Специальная теория относительности Эйнштейна: кратко и простыми словами. Так был ли прав Эйнштейн? Проверяем теорию относительности

Общая теория относительности (ОТО) — геометрическая теория тяготения, опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время — самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности.

С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий. Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные принципы общей теории относительности

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временную компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12—10?13 (Брагинский, Дикке и т. д.). Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Пространство-время ОТО и сильный принцип эквивалентности

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:
Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности.

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он, на самом деле, не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Важно отметить, что основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.

Основные следствия ОТО

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

(1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час - скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна , независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов ». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E - энергия, m - масса, а c - скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба .


Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности . Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.


Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры ». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии - науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Она объясняла закономерность движения двух объектов относительно друг друга в одной системе координат при условии неизменной скорости и однородности внешней среды.

Принципиальное обоснование СТО базировалось на двух составляющих:

  1. Аналитические данные, полученные опытным путем. При наблюдении за движущими телами в одной структурной параллели был определен характер их движения, существенные отличия, особенности;
  2. Определение параметров скорости. За основу была взята единственная неподдающаяся изменению величина, — «скорость света», которая равняется 3*10^8 м/с.

Путь становления Теории Относительности

Возникновение теории относительности стало возможным благодаря научным трудам Альберта Эйнштейна, который смог объяснить и доказать разницу в восприятии пространства и времени в зависимости от позиции наблюдателя и скорости перемещения объектов. Как это происходило?

В середине 18 века, ключевой базой для проведения исследований стала загадочная на тот период времени структура под названием эфир. По предварительным данным и заключениям научной группы – эта субстанция способна проникать через любые слои, не влияя на их скорость. Также было выдвинуто предположение о том, что изменения внешнего восприятия скорости меняют и саму скорость света (современной наукой доказана ее постоянство).

Альберт Эйнштейн, изучив эти данные, полностью отверг учения об эфире и осмелился предположить, что скорость света – это детерминантная величина, которая не зависит от внешних факторов. По его словам, изменяется только визуальное восприятие, но не суть происходящих процессов. Позже, в доказательство своих убеждений, Эйнштейном был проведен дифференцированный эксперимент, который доказал справедливость такого подхода.

Главной особенностью исследования было внедрение человеческого фактора. Нескольким персонам предлагалось двигаться из пункта А в пункт Б параллельно, но с различной скоростью. По достижении исходной точки этих людей просили описать увиденное вокруг и впечатление о процессе. Каждый человек из выбранной группы делал собственные умозаключения и результат не совпадал. После того как тот же самый опыт был повторен, но люди двигались с одинаковой скоростью и в одном направлении, мнение участников эксперимента стало схожим. Таким образом, был подведен окончательный итог и теория Эйнштейна нашла доподлинное подтверждение.

Второй этап развития СТО – учение о пространственно-временном континууме

Основой учения о пространственно-временном континууме стала связующая нить между направлением движения объекта, его скоростью и массой. Такую «зацепку» для проведения дальнейших исследований дал первый удачный показательный эксперимент, проведенный с участием сторонних наблюдателей.

Материальная вселенная существует в трех фазах измерения направления: вправо-влево, вверх-вниз, вперед-назад. Если добавить к ним постоянный показатель измерения времени (ранее упомянутая «скорость света») получиться определение пространственно-временного континуума.

Какую роль в этом процессе играет массовая доля объекта измерения? Всем школьникам и студентам знакома физическая формула E=m*c², в которой: Е – энергия, м – масса тела, с – скорость. По закону применения этой формулы, масса тела значительно увеличивается благодаря увеличению скорости света. Из этого следует, что чем выше скорость, тем больше будет масса исходного объекта в любом из направлений движения. А пространственно-временной континуум лишь диктует порядок увеличения и расширение, объемность пространства (когда речь идет об элементарных частицах, на которых построены все физические тела).

Доказательством такого подхода стали опытные образцы, при помощи которых ученые пытались достичь скорости света. Они наглядно убедились в том, что при искусственном увеличении массы тела добиться желаемого ускорения становится все сложнее. Для этого требовался постоянный неиссякаемый источник энергии, которого в природе просто-напросто не существует. После получения заключения теория Альберта Эйнштейна была полностью доказана.

Изучение теории относительности требует значительного понимания физических процессов и основ математического анализа, которые проходят в старшей школе и на первых курсах профессиональных технических училищ, высших учебных заведений технического профиля. Без представления основ освоить полную информацию и оценить важность исследований гениального физика просто-напросто не возможно.

ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ А. ЭЙНШТЕЙНА

В рамках теории, которая создавалась в течение десяти лет, с 1906 по 1916 год, А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто еще называют теорией тяготения. В ней были описаны новые зависимости пространственно-временных отношений от материальных процессов. Эта теория основывается уже не на двух, а на трех постулатах:

- Первый постулат общей теории относительности - расширенный принцип относительности , который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл по отношению к фактору, его определяющему.

- Второй постулат - принцип постоянства скорости света - остается неизменным.

- Третий постулат - принцип эквивалентности инертной и гравитационной масс . Этот факт был известен еще в классической механике. Так, в законе всемирного тяготения, сформулированном Ньютоном, сила тяготения всегда пропорциональна массе того тела, на которое она действует. Но во втором законе Ньютона сила, сообщающая телу ускорение, тоже пропорциональна его массе. В первом случае речь идет о гравитационной массе, которая характеризует способность тела притягиваться к другому телу, во втором случае - об инертной массе, которая характеризует поведение тела под действием внешних сил, является мерой инертности тела. Но в случае свободного падения тела ускорение g = 9,8 м/с 2 не зависит от массы. Это установил в своих опытах еще Галилей. Более точно эквивалентность этих масс была установлена в 1890 г. венгерским физиком Л. Этвёшем. Сегодня эти выводы подтверждены с высокой степенью точности - до 10 -12 .

После создания специальной теории относительности Эйнштейн задумался о том, меняются ли гравитационные свойства тел, если их инерционные свойства зависят от скорости движения. Теоретический анализ, проведенный ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g , то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Аналогично, наблюдатель, находящийся в закрытом лифте, не сможет определить, движется ли лифт ускоренно или внутри лифта действуют силы тяготения. Именно на основе принципа эквивалентности был обобщен принцип относительности.

Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в сильных гравитационных полях. Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась.

Геометрия Евклида носит аксиоматический характер, исходит из пяти аксиом и подразумевает одинаковость, однородность пространства, которое считается плоским. Но постепенно многих математиков эта геометрия перестала удовлетворять, так как пятый постулат ее не был самоочевидным. Речь идет об утверждении, что через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. С этой аксиомой связано утверждение о сумме углов треугольника, всегда равной 180°. Если заменить эту аксиому другой, то можно построить новую геометрию, отличную от геометрии Евклида, но столь же внутренне непротиворечивую. Именно это и сделали в XIX веке независимо друг от друга русский математик Н. И. Лобачевский, немец Б. Риман и венгр Я. Больяй. Риман использовал аксиому о невозможности проведения даже единственной прямой, параллельной данной. Лобачевский и Больяй исходили из того, что через точку вне прямой можно провести бесчисленное множество прямых, параллельных данной. На первый взгляд эти утверждения звучат абсурдно. На плоскости они и в самом деле неверны. Но ведь могут существовать и иные поверхности, на которых имеют место новые постулаты.

Представьте себе, например, поверхность сферы. На ней кратчайшее расстояние между двумя точками отсчитывается не по прямой (на поверхности сферы прямых нет), а по дуге большого круга (так называют окружности, радиусы которых равны радиусу сферы). На земном шаре подобными кратчайшими, или, как их называют, геодезическими линиями служат меридианы. Все меридианы, как известно, пересекаются в полюсах, и каждый из них можно считать прямой, параллельной любому меридиану. На сфере выполняется своя, сферическая геометрия, в которой верно утверждение, что сумма углов треугольника всегда больше 180°. Представьте себе на сфере треугольник, образованный двумя меридианами и дугой экватора. Углы между меридианами и экватором равны 90°, и к их сумме прибавляется угол между меридианами с вершиной в полюсе. На сфере, таким образом, нет непересекающихся прямых.

Существуют также поверхности, для которых оказывается верным постулат Римана. Это седловидная поверхность, также называемая псевдосферой. На ней сумма углов треугольника всегда меньше 180° и невозможно провести ни одной прямой, параллельной данной.

После того, как Эйнштейн узнал о существовании этих геометрий, возникли сомнения в евклидовом характере реального пространства-времени. Стало ясно, что оно искривлено. Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины и будем считать, что это модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд и планет. Шарики будут прогибать лист резины тем больше, чем больше их масса, что наглядно демонстрирует зависимость кривизны пространства-времени от массы тела. Так, Земля создает вокруг себя искривленное пространство-время, которое называется полем тяготения. Именно оно заставляет все тела падать на Землю. Но чем дальше мы будем находиться от планеты, тем слабее будет действие этого поля. На очень большом расстоянии поле тяготения будет настолько слабым, что тела перестанут падать на Землю, и потому искривление пространства-времени будет настолько незначительным, что им можно пренебречь и считать пространство-время плоским.

Под кривизной пространства не нужно понимать искривление плоскости наподобие евклидовой сферы, в которой внешняя поверхность отлична от внутренней. Изнутри ее поверхность выглядит вогнутой, извне - выпуклой. С точки зрения неевклидовых геометрий обе стороны искривленной плоскости являются одинаковыми. Кривизна пространства не проявляется наглядным образом и понимается как отступление его метрики от евклидовой, что можно точно описать на языке математики.

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет больше времени, чем в том случае, когда на пути этого сигнала Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г. В качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.

Одно из самых фантастических предсказаний общей теории относительности - полная остановка времени в очень сильном поле тяготения . Замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света: чем сильнее тяготение, тем больше увеличивается длина волны и уменьшается его частота. При определенных условиях длина волны может устремиться к бесконечности, а его частота - к нулю.

Со светом, испускаемым Солнцем, это могло бы случиться, если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700000 км). Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы.

Сразу скажем, что с Солнцем этого никогда не произойдет. В конце своего существования, через несколько миллиардов лет, оно испытает множество превращений, его центральная область может значительно сжаться, но все же не так сильно. Но другие звезды, массы которых в три и более раз превышают массу Солнца, в конце своей жизни и вправду испытают, скорее всего, быстрое катастрофическое сжатие под действием своего собственного тяготения. Это приведет их к состоянию черной дыры.

Черная дыра - это физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность . Чтобы возникла черная дыра, тело должно сжаться до радиуса, не превосходящего отношения массы тела к массе Солнца, умноженного на 3 км. Это критическое значение радиуса называют гравитационным радиусом тела.

Физики и астрономы совершенно уверены, что черные дыры существуют в природе, хотя до сих пор их не удалось обнаружить. Трудности астрономических поисков связаны с самой природой этих необычных объектов. Ведь их просто не видно, так как они не светят, ничего не излучают в пространство и потому в полном смысле этого слова являются черными. Лишь по ряду косвенных признаков можно надеяться заметить черную дыру, например, в системе двойной звезды, где ее партнером была бы обычная звезда. Из наблюдений движения видимой звезды в общем поле тяготения такой пары можно было бы оценить массу невидимой звезды, и если эта величина превысит массу Солнца в три и более раз, можно будет утверждать, что нашли черную дыру. Сейчас имеется несколько хорошо изученных систем двойных звезд, в которых масса невидимого партнера оценивается в 5-8 масс Солнца. Скорее всего, это и есть черные дыры, но астрономы до уточнения этих оценок предпочитают называть эти объекты кандидатами в черные дыры.

Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает. Для тела, попадающего в поле тяготения черной дыры массой, равной трем массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса займет всего около часа. Но по часам, которые будут находиться вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело будет подходить к гравитационному радиусу, тем более замедленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигнет его. А на определенном расстоянии от этого радиуса тело навсегда застывает - для внешнего наблюдателя остановилось время, подобно тому, как на стоп-кадре виден застывший момент падения тела.

Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум) была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

Уже сейчас некоторые ученые говорят о возможности существования кванта пространства, фундаментальной длины L. Введя это понятие, наука сможет избежать многих трудностей современных квантовых теорий. Если существование этой длины подтвердится, она станет еще одной фундаментальной постоянной в физике. Из существования кванта пространства также вытекает существование кванта времени, равного L/C, ограничивающего точность определения временных интервалов.

Общая теория относительности рассматривает неинерциальные системы отсчета и утверждает возможность их отождествления с инерциальными (при наличии поля тяготения). Эйнштейн формулирует суть главного принципа этой теории следующим образом: "Все системы отсчета равноценны для описания природы (формулировки общих ее законов), в каком бы состоянии движения они не находились". Точнее говоря, общий принцип относительности говорит о том, что любой закон физики одинаково истинен и применим и в неинерциальных системах отсчета при наличии поля тяготения, и в инерциальных системах отсчета, но при его отсутствии.

Следствия из общей теории относительности:

1. Равенство инертной и гравитационной массы - один из важных результатов ОТО, которая считает равноценными все системы отсчета, а не только инерциальные.

2. Искривление светового луча в поле тяготения свидетельствует, что скорость света в таком поле не может быть постоянной, а изменяется по направлению от одного места к другому.

3. Поворот эллиптической орбиты планет, движущихся вокруг Солнца (например, у Меркурия - 43° за столетие).

4. Замедление времени в поле тяготения массивных или сверхплотных тел.

5. Изменение частоты света при его движении в гравитационном поле.

Наиболее значительным результатом ОТО является установление зависимости пространственно-временных свойств окружающего мира от расположения и плотности тяготеющих масс.

В заключение заметим, что ряд выводов общей теории относительности качественно отличается от выводов ньютоновской теории тяготения. Важнейшие из них связаны с существованием черных дыр, сингулярностей пространства-времени (мест, где формально, по теории, обрывается существование частиц и полей в обычной известной нам форме) и с наличием гравитационных волн (гравитационного излучения). Ограничения общей теории тяготения Эйнштейна обусловлены тем, что эта теория не квантовая; а гравитационные волны можно рассматривать как поток специфических квантов - гравитонов.

Других ограничений применимости теории относительности не обнаружено, хотя неоднократно высказывались предположения, что на очень малых расстояниях понятие точечного события, следовательно, и теория относительности могут оказаться неприменимыми. Современные квантовые теории фундаментальных взаимодействий (электромагнитная, слабого и сильного взаимодействий) основаны именно на геометрии пространства-времени теории относительности. Из этих теорий с наиболее высокой точностью проверена квантовая электродинамика лептонов. Неоднократно с высокой точностью повторялись опыты, использовавшиеся для обоснования теории относительности в первые десятилетия ее существования. Сейчас такого рода опыты имеют преимущественно исторический интерес, поскольку основной массив подтверждений общей теории относительности составляют данные, относящиеся к взаимодействиям релятивистских элементарных частиц.

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).