин Николай (14 лет)

Научный руководитель:

учитель математики

Лефанова Н. А.

г. Павлово

2013 г.

Оглавление

I Введение…………………………………………………………………………3

II Обзор литературы……………………………………………………………....5

III Основная часть…………………………………………………………………6

IV Заключение…………………………………………………………………...15

V Список литературы……………………………………………………………16

VI Приложение…………………………………………………………………..17

    Введение.

В 2011-2012 году я выполнял исследовательскую работу на тему: «Решение уравнений в Древней Греции и Индии». При работе над ней я познакомился с трудами Диофанта Александрийского и Мухаммеда аль - Хорезми. В своей прошлой работе я рассмотрел некоторые способы решения уравнений первой степени с двумя неизвестными, познакомился с некоторыми старинными задачами, приводящими к решению уравнений первой степени с двумя неизвестными.

Мухаммед Бен Мусса аль – Хорезми, - или Магомед сын Моисея Хорезмского, состоящий членом «дома мудрости» в Иране, около 820 года нашего летоисчисления написал книгу, где учил решать простые и сложные вопросы арифметики, которые необходимы людям при дележе наследства, составлении завещаний, разделе имущества и судебных делах, в торговле, всевозможных сделках. С именем аль – Хорезми связаны понятия «алгебра», «арабские цифры», «алгоритм». Он отделил алгебру от геометрии, внёс большой вклад в математику исламского средневековья. Мухаммед аль – Хорезми был известен и уважаем, как при жизни, так и после смерти.

Но мне захотелось больше узнать о Диофанте. И тема моего исследования в этом году: «Методы решения диофантовых уравнений»

Диофант Александрийский - один из самых своеобразных древнегреческих математиков, труды которого имели большое значение для алгебры и теории чисел. Из работ Диофанта самой важной является «Арифметика», из 13 книг которой, только 6 сохранились до наших дней. В сохранившихся книгах содержится 189 задач с решениями. В первой книги изложены задачи, приводящиеся к определенным уравнениям первой и второй степени. Остальные пять книг содержат в основном неопределенные уравнения (неопределенными называются уравнения, содержащие более чем одно неизвестное). В этих книгах ещё нет систематической теории неопределённых уравнений, методы решения меняются от случая к случаю. Диофант довольствуется одним решением, целым или дробным, лишь бы оно было положительным. Тем не менее, методы решения неопределённых уравнений, составляют основной вклад Диофанта в математику. В символике Диофанта был один только знак для неизвестного. Решая неопределённые уравнения, он применял в качестве нескольких неизвестных произвольные числа, вместо которых можно было взять и любые другие, что и сохраняло характер общности его решений.

Цель моей работы:

1.Продолжить знакомство с диофантовыми уравнениями.

2.Исследовать методы перебора и рассеивания (измельчения) при решении диофантовых уравнений.

3.Исследовать возможность применения диофантовых уравнений для решения некоторых практических задач.

II . Обзор литературы.

При написании работы мной использовалась следующая литература:

Мной использована информация о Диофанте и аль – Хорезми.

Книга посвящена методам Диофанта при решении неопределённых уравнений. В ней рассказывается о жизни и самого Диофанта. Эта информация использована мной в работе.

В книги рассказывается об истории алгебры с древних времён. Я использовал информацию о теории уравнений, начиная с древности.

В этой книге собрано около 200 статей, посвященных основным понятиям математики и её приложения. Мной были использованы материалы статей «Алгебра», «Уравнения», «Диофантовы уравнения»

Из книги взяты тексты задач для практического использования.

    По теме мной использовался сайт:

http :// ru . wikipedia . org (информация об аль – Хорезми и Диофанте. О методах решения диофантовых уравнений).

    Основная часть

В наши дни каждый, кто занимался математикой, слышал о диофантовых уравнениях. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых (реже рациональных) чисел, вошли в историю математики как диофантовы. Наиболее изучены диофантовы уравнения 1 и 2 степени. В содержании моей работы включены задачи, которые сводятся к решению уравнения первой степени с двумя неизвестными

(1)

Рассмотрим задачу.

Задача 1. В клетке находится x фазанов и у кроликов. Сколько в клетке фазанов и кроликов, если общее количество ног равно 62.

Общее число ног можно записать с помощью уравнения 2х+4у=62 (2)

Это равенство, которое я составил по условию задачи, называют уравнением с двумя переменными. Данное уравнение называют линейным уравнением. Линейные уравнения играют важную роль при решении различных задач. Напомню основные положения, связанные с этим понятием.

Линейным уравнением с двумя переменными называется уравнение вида ax +by =c , где x и у – переменные, а, b и с – некоторые числа.

Однозначно определить из уравнения (2) значения x и y нельзя. Даже если ограничиться только натуральными значениями переменных, здесь могут быть такие случаи: 1 и 15, 3 и 14, 5 и 13 и т. д.

Пара чисел (a , b ) называется решением уравнения с двумя переменными, если при замене x на а и y на b получаем истинное равенство.

Каждому уравнению с двумя переменными соответствует множество его решений, т. е. множество, состоящее из всех пар чисел (a , b ), при подстановке которых в уравнение получается истинное равенство. При этом, конечно, если заранее указаны множества Х и Y , которые могут принимать неизвестные x и у, то надо брать лишь такие пары (a , b ), для которых а принадлежит Х и b принадлежит Y .

Пару чисел (a , b ) можно изобразить на плоскости точкой М, имеющей координаты а и b , М= М (a , b ). Рассматривая изображения всех точек множества решений уравнения с двумя неизвестными, получим некоторое подмножество плоскости. Его называют графиком уравнения.

Можно доказать, что графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов не равен нулю, является прямая линия. Для построения графика этого уравнения достаточно взять две точки с координатами и провести через них прямую. Графический метод решения я использовал в предыдущей работе.

Два уравнения с двумя переменными, имеющие одни и те же решения называются равносильными.

Например, равносильны уравнения х+2у=5 и 3х+6у=15 – любая пара чисел, удовлетворяющая одному из этих уравнений, удовлетворяет и второму.

Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Существует несколько способов решения диофантовых уравнений:

    Метод перебора вариантов

    Использование алгоритма Евклида

    С использованием цепной дроби

    Метод рассеивания (измельчения)

    При помощи программирования на языке программирования Паскаль

В своей работе я исследовал методы – перебор вариантов и рассеивание (измельчения)

Рассматривая способ перебора вариантов, необходимо учитывать количество возможных решений уравнения. Например, этот способ можно применить, решая следующую задачу:

Задача 2 . Андрей работает летом в кафе. За каждый час ему платят 10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.

Решение.

Пусть x часов он всего работал в неделю, тогда 10х р. ему заплатили, но он разбил у тарелок, и с него вычли р. Имеем уравнение 10х – 2у =180 , причем x меньше или равен 21. Получим: 5х-у=90, 5х=90+у, х=18+у:5.

Так как x целое число, то у должно нацело делится на 5, чтобы в правой части получилось целое число. Возможны четыре случая

    у=0, х=18, т. е. решением является пара – (18, 0);

    у=5, х=19, (19, 5);

    у=10, х=20, (20, 10);

    у=15, х=21, (21, 15).

Эту задачу я решил, используя способ перебора вариантов. Ответ содержит четыре возможных варианта. Я попробовал решить этим способом ещё несколько задач.

Задача 3. Из двухрублевых и пятирублевых монет составлена сумма в 23 рубля. Сколько среди этих монет двухрублевых?

Решение.

Пусть x – количество двухрублевых монет, у – количество пятирублевых монет. Составим и решим уравнение: 2х+5у=23; 2х=23–5у; x = (23 – 5у):2; x =(22+1 – 5у):2, почленно поделим 22 на 2 и (1 – 5у) на 2, получим: x = 11 + (1 – 5у):2.

Так как x и y натуральные числа по условию задачи, то левая часть уравнения есть натуральное число, значит, и правая часть должна быть натуральным числом. К тому же, чтобы получить в правой части число натуральное, нужно чтобы выражение (1 – 5у) нацело делилось на 2. Осуществим перебор вариантов.

    y =1, х=9, то есть двухрублевых монет может быть 9;

    у=2, при этом выражение (1 – 5у) не делится нацело на 2;

    у=3, х=4, то есть двухрублевых монет может быть 4;

    при у больше или равном 4 значение x не является числом натуральным.

Таким образом, ответ в задаче следующий: среди монет 9 или 4 двухрублевых.

Задача 4. Шехерезада рассказывает свои сказки великому правителю. Всего она должна рассказать 1001 сказку. Сколько ночей потребуется Шехерезаде, чтобы рассказать все свои сказки, если x ночей она будет рассказывать по 3 сказки, а остальные сказки по 5 за у ночей

Решение.

Сказочнице потребуется x + у ночей, где x и у – натуральные корни уравнения 3х+5у=1001

x = (1001 – 5у):3; так как x – натуральное число, то и в правой части равенства также должно быть натуральное число, а значит выражение (1001 – 5у) должно нацело делиться на 3.

Осуществим перебор вариантов.

у=1, 1001 – 5у=1001-5= 996, 996 делится на 3, следовательно, х=332; решение (332;1);

у=2, 1001– 10=991, 991 не делится на 3;

у=3, 1001 – 15 = 986; 986 не делится на3;

у =4, 1001 – 20 = 981, 981 делится на 3, следовательно, x = 327, решение (327;4) и т. д.

В этой задаче существует 67 пар возможных корней, я не стал показывать все решения данной задачи, т. к. это занимает много времени.

Уравнение ax + by = c (1) в приведённых задачах я решал способом перебора вариантов. Я уяснил для себя, что способ перебора вариантов не всегда эффективен для решения данной задач, так как для нахождения всех решений уравнения требуются значительные временные затраты. И, на мой взгляд, в настоящее время он неактуален.

Поэтому я решил задачу про Шехерезаду, используя метод рассеивания (измельчения).

Метод рассеивания – это общий метод для решения в целых числах неопределённых уравнений первой степени с целыми коэффициентами.

Итак, решим задачу про Шехерезаду методом рассеивания:

Обратимся к уравнению 3х + 5у = 1001.

Перепишем его иначе: 3х= 1001- 5у; 3х= 1001 - 2у - 3у;

x = – y +
и обозначим x l = у + x

В результате уравнение примет вид 3х 1 = 1001 – 2у или

у = –x l
.

Если вновь произвести замену у 1 = у + х 1 , то придем к уравнению

x 1 + 2у 1 = 1001. Заметим, что коэффициенты при неизвестных уменьшились - измельчились.

Здесь коэффициент при x 1 , равен 1, а поэтому при любом целом у 1 = t число х 1 тоже целое. Остается выразить исходные переменные через t :

х 1 = 1001 – 2 t , следовательно, у = – 1001 + 3 t , а x = 2002 – 5 t . Итак, получаем бесконечную последовательность (2002 – 5 t , – 1001 + 3 t ) целочисленных решений. Внешний вид формул для нахождения значений переменных отличается от решений, полученных ранее, но с учетом условия задачи, корни получаются те же самые. Так, пара (332;1) получается при t =334.

На мой взгляд, этот метод не только более удобный (у него есть алгоритм действий), но и интересный. Известно, что этот метод в первые применил в начале VI в. индийский математик Ариабхатта.

В прошлом году я показывал решение древней индийской задачи Брахмагупты методам рассеивания, которое предложил сам Брахмагупта. Решение было нерациональным.

Оно представлено ниже:

«Найти два целых числа, зная, что разность произведений первого на 19 и второго на 8 равно 13. »

В задаче требуется найти все целые решения уравнений.

Решение:

(1) 19x – 8y = 13

Выражаю y – неизвестное с наименьшим по абсолютной величине коэффициентом через x , получаю:

(2) y = (19x 13)/8

Нужно теперь узнать, при каких целых значениях x соответствующие значения y являются тоже целыми числами. Перепишу уравнение (2) следующим образом:

(3) y = 2x + (3x – 13)/8

Из (3) следует, что y при целом x принимает целое значение только в том случае, если выражение (3x -13)/8 является целым числом, скажем y 1 . Полагая

(4) (3x - 13)/8 = y 1 ,

вопрос сводится к решению в целых числах уравнения (4) с двумя неизвестными x и y 1 ; его можно записать так:

(5) 3x – 8y 1 = 13.

Это уравнение имеет по сравнению с первоначальным (1) преимущество, что 3 – наименьшее из абсолютных величин коэффициентов при неизвестных – меньше, чем в (1), т.е. 8. Это было достигнуто благодаря тому, что коэффициент при x (19) был заменен остатком от деления на 8.

Продолжая тем же способом, мы получим из (5):

(6) x = (8y 1 +13)/3 = 2y 1 + (2y 1 + 13)/3.

Итак, неизвестное x при целом y 1 только тогда принимает целые значения, когда (2y 1 + 13)/3 есть целое число, скажем y 2 :

(7) (2y 1 + 1)/3 = y 2 ,

или

(8) 3y 2 2 y 1 = 13.

(9) y 1 = (3y 2 - 13)/2 = y 2 + (y 2 - 13)/2

Полагая

(10) (y 2 - 13)/2 = y 3 ,

получаю

(11) y 2 2 y 3 = 13.

Это самое простое из всех рассмотренных неопределенных уравнений, так как один из коэффициентов равен 1.

Из (11) получаю:

(12) y 2 = 2y 3 + 13.

Отсюда видно, что y 2 принимают целые значения при любых целых значениях y 3 . Из равенств (6), (9), (12), (3) путем последовательных подстановок можно найти следующие выражения для неизвестных x и y уравнения (1):

x = 2y 1 + y 2 = 2(y 2 + y 3 ) + y 2 = 3y 2 + 2y 3 = 3(2y 2 + 13) + 2y 3 = 8y 3 + 39;

у = 2x + y 1 = 2(8y 3 + 39) + y 2 + y 3 = 19y 3 +91.

Таким образом, формулы

x = 8y 3 + 39,

y = 19y 3 + 91.

При y 3 = 0, + 1,+ 2, + 3, … дают все целые решения уравнения (1).

В следующей таблице приведены примеры таких решений.

Таблица 1.

y3

x

y

Решим эту задачу рационально. В решении используется определённый алгоритм.

Задача 5.

Найти два числа, если разность произведений первого на 19 и второго на 8 равна 13.

Решение. Требуется решить уравнение 19х - 8у = 13

Перепишем его иначе: 8y =19x –13; 8y =16x +3x –13; у = 2х +

и обозначим y 1 = у - 2х.

В результате уравнение примет вид 8у 1 = Зx - 13 или x = 2y 1
.

Если вновь произвести замену х 1 = x - 2у 1 , то придем к уравнению

3x l - 2у 1 = 13.

Коэффициенты при неизвестных уменьшились - измельчились. Дальнейшее измельчение: y 1 = x l +
, то получим у 2 =у 1 –х 1 .

В результате последнее уравнение преобразуется к виду х 1 - 2у 2: = 13. Здесь коэффициент при х 1 , равен 1, а поэтому при любом целом у 2 = t число х 1 тоже целое.

Остается выразить исходные переменные через t :

вначале выразим х 1 =2t +13, y 1 = 3t +13; а затем x = 8 t +39, y = 19 t + 91.

Итак, получаем бесконечную последовательность (39 + 8 t , 91 + 19 t ) целочисленных решений . Уравнение ax + by = c (1) в приведённых задачах я решал способом рассеивания (измельчения).

IV . Заключение.

Изучая диофантовы уравнения для их решения, я использовал методы перебора вариантов и рассеивания (измельчения). Этими методами я решал, как современные, так и древние задачи. В содержании моей работы были включены задачи, которые сводятся к решению уравнений первой степени с двумя переменными ах+b у=с (1)

В ходе своей работы я сделал выводы:

    Метод перебора требует значительные временные затраты, а значит он не очень удобен и рационален.

    Более рациональным, на мой взгляд, является метод рассеивания. Когда я решал старинную индийскую задачу этим методом, я понял, что существует определённый алгоритм решения. Мне было достаточно полученных в школе знаний. Я убедился, что методы решения дофантовых уравнений с развитием математики постоянно совершенствуются.

На следующий год я хочу продолжить изучение методов решения диофантовых уравнений.

V . Список литературы

    Г. И. Глейзер «История математики в школе» М.: изд. «Просвещение» 1964г. 376с.

    И. Г. Башмакова «Диофант и диофантовы уравнения» М.: изд. «Наука» 1972г. 68с.

    В. А. Никифоровский «В мире уравнений» М.: изд. «Наука» 1987г. 176с.

    А. П. Савин «Энциклопедический словарь юного математика» М.: изд. «Педагогика» 1985г.

    Г. М. Возняк, В. Ф. Гусев «Прикладные задачи на экстремумы» М.: изд. «Просвещение» 1985г. 144с.

    http :// ru . wikipedia . org

VI . Приложение.

    На фермерском хозяйстве нужно провести водопровод длиной 167м. Имеются трубы длиной 5м и 7м. Сколько нужно использовать тех и других труб, чтобы сделать наименьшее количество соединений (трубы не резать)?

Учитывая, что количество как одних, так и других труб может изменяться, количество 7 – метровые трубы обозначаем через х, 5 – метровые – через у

Тогда 7х – длина 7 – метровых труб, 5у – длина 5 – метровых труб.

Отсюда получаем неопределённое уравнение:

7х+5у=167

Выпазив, например, переменную у через переменную х , получим:

Методом перебора легко найти соответствующие пары значений х и у , которые удовлетворяют уравнению 7х+5у=167

(1;32), (6;25), (11;18), (16;11), (21;4).

Из этих решений наиболее выгодное последнее, т. е. х=21; у=4.

Многие старинные способы отгадывания чисел и дат рождения основываются на решении диофантовых уравнений. Так, например, чтобы отгадать дату рождения (месяц и число) собеседника, достаточно узнать у него сумму, получаемую от сложения двух произведений: числа даты (х ) на 12 и номера месяца (у ) на 31.

2. Пусть сумма произведений, о которых идёт речь, равна 330. Найти дату рождения.

Решим неопределённое уравнение

12 х + 31 у = 330.

С помощью метода рассеивания получим:

х = 43 – 31 у 4 ,

у = 6 – 12 у 4 .

Ввиду ограничений, легко констатировать, что единственным решением является

у 4 = 1, х = 12, у = 6.

Итак, дата рождения: 12-е число 6-го месяца, т.е. 12 июня.

Диофант Александрийский - древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» - книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант - первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма - это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \ таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \ такие, что \[ах + bу = 1.\]

Этапы решения:

1. Найдем решение уравнения \ применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \ Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 - 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

Итак, \

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) - частное решение (1).

3.Общее решение уравнения (1):

\[\left\{\begin{matrix} x=-57+8n\\ y=-3+n, n \in Z \end{matrix}\right.\]

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Алгебраические неравенства или их системы с рациональными коэффициентами, решения которых ищутся в интегральных или целых числах. Как правило, количество неизвестных в диофантовых уравнениях больше. Таким образом, они также известны как неопределенные неравенства. В современной математике указанное выше понятие применяется к алгебраическим уравнениям, решения которых ищутся в алгебраических целых числах некоторого расширения поля Q-рациональных переменных, поля p-адических и т. д.

Истоки данных неравенств

Исследования уравнений Диофанта находится на границе между теорией чисел и алгебраической геометрией. Поиск решений в целых переменных является одной из старейших математических задач. Уже в начале второго тысячелетия до н.э. древним вавилонянам удалось решить системы уравнений с двумя неизвестными. Эта отрасль математики в наибольшей степени процветала в Древней Греции. Арифметика Диофанта (примерно, 3-го века н.э.) является значимым и главным источником, который содержит различные типы и системы уравнений.

В этой книге Диофант предвидел ряд методов изучения неравенств второй и третьей степеней, которые были полностью развиты в XIX веке. Создание теории рациональных чисел этим исследователем Древней Греции привело к анализу логических решений неопределенных систем, которые систематически сопровождаются в его книге. Несмотря на то, что в его работе содержатся решения конкретных диофантовых уравнений, есть основания полагать, что он также был знаком с несколькими общими методами.

Изучение этих неравенств обычно связано с серьезными трудностями. Ввиду того, что в них присутствуют многочлены с целыми коэффициентами F (x,y1,…, y n). На основе этого, были созданы выводы, что нет единого алгоритма, с помощью которого можно было бы для любого заданного определить x, выполняется ли уравнение F (x, y 1 ,…., y n). Ситуация разрешима для y 1 , …, y n . Примеры таких многочленов могут быть записаны.

Простейшее неравенство

ax + by = 1, где a и b - относительно целые и простые числа, для него имеется огромное количество выполнений (если x 0, y 0 сформирован результат, то пара переменных x = x 0 + b n и y = y 0 -an , где n - произвольное, также будет рассматриваться как выполнение неравенства). Другим примером диофантовых уравнений служит x 2 + y 2 = z 2 . Положительные интегральные решения этого неравенства представляют собой длину малых сторон x, y и прямоугольных треугольников, а также гипотенузы z с целыми боковыми размерами. Эти числа известны как пифагорейские числа. Все триплеты относительно простых указанных выше переменных даются формулами x=m 2 - n 2 , y = 2mn, z = m 2 + n 2 , где m и n- целые и простые числа (m>n>0).

Диофант в своей «Арифметике» занимается поиском рациональных (не обязательно интегральных) решений специальных типов своих неравенств. Общая теория решения диофантовых уравнений первой степени была разработана К. Г. Башетом в 17 веке. Другие ученые в начале XIX века в основном изучали подобные неравенства типа ax 2 +bxy + cy 2 + dx +ey +f = 0, где a, b, c, d, e, и f общие, неоднородные, с двумя неизвестными второй степени. Лагранж использовал непрерывные дроби в своем исследовании. Гаусс для квадратичных форм разработал общую теорию, лежащую в основе решения некоторых типов.

В исследованиях этих неравенств второй степени значительные успехи были достигнуты только в XX веке. У А. Туэ было установлено, что диофантово уравнение a 0 x n + a 1 x n-1 y +…+a n y n =c, где n≥3, a 0 ,…,a n ,c - целые числа, а a 0 t n + … + a n не может иметь бесконечное количество целочисленных решений. Однако метод Туэ не получил должного развития. А. Бейкер создал эффективные теоремы, дающие оценки на выполнении некоторых уравнений такого рода. Б. Н. Делоне предложил другой метод исследования, применимый к более узкому классу этих неравенств. В частности, вид ax 3 + y 3 = 1 полностью разрешим этим способом.

Диофантовы уравнения: методы решения

Теория Диофанта имеет много направлений. Таким образом, хорошо известной проблемой в этой системе является гипотеза, согласно которой не существует нетривиальное решение диофантовых уравнений x n + y n = z n если n ≥ 3 (вопрос Ферма). Изучение целочисленных выполнений неравенства является естественным обобщением проблемы пифагорейских триплетов. Эйлер получил положительное решение задачи Ферма для n = 4. В силу этого результата она относится к доказательству отсутствующих целочисленных, ненулевых исследований уравнения, если n - это нечетное простое число.

Исследование, касающееся решения, не было завершено. Трудности с его выполнением связаны с тем, что простая факторизация в кольце алгебраических целых чисел не единственна. Теория дивизоров в этой системе для многих классов простых показателей n позволяет подтвердить справедливость теоремы Ферма. Таким образом, существующими методами и способами выполняется линейное диофантово уравнение с двумя неизвестными.

Виды и типы описываемых задач

Арифметика колец алгебраических целых чисел также используется во многих других задачах и решениях диофантовых уравнений. Например, такие методы были применены при выполнении неравенств вида N(a 1 x 1 +…+ a n x n) = m, где N(a) - норма a, и x 1 , …, x n найдены интегральные рациональные переменные. Этот класс включает уравнение Пелля x 2- dy 2 =1.

Значения a 1, …, a n которые появляются, эти уравнения подразделяют на два типа. Первый тип - так называемые полные формы - включают в себя уравнения, в которых среди a есть m линейно независимые числа над полем рациональных переменных Q, где m = , в которых присутствует степень алгебраических показателей Q (a1,…, a n) над Q. Неполными видами являются те, в которых максимальное количество a i меньше, чем m.

Полные формы проще, их исследование завершено, и можно описать все решения. Второй тип - неполные виды - сложнее, а разработка подобной теории еще не завершена. Такие уравнения изучаются с помощью диофантовых приближений, которые включают неравенство F(x,y)=C, где F (x,y) - многочлен степени n≥3 является неприводимым, однородным. Таким образом, можно предположить, что y i → ∞. Соответственно, если y i достаточно велико, то неравенство будет противоречить теореме Туэ, Зигеля и Рота, из которой выходит, что F(x,y)=C, где F- форма третьей степени или выше, неприводимая не может иметь бесконечное количество решений.

Данный пример составляет довольно узкий класс среди всех. Например, несмотря на их простоту, x 3 + y 3 + z 3 = N, а также x 2 +y 2 +z 2 +u 2 = N не входят в этот класс. Изучение решений является достаточно тщательно исследованной ветвью диофантовых уравнений, где в основе лежит представление квадратичными формами чисел. Лагранж создал теорему, которая гласит, что выполнение существует для всех естественных N. Любое натуральное число может быть представлено в виде суммы трех квадратов (теорема Гаусса), но оно не должно иметь вид 4 a (8K-1), где a и k неотрицательные целые показатели.

Рациональные или интегральные решения системы диофантового уравнения типа F (x 1 , …, x n) = a, где F (x 1 , …, x n) является квадратичной формой с целыми коэффициентами. Таким образом, согласно теореме Минковского-Хассе, неравенство ∑a ij x i x j = b где a ij и b рационально, имеет интегральное решение в действительных и p-адических числах для каждого простого числа p только тогда, когда оно разрешимо в этой структуре.

Из-за присущих трудностей изучение чисел с произвольными формами третьей степени и выше изучалось в меньшей степени. Главным методом выполнения является способ тригонометрических сумм. В данном случае число решений уравнения явно выписывается в терминах интеграла Фурье. После чего метод окружения используется для выражения количества выполнения неравенства соответствующих конгруэнций. Способ тригонометрических сумм зависит от алгебраических особенностей неравенств. Существует большое количество элементарных методов для решения линейных диофантовых уравнений.

Диофантов анализ

Отделение математики, предметом которого является исследование интегральных и рациональных решений систем уравнений алгебры методами геометрии, из той же сферы. Во второй половине XIX века появление этой теории чисел привело к изучению уравнений Диофанта из произвольного поля с коэффициентами, и решения рассматривались либо в нем, либо в его кольцах. Система алгебраических функций развивалась параллельно с числами. Основная аналогия между двумя, которая была подчеркнута Д. Гильбертом и, в частности, Л. Кронекером, привела к равномерному построению различных арифметических концепций, которые обычно называются глобальными.

Это особенно заметно, если изучаемые алгебраические функции над конечным полем констант являются одной переменной. Такие понятия, как теория полей классов, делитель, а также ветвление и результаты являются хорошей иллюстрацией вышеизложенного. Эта точка зрения была принята в системе диофантовых неравенств только позднее, а систематическое исследование не только с численными, но и с коэффициентами, которые являются функциями, началось только в 1950-х годах. Одним из решающих факторов в этом подходе было развитие алгебраической геометрии. Одновременное изучение полей чисел и функций, которые возникают как две одинаково важные стороны одного и того же субъекта, не только давало изящные и убедительные результаты, но приводило к взаимному обогащению двух тем.

В алгебраической геометрии понятием многообразия заменяется неинвариантный набор неравенств над данным полем K, а их решения заменяются рациональными точками со значениями в K или в конечном его расширении. Можно, соответственно, сказать, что фундаментальная задача диофантовой геометрии заключается в изучении рациональных точек алгебраического множества X(K), X при этом - определенные числа в поле K. Целочисленное выполнение имеет геометрический смысл в линейных диофантовых уравнениях.

Исследования неравенств и варианты выполнения

При изучении рациональных (или интегральных) точек на алгебраических многообразиях возникает первая проблема, заключающаяся в их существовании. Десятая задача Гильберта сформулирована как проблема нахождения общего метода решения этого вопроса. В процессе создания точного определения алгоритма и после того, как было доказано, что подобных выполнений для большого числа задач не существует, проблема приобрела очевидный отрицательный результат, и наиболее интересным вопросом является определение классов диофантовых уравнений, для которых существует указанная выше система. Наиболее естественным подходом, с алгебраической точки зрения, является так называемый принцип Хассе: начальное поле K изучается вместе с его пополнениями K v по всем возможным оценкам. Поскольку X(K) = X(K v) являются необходимым условием существования, а K точка учитывает, что множество X(K v) не пусты для всех v.

Важность заключается в том, что он сводит две проблемы. Вторая намного проще, она ​​разрешима известным алгоритмом. В частном случае, когда многообразие X проективно, лемма Гензеля и его обобщения делают возможным дальнейшее сокращение: проблему можно свести к изучению рациональных точек над конечным полем. Затем он решается строить концепцию либо путем последовательного исследования, либо более эффективными методами.

Последнее важное соображение состоит в том, что множества X(K v) являются непустыми для всех v, за исключением конечного числа, так что количество условий всегда конечное, и они могут быть эффективно проверены. Однако принцип Хассе не применим к кривым степени. Например, 3x 3 + 4y 3 =5 имеет точки во всех p-адических числовых полях и в системе но не имеет рациональных точек.

Этот способ послужил отправным пунктом для построения концепции, описывающей классы главных однородных пространств абелевых многообразий для выполнения «отклонения» от принципа Хассе. Оно описывается в терминах специальной структуры, которые могут быть связаны с каждым многообразием (группа Тейта-Шафаревича). Основная трудность теории заключается в том, что методы вычисления групп сложно получить. Эта концепция также была распространена на другие классы алгебраических многообразий.

Поиск алгоритма выполнения неравенств

Другая эвристическая идея, используемая при изучении диофантовых уравнений, заключается в том, что если число переменных, участвующих в множестве неравенств - велико, то система обычно имеет решение. Однако это очень трудно доказать для любого конкретного случая. Общий подход к проблемам этого типа использует аналитическую теорию чисел и основан на оценках тригонометрических сумм. Этот метод первоначально применялся к специальным видам уравнений.

Однако впоследствии было доказано с его помощью, что если форма нечетной степени - это F, в d и n переменных и с рациональными коэффициентами, то n достаточно велико по сравнению с d, таким образом, имеет рациональную точку проективная гиперповерхность F = 0. Согласно гипотезе Артина, этот результат верен, даже если n > d 2 . Это доказано только для квадратичных форм. Аналогичные проблемы могут быть заданы и для других полей. Центральной проблемой диофантовой геометрии является структура множества целых или рациональных точек и их изучение, а первый вопрос, который нужно уточнить, состоит в том, является ли это множество конечным. В этой задаче ситуация обычно имеет конечное количество выполнений, если степень системы намного больше, чем число переменных. Это и есть основное предположение.

Неравенства на линиях и кривых

Группа X(K) может быть представлена ​​как прямая сумма свободной структуры ранга r и конечной группы порядка n. С 1930-х годов изучается вопрос о том, ограничены ли эти числа на множестве всех эллиптических кривых над данным полем K. Ограниченность кручения n была продемонстрирована в семидесятых годах. Существуют кривые произвольного высокого ранга в функциональном случае. В числовом случае по-прежнему нет ответа на этот вопрос.

Наконец, гипотеза Морделла утверждает, что количество интегральных точек является конечным для кривой рода g>1. В функциональном случае эта концепция была продемонстрирована Ю. И. Маниным в 1963 году. Основным инструментом, используемым при доказательстве теорем конечности в диофантовой геометрии, является высота. Из алгебраических многообразий размерности выше единицы абелевы многообразия, которые являются многомерными аналогами эллиптических кривых, были наиболее тщательно изучены.

А. Вейль обобщил теорему о конечности числа образующих группы рациональных точек на абелевы многообразия любой размерности (концепция Морделла-Вейля), распространив ее. В 1960-х годах появилась гипотеза Берча и Суиннертона-Дайера, усовершенствовавшая эту и группу и дзета-функции многообразия. Числовые доказательства подтверждают эту гипотезу.

Проблема разрешимости

Задача нахождения алгоритма, с помощью которого можно определить, имеет ли какое-либо диофантово уравнение способ решения. Существенной особенностью поставленной задачи является поиск универсального метода, который был бы подходящим для любого неравенства. Такой метод также позволил бы решать указанные выше системы, так как он эквивалентен P21+⋯+P2k=0.п1= 0 , ... , PK= 0п = 0,...,пК = 0 или п21+ ⋯ + P2К= 0 . п12+⋯+пК2=0. Проблема нахождения такого универсального способа обнаружения решений для линейных неравенств в целых числах была поставлена ​​Д. Гильбертом.

В начале 1950-х годов появились первые исследования, направленные на доказательство не существования алгоритма решения диофантовых уравнений. В это время появилась гипотеза Дэвиса, в которой говорилось, что любое перечислимое множество также принадлежит греческому ученому. Поскольку примеры алгоритмически неразрешимых множеств известны, но являются рекурсивно перечислимыми. Следует, что гипотеза Дэвиса верна и проблема разрешимости этих уравнений имеет отрицательное выполнение.

После этого для гипотезы Дэвиса осталось доказать, что существует метод преобразования неравенства, которое также (или не имело) в то же время решение. Было показано, что такое изменение диофантового уравнения возможно, если оно с указанными двумя свойствами: 1) в любом решении этого типа v uu ; 2) для любого k существует выполнение, в котором присутствует экспоненциальный рост.

Пример линейного диофантового уравнения этого класса завершил доказательство. Задача о существовании алгоритма разрешимости и распознавания в рациональных числах этих неравенств считается по-прежнему важным и открытым вопросом, который не изучен в достаточной степени.