Сообщение ультразвук его применение физика. Применение ультразвука в медицине и технике (кратко)

Золкина Александра.

Данный проект выполнила ученица 9 класса. Данный проект рассматривает ультразвук в природе. Дается понятие ультразвука, его расположение на шкале электромагнитных волн.Работа выполнена на уровне 9 класса средней школы.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Ультразвук это упругие колебания и волны, частота которых превышает 15 – 20 кГц

В природе ультразвук встречается в качестве компонента многих естественных шумов: шум ветра, водопада, дождя, в грозовых разрядах. Локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование таких звуков было обнаружено с развитием акустики в конце XIX века. С физической точки зрения всякий звук - это колебательные движения, распространяющиеся волнообразно в упругой среде. Чем больше вибраций совершает в секунду колеблющееся тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около восьмидесяти раз в секунду, или, как говорят физики, частота его колебаний достигает восьмидесяти герц. Самый высокий голос (например, сопрано перуанской певицы Имы Сумак) около 1400 герц.

В мореплавании и ловле рыбы Эхолот монтируется в днище корабля или лодки и обеспечивает безопасность мореплавателей, кораблей и пассажиров. Только при использовании эхолота корабль может безопасно плыть. Ведь дно становится "видимым".

Современные эхолоты позволяют не только измерять глубину, но производить поиск рыбы, узнать размеры рыб, расстояние до рыбы и глубину расположения косяка или отдельной особи. Вот например современный эхолот HUMMINBIRD 580.

В природе и технике известны звуки еще более высоких частот - в сотни тысяч и даже миллионы герц. Рекордно высокий звук у кварца - до одного миллиарда герц! Мощность звука колеблющейся в жидкости кварцевой пластинки в 40 тысяч раз превышает силу звука мотора самолета. Но мы не можем оглохнуть от этого «адского грохота», потому что не слышим его. Человеческое ухо воспринимает звуки с частотой колебаний лишь от шестнадцати до двадцати тысяч герц. Более высокочастотные акустические колебания принято называть ультразвуками, их волнами летучие мыши и «ощупывают» окрестности.

Дельфины Дельфин использует ультразвуковые волны, фокусируя их в нужном направлении, благодаря выпуклой форме черепа и жировой прослойке в виде выроста на голове. Эхо возвращается к дельфину в виде звуковой картинки, по которой он может распознать, добыча перед ним или хищник

Летучие мыши Выражение «слепой, как летучая мышь» вполне соответствует действительности – ученые выяснили, что, когда эти животные полагаются только на зрение, они врезаются в окружающие объекты намного чаще, чем при использовании ультразвука для навигации.

Ультразвуки возникают в гортани летучей мыши. Здесь в виде своеобразных струн натянуты голосовые связки, которые, вибрируя, производят звук. Гортань ведь по своему устройству напоминает обычный свисток: выдыхаемый из легких воздух вихрем проносится через нее - возникает «свист» очень высокой частоты, до 150 тысяч герц (человек его не слышит).

Летучая мышь может периодически задерживать поток воздуха. Затем он с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом 5 - 20 граммов! В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания - ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов даже от 10 до 200 импульсов. Каждый импульс, «взрыв», длится всего 2 - 5 тысячных. Краткость звукового сигнала - очень важный физический фактор. Лишь благодаря ему возможна точная эхо локация, то есть ориентировка с помощью ультразвуков.

У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых. Бабочки

Ультразвуковая эхолокация ночных бабочек

Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука понимают глубину при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину

Работу выполнела: Золкина Александра ученица 9 класс А

Звук - это физический процесс распространения упругих волн в среде, с одной стороны, а с другой - это психофизиологический процесс, связанный с первым процессом.

В физике звуком называют любые упругие волны, при этом волны, частота которых меньше 16 Гц называются инфразвуковыми, а волны с частотами большими 20 кГц называются ультразвуковыми. Ультразвуковые волны с частотами выше ${10}^9Гц$ называют гиперзвуковыми.

Ультразвук

Ультразвуковая волна состоит из чередований сгустков и участков разряжения частиц среды. Ультразвуковая волна распространяется со скоростью, зависящей от свойств вещества и его температуры. Скорость звуковой волны в воздухе при температуре 200 С равна примерно 343,1 $\frac{м}{с}$.

Так как длина волны ($\lambda $) зависит от частоты, с ростом частоты длина волны уменьшается, следовательно, длина ультразвуковой волны много меньше, чем длина волны звука, который слышит человек.

Излучатели и приемники ультразвука

Ультразвуком называются механические волны, частота которых более 2$\cdot {10}^4$Гц. Верхний предел частоты ультразвука определяют расстояния между молекулами, следовательно, зависит от агрегатного состояния среды, в которой он распространяется. Ультразвук может возникать как в результате природных процессов, так и генерироваться искусственно.

К естественным источникам ультразвука можно отнести животных, которые его издают. Животные генерируют и воспринимают ультразвук при помощи специальных рецепторных аппаратов. Ультразвук помогает им ориентироваться в пространстве. Ультразвуковые колебания, создаваемые животными, отражаются от предметов и воспринимаются специализированными органами слуха как преграды на пути. Издавать ультразвуки могут так же, например, кузнечики, сверчки, дельфины. Слуховой аппарат некоторых насекомых, птиц и животных способен воспринимать более широкий диапазон колебаний звука, чем у человека.

Так верхние границы звуковых частот воспринимаемых:

  • лягушками составляет $\nu =3\cdot {10}^4Гц$;
  • собаками$\ \nu =6\cdot {10}^4Гц$;
  • кошками $\nu ={10}^5Гц$;
  • кузнечиками $\nu ={10}^5Гц$;
  • летучими мышами $\nu =1,5\cdot {10}^5Гц$;
  • бабочками $\nu =1,6\cdot {10}^5Гц$;
  • дельфинами $\nu =2\cdot {10}^5Гц$;
  • чайками $\nu =8\cdot {10}^3Гц.$

Генерировать ультразвук может и неживая природа. Он возникает при ветре, ультразвуковые частоты имеются в шуме водопада и звуках моря.

Технические устройства при своей работе способны издавать ультразвук, например, некоторые двигатели и станки.

Ультразвук получают целенаправленно с помощью генераторов ультразвука. Для того чтобы регистрировать и анализировать ультразвук используют пьезоэлектрические или магнитострикционные датчики.

Биологические последствия воздействия волн ультразвука

Биологические эффекты, которые способны вызывать ультразвуковые волны зависят от интенсивности, частоты и длительности воздействия. Если ультразвуковые волны имеют низкую интенсивность и ими облучают биологический объект, то возникает микровибрация на уровне клетки. При этом активизируются транспортные процессы, улучшаются процессы обмена в тканях, достигается положительный эффект. При увеличении интенсивности ультразвуковое давление может вести к повреждению молекул. При длительном воздействии ультразвука, например, на производстве у человека возникает повышенная утомляемость, сонливость, может наступить расстройство нервной системы.

Инфразвук

Инфразвуком называют упругие механические волны, имеющие частоты ниже частот слышимого человеком звука. Верхняя граница инфразвуковых волн 16-25 Гц, верхняя граница не определена.

Инфразвук мало поглощается в разных веществах, поэтому эти волны способны распространяться на большие расстояния.

Источники инфразвука

Инфразвук имеется в шуме атмосферы, деревьев в лесу и воды в море. В коре Земли можно детектировать инфразвуковые частоты от разных источников, например, обвалов, взрывов, работы транспорта.

Так называемый «голос моря» - это волны инфразвука, которые появляются над морской поверхностью, как результат образования вихрей за гребнями волн при сильном ветре. Так как инфразвук мало поглощается, то «голос моря» может распространяться на большие расстояния и достаточно большой скоростью. Это свойство инфразвука служит для предсказания шторма. Некоторые живые организмы способны воспринимать инфразвук. Так медузы имеют «инфа уши», которые слышат инфразвук, имеющий частоту 8-13 Гц. Если шторм находится ещё за сотни километров от берега и приблизится к нему почти через сутки, то медузы его уже слышат и уходят в глубину вод.

Источником инфразвука служат: ураганы, бури и некоторые виды землетрясений. Некоторые животные используют инфразвук при охоте, так считают, что тигр может издавать рев, имеющий частоту 18 Гц. Слоны применяют инфразвук для коммуникаций.

Человек не слышит инфразвук, но эти волны способны вызывать у него беспокойство, страх. Инфразвук может вызывать у человека агрессию.

Некоторые музыкальные инструменты позволяют генерировать инфразвуки. Некоторые музыкальные произведения, состоящие из прерывистых пульсаций, могут вызвать биопсихическую реакцию организма человека, которая может оказать влияние на функции органов человека.

Механизмы, которые работают с частотами меньшими 20$\frac{об}{с},$ генерируют инфразвук. Если автомобиль перемещается со скоростью более 100 $\frac{км}{ч}$, то он источник инфразвука, появляющегося за счет отрыва потока воздуха с его поверхности.

Действие волн инфразвука

Многие процессы, которые происходят в организме человека, находятся в диапазоне частот соответствующем частоте инфразвука, так:

  • человеческое сердце сокращается с частотой 1-2 Гц;
  • дельта - ритм мозга составляет 0,5-3,5 Гц;
  • альфа ритм мозга - 8-13 Гц.

Если колебания инфразвуковой волны совпадает с колебаниями органов человека, то вследствие резонанса, можно получить травму резонирующего органа. От 8 до 15 Гц - это собственная частота колебаний человеческого тела. Можно сказать, что любое движение каждой мышцы создает затухающую микро судорогу тела с этой частотой. Если на тело человека воздействовать инфразвуком и попасть в резонанс, амплитуда микро судорог увеличится в десятки раз.

При частоте инфразвука 7-13 Гц (частота землетрясений и тайфунов, извержения вулканов) животные стараются покинуть очаг стихийного бедствия.

Самым опасным считают инфразвук с частотами 6-9 Гц. Частота инфразвука 7 Гц соответствует колебаниям мозга в состоянии покоя, при таком звуке психотропный эффект максимален, любая умственная нагрузка невозможна, голова разрывается. В середине XX века экспериментально установили, что при частоте инфразвука 6 Гц человек чувствует усталость, затем беспокойство, которое переходит в ужас. При 7 Гц возможно наступление паралича сердца и нервной системы.

Примеры задач с решением

Пример 1

Задание. Летучая мышь издает ультразвук с частотой ${\nu }_0,$ двигаясь в направлении неподвижного резонатора, который настроен на частоту ${\nu }_r\ (рис.1)$. С какой скоростью двигалась мышь, если созданные ей звуковые волны вызвали колебания резонатора? Температура воздуха $T,\ $молярная масса $\mu $, коэффициент Пуассона - $\gamma $.

Решение. В соответствии с эффектом Доплера частота звука, который будет воспринимать резонатор, равна:

\[\nu =\frac{v"+u}{v"-v}{\nu }_0\left(1.1\right),\]

где ${\nu }_0$ - частота звука, который издает мышь; $v"$ - скорость звука в веществе (в воздухе). Так как резонатор неподвижен, то выражение (1.1) преобразуем к виду:

\[\nu =\frac{v"}{v"-v}{\nu }_0\left(1.2\right),\]

Из формулы (1.2) получим скорость полета мыши:

Скорость звука найдем, как:

Для того чтобы волны, которые приходят к резонатору вызывали его колебания их частота должна совпадать с собственной частотой резонатора:

\[\nu ={\nu }_r\left(1.5\right).\]

Учитывая (1.4) и (1.5) выражение (1.3) преобразуем к виду:

Ответ. $v=\sqrt{\frac{\gamma RT}{\mu }}\left(1-\frac{{\nu }_0}{{\nu }_r}\right)\ \frac{м}{с}$

Пример 2

Задание. Почему для коммуникации дельфины применяют ультразвуки с частотой порядка 10-400 Гц, а для звуковой локации используют частоты 750 - $3\cdot {10}^5Гц$?

Решение. Для того чтобы получить большую точность местоположения окружающих объектов следует применять волны, имеющие большие частоты (небольшие длины), так как если размеры предметов больше длины волны, то получается зеркальное отражение волны. С целью осуществления коммуникации целесообразнее использовать длинные волны (низкие частоты), которые слабо затухают при преодолении существенных расстояний.

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Человечеству известно множество способов влияния на организм в терапевтических и профилактических целях. Это и медикаменты, и методы оперативного вмешательства, и способы физиотерапевтического воздействия, и средства альтернативной медицины. Нельзя сказать, что какой-то из этих вариантов является более предпочтительным, так как они чаще всего применяются в сочетании между собой, и подбираются в индивидуальном порядке. К одним из удивительных методов воздействия на человеческий организм относится ультразвук, обсудим применение ультразвука в медицине и технике (кратко) чуть более подробно.

Ультразвук представляет собой особенные звуковые волны. Оны не слышны человеческим ухом, и обладают частотой более 20 000 герц. Человечество уже много лет владеет информацией об ультразвуковых волнах, но в повседневной жизни его используют не так давно.

Использование ультразвука в медицине (кратко)

Ультразвук широко применяется в различных областях медицины – в терапевтических и диагностических целях. Все знакомое его использование в технике - аппарат для УЗИ (ультразвукового исследования).

Использование в медицине для диагностики

Такие звуковые волны используют для исследования различных внутренних органов. Ведь ультразвук хорошо распространяется в мягких тканях нашего тела, и характеризуется относительной безвредностью по сравнению с рентгеновскими лучами. Кроме того его куда проще использовать, чем более информативную магнитно-резонансную терапию.

Применение ультразвука при диагностике позволяет визуализировать состояние различных внутренних органов, его часто применяют в обследовании органов брюшной полости либо таза.

Такое исследование позволяет определить размеры органов и состояние тканей в них. Врач УЗИст может обнаружить опухолевые формирования, кисты, воспалительные процессы и пр.

Применение в медицине в травматологии

УЗИ широко применяется в травматологии, такой прибор как ультразвуковой остеометр позволяет определить не только наличие переломов либо трещин в костях, он еще и используется для обнаружения минимальных изменений костной структуры при подозрении на остеопороз либо при его диагностике.

Эхография (еще одно популярное исследование с использованием ультразвука) позволяет определить наличие внутренних кровотечений при произошедших закрытых травмах груди либо живота. При обнаружении жидкости в брюшной полости эхография дает возможность выяснить локализацию и количество экссудата. Кроме того ее проводят и при диагностике закупорки крупных кровеносных сосудов – для определения величины и местонахождения эмболов, а также тромбов.

Акушерство

Ультразвуковое исследование является одним из наиболее информативных методов отслеживания развития плода и диагностики у него различных нарушений. С его помощью медики с точностью определяют, где находится плацента. Также ультразвуковое исследование во время беременности дает возможность оценить развитие плода, провести его замеры, узнав размеры площади живота, грудной клетки, диаметра и окружности головки и пр.

Довольно часто данный вариант диагностики позволяет заблаговременно обнаружить аномальные состояния у плода и исследовать его перемещения.

Кардиология

Методы ультразвуковой диагностики широко используются для обследования сердца и сосудов. К примеру, так называемый М-режим применяют для обнаружения и распознавания сердечных аномалий. В кардиологии существует необходимость проводить регистрацию движения сердечных клапанов исключительно с частотами около 50 герц, соответственно, такое исследование может проводиться лишь при помощи ультразвука.

Терапевтическое применение ультразвука

Ультразвук широко используют в медицине для достижения терапевтического эффекта. Он оказывает отличное противовоспалительное и рассасывающее воздействие, обладает анальгезирующими и спазмолитическими качествами. Есть данные, что ультразвук также характеризуется антисептическими, сосудорасширяющими, рассасывающими и десенсебилизирующими (противоаллергическими) свойствами. Кроме того ультразвук могут применять для усиления проницаемости кожи при параллельном использовании дополнительных лекарственных средств. Подобный метод терапии носит название фонофореза. При его проведении на ткани пациента наносят не обыкновенный гель для ультразвуковой эмиссии, а лечебные вещества (медикаменты или природные компоненты). Благодаря ультразвуку целебные частицы проникают глубоко в ткани.

В терапевтических целях используется ультразвук с другой частотой, нежели при диагностике, - от 800 000 до 3 000 000 колебаний за одну секунду.

Применение в технике ультразвука кратко

В медицинских целях используют самые разные ультразвуковые приборы. Некоторые из них предназначены лишь для применения в медучреждениях, другие же вполне можно использовать и в домашних условиях. Как раз к последним относятся небольшие ультразвуковые препараты, которые излучают ультразвук в пределах 500-3000кГц. Они позволяют проводить сеансы домашней физиотерапии, оказывают противовоспалительное и обезболивающее воздействие, улучшают кровообращение, стимулируют рассасывание, заживление раневых поверхностей, устранение отечности и рубцовых тканей, а также помогают уничтожить вирусные частицы и пр.

Тем не менее, такую ультразвуковую технику стоит применять лишь после консультации с врачом, так как она имеет ряд противопоказаний к использованию.

Вот таково использование ультразвука в технике и медицине.



План:

    Введение
  • 1 Источники ультразвука
    • 1.1 Свисток Гальтона
    • 1.2 Жидкостный ультразвуковой свисток
    • 1.3 Сирена
  • 2 Ультразвук в природе
  • 3 Применение ультразвука
    • 3.1 Диагностическое применение ультразвука в медицине (УЗИ)
    • 3.2 Терапевтическое применение ультразвука в медицине
    • 3.3 Резка металла с помощью ультразвука
    • 3.4 Приготовление смесей с помощью ультразвука
    • 3.5 Применение ультразвука в биологии
    • 3.6 Применение ультразвука для очистки
    • 3.7 Применение ультразвука для очистки корнеплодов
    • 3.8 Применение ультразвука в эхолокации
    • 3.9 Применение ультразвука в расходометрии
    • 3.10 Применение ультразвука в дефектоскопии
    • 3.11 Ультразвуковая сварка
    • 3.12 Теплоотведение и ультразвук
    • 3.13 Применение ультразвука в гальванотехнике
  • Литература

Введение

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.


1. Источники ультразвука

Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.


1.1. Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.


1.2. Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов 20 века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.


1.3. Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это, во-первых, сделать как можно больше отверстий в роторе и, во-вторых, достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.


2. Ультразвук в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые - Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые - Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 - 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 - 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отражёнными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полёта эхолокационную частоту таким образом, чтобы частота отражённого ультразвука оставалась в области максимальной чувствительности их «слуховых» центров, они могут определить скорость собственного перемещения.

У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых.

Эхолокацию используют для навигации и птицы - жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки - от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.

Ультразвуковую эхолокацией в воде пользуются китообразные.


3. Применение ультразвука

3.1. Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.


3.2. Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита. Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).


3.3. Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.


3.4. Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

3.5. Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [источник не указан 107 дней ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.


3.6. Применение ультразвука для очистки

В лабораториях и на производстве применяются ультразвуковые ванны для очистки лабораторной посуды и деталей от мелких частиц. В ювелирной промышленности ювелирные изделия очищают от мелких частиц полировальной пасты в ультразвуковых ваннах. В девяностые годы XX века на Томском заводе НПО «РЕТОН» был получен патент на изобретение и выпущено ультразвуковое стирающее устройство «Ретона», в основе действия которого лежит ультразвук низкой частоты. Позже появилось множество ультразвуковых устройств для стирки текстильных изделий. Общим для них является принцип действия: упругие волны ультразвука действуют на загрязнения, «выбивая» грязь с помощью поверхностно-активных веществ из волокон ткани.


3.7. Применение ультразвука для очистки корнеплодов

В некоторых производствах применяют ультразвуковые ванны для очистки корнеплодов (картофеля, моркови, свеклы и др.) от частиц земли.

3.8. Применение ультразвука в эхолокации

В рыбной промышленности применяют ультразвуковую эхолокацию для обнаружения косяков рыб. Ультразвуковые волны отражаются от косяков рыб и приходят в приёмник ультразвука раньше, чем ультразвуковая волна, отразившаяся от дна.

3.9. Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры.

3.10. Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

3.11. Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

3.12. Теплоотведение и ультразвук

Существуют три способа отвода тепла - излучение, конвекция и теплопроводность. И на их основе было разработано множество устройств для отвода тепла от электронных компонентов и систем. Наиболее эффективным способом является, прежде всего, передача тепла через границы раздела двух материалов, которые находятся в тесном контакте. Радиаторы и теплорассеиватели применяют для отвода тепла путем теплопроводности. 1

Производители электроники, ориентируясь на требования сегодняшнего потребителя, стремятся к повышению эффективности своих устройств и уменьшению их габаритов и веса. Одна из главных задач, которые необходимо решить конструкторам для достижения поставленных целей, - это разработка эффективной системы отвода тепла для предотвращения перегрева изделий, что отрицательно сказывается на их характеристиках и надежности.

Для эффективного отвода тепла необходим тесный контакт между материалами. Крайне важно, чтобы не было пустот в слое клея, который обычно представляет собой хорошо проводящий тепло материал или термопасту. Образование расслоений или иных воздушных образований ухудшает отвод тепла и приводит к перегреву изделия. Поэтому очень важно вовремя выявлять эти дефекты.