Сообщение о новых научных исследованиях планет солнечной. Сколько их

Физикам уже более ста лет известно о квантовых эффектах, например, способности квантов исчезать в одном месте и появляться в другом, или же находиться в двух местах одновременно. Однако поразительные свойства квантовой механики применимы не только в физике, но и в биологии.

Лучший пример квантовой биологии - фотосинтез: растения и некоторые бактерии используют энергию солнечного света, чтобы построить нужные им молекулы. Оказывается, фотосинтез на самом деле опирается на поразительное явление - маленькие массы энергии «изучают» все возможные пути для самоприменения, а затем «выбирают» самый эффективный. Возможно, навигация птиц, мутации ДНК и даже наше обоняние так или иначе опираются на квантовые эффекты. Хотя эта область науки пока весьма умозрительна и спорна, учёные считают, что однажды почерпнутые из квантовой биологии идеи могут привести к созданию новых лекарств и биомиметических систем (биомиметрика - ещё одна новая научная область, где биологические системы и структуры используются для создания новых материалов и устройств).

3. Экзометеорология


Юпитер

Наряду с экзоокеанографами и экзогеологами, экзометеорологи заинтересованы в изучении природных процессов, происходящих на других планетах. Теперь, когда благодаря мощным телескопам стало возможно изучать внутренние процессы на близлежащих планетах и спутниках, экзометеорологи могут следить за их атмосферными и погодными условиями. и Сатурн со своими невероятными масштабами - первые кандидаты для исследований, так же как и Марс с регулярными пылевыми бурями.

Экзометеорологи изучают даже планеты за пределами нашей Солнечной системы. И что интересно, именно они могут в итоге найти признаки внеземной жизни на экзопланетах путём обнаружения в атмосфере органических следов или повышенного уровня углекислого газа - признака индустриальной цивилизации.

4. Нутригеномика

Нутригеномика - это изучение сложных взаимосвязей между пищей и экспрессией генома. Учёные, работающие в этой области, стремятся к пониманию роли генетических вариаций и диетических реакций на то, как именно питательные вещества влияют на геном.

Еда действительно оказывает огромное влияние на здоровье - и начинается всё в буквальном смысле на молекулярном уровне. Нутригеномика работает в обоих направлениях: изучает, как именно наш геном влияет на гастрономические предпочтения, и наоборот. Основной целью дисциплины является создание персонализированного питания - это нужно для того, чтобы наша еда идеально подходила нашему уникальному набору генов.

5. Клиодинамика

Клиодинамика - это дисциплина, сочетающая в себе историческую макросоциологию, экономическую историю (клиометрику), математическое моделирование долгосрочных социальных процессов, а также систематизацию и анализ исторических данных.

Название происходит от имени греческой музы истории и поэзии Клио. Проще говоря, клиодинамика - это попытка предугадать и описать широкие социальные связи истории - и для изучения прошлого, и как потенциальный способ предсказать будущее, например, для прогнозов социальных волнений.

6. Синтетическая биология


Синтетическая биология - это проектирование и строительство новых биологических частей, устройств и систем. Она также включает в себя модернизацию существующих биологических систем для бесконечного количества полезных применений.

Крейг Вентер, один из ведущих специалистов в этой области, заявил в 2008-м году, что он воссоздал весь геном бактерии путем склеивания её химических компонентов. Два года спустя его команда создала «синтетическую жизнь» - молекулы ДНК, созданные при помощи цифрового кода, а затем напечатанные на 3D-принтере и внедрённые в живую бактерию.

В дальнейшем биологи намерены анализировать различные типы генома для создания полезных организмов для внедрения в тело и биороботов, которые смогут производить химические вещества - биотопливо - с нуля. Есть также идея создать борющуюся с загрязнениями искусственную бактерию или вакцины для лечения серьёзных болезней. Потенциал у этой научной дисциплины просто огромный.

7. Рекомбинантная меметика

Эта область науки только зарождается, однако уже сейчас ясно, что это только вопрос времени - рано или поздно учёные получат лучшее понимание всей человеческой ноосферы (совокупности всей известной людям информации) и того, как распространение информации влияет на практически все аспекты человеческой жизни.

Подобно рекомбинантной ДНК, где различные генетические последовательности собираются вместе, чтобы создать нечто новое, рекомбинантная меметика изучает, каким образом - идеи, передающиеся от человека к человеку - могут быть скорректированы и объединены с другими мемами и мемеплексами - устоявшимися комплексами взаимосвязанных мемов. Это может оказаться полезным в «социально-терапевтических» целях, например, борьбы с распространением радикальных и экстремистских идеологий.

8. Вычислительная социология

Как и клиодинамика, вычислительная социология занимается изучением социальных явлений и тенденций. Центральное место в этой дисциплине занимает использование компьютеров и связанных с ними технологий обработки информации. Конечно, эта дисциплина получила развитие только с появлением компьютеров и повсеместным распространением интернета.

Особое внимание в этой дисциплине уделяется огромным потокам информации из нашей повседневной жизни, например, письмам по электронной почте, телефонным звонкам, постам в социальных сетях, покупкам по кредитной карте, запросам в поисковиках и так далее. Примерами работ может послужить исследование структуры социальных сетей и того, как через них распространяется информация, или же как в интернете возникают интимные отношения.

9. Когнитивная экономика

Как правило, экономика не связана с традиционными научными дисциплинами, но это может измениться из-за тесного взаимодействия всех научных отраслей. Эту дисциплину часто путают с поведенческой экономикой (изучением нашего поведения в контексте экономических решений). Когнитивная же экономика - это наука о том, как мы думаем. Ли Колдуэлл, автор блога об этой дисциплине, пишет о ней:

«Когнитивная (или финансовая) экономика… обращает внимание на то, что на самом деле происходит в разуме человека, когда он делает выбор. Что представляет собой внутренняя структура принятия решения, что на это влияет, какую информацию в этот момент воспринимает разум и как она обрабатывается, какие у человека внутренние формы предпочтения и, в конечном счете, как все эти процессы находят отражение в поведении?».

Иными словами, учёные начинают свои исследования на низшем, упрощённом уровне, и формируют микромодели принципов принятия решений для разработки модели масштабного экономического поведения. Часто эта научная дисциплина взаимодействует со смежными областями, например, вычислительной экономикой или когнитивной наукой.

10. Пластиковая электроника

Обычно электроника связана с инертными и неорганическими проводниками и полупроводниками вроде меди и кремния. Но новая отрасль электроники использует проводящие полимеры и проводящие небольшие молекулы, основой которых является углерод. Органическая электроника включает в себя разработку, синтез и обработку функциональных органических и неорганических материалов наряду с развитием передовых микро- и нанотехнологий.

По правде говоря, это не такая уж и новая отрасль науки, первые разработки были сделаны ещё в 1970-х годах. Однако свести все наработанные данные воедино получилось только недавно, в частности, за счёт нанотехнологической революции. Благодаря органической электронике у нас скоро могут появиться органические солнечные батареи, самоорганизующиеся монослои в электронных устройствах и органические протезы, которые в перспективе смогут заменить человеку повреждённые конечности: в будущем так называемые киборги, вполне возможно, будут состоять в большей степени из органики, чем из синтетических частей.

11. Вычислительная биология

Если вам одинаково нравятся математика и биология, то эта дисциплина как раз для вас. Вычислительная биология стремится понять биологические процессы посредством языка математики. Это в равной степени используется и для других количественных систем, например, физики и информатики. Учёные из Университета Оттавы объясняют, как это стало возможным:

«По мере развития биологического приборостроения и лёгкому доступу к вычислительным мощностям, биологии как таковой приходится оперировать всё большим количеством данным, а скорость получаемых знаний при этом только растёт. Таким образом, осмысление данных теперь требует вычислительного подхода. В то же время, с точки зрения физиков и математиков, биология доросла до такого уровня, когда теоретические модели биологических механизмов могут быть проверены экспериментально. Это и привело к развитию вычислительной биологии.»

Ученые, работающие в этой области, анализируют и измеряют всё, начиная от молекул и заканчивая экосистемами.

Как работает «мозгопочта» - передача сообщений от мозга к мозгу через интернет

10 тайн мира, которые наука, наконец, раскрыла

10 главных вопросов о Вселенной, ответы на которые учёные ищут прямо сейчас

8 вещей, которые не может объяснить наука

2500-летняя научная тайна: почему мы зеваем

3 самых глупых аргумента, которыми противники Теории эволюции оправдывают своё невежество

Можно ли с помощью современных технологий реализовать способности супергероев?

Наука

Астрономы открыли новую небольшую планету на краю Солнечной системы и утверждают, что еще дальше скрывается еще одна более крупная планета.

В другом исследовании команда ученых обнаружила астероид со своей системой колец , похожих на кольца Сатурна.

Карликовые планеты

Новая карликовая планета пока была названа 2012 VP113 , а ее солнечная орбита находится далеко за пределами известного нам края Солнечной системы.

Ее отдаленное положение указывает на гравитационное влияние другой более крупной планеты, которая возможно в 10 раз больше Земли и которую еще предстоит обнаружить.

Три фотографии открытой карликовой планеты 2012 VP113, сделанные с разницей в 2 часа 5 ноября 2012 года.

Ранее считалось, что в этой отдаленной части Солнечной системы находится только одна маленькая планета Седна .

Орбита Седны находится на расстоянии, которое в 76 раз больше расстояния от Земли до Солнца, а ближайшая орбита 2012 VP113 в 80 раз больше расстояния от Земли до Солнца или составляет 12 миллиардов километров.

Орбита Седны и карликовой планеты 2012 VP113. Также пурпурным цветом обозначены орбиты планет-гигантов. Пояс Койпера обозначен синими точками.

Исследователи использовали камеру DECam в Андах Чили для открытия 2012 VP113. С помощью телескопа Магеллан они установили ее орбиту и получили информацию о ее поверхности.

Облако Оорта

Карликовая планета Седна.

Диаметр новой планеты составляет 450 км по сравнению с 1000 км у Седны. Она может быть частью Облака Оорта - области, которая существует за пределами пояса Койпера – пояса ледяных астероидов, которые вращаются еще дальше планеты Нептун.

Ученые намерены продолжить поиск отдаленных объектов в Облаке Оорта, так как они могут многое рассказать о том, как формировалась и развивалась Солнечная система.

Они также считают, что размер некоторых из них может быть больше Марса или Земли , но так как они находятся так далеко, их сложно обнаружить с помощью существующих технологий.

Новый астероид в 2014 году

Другая команда исследователей нашла ледяной астероид, окруженный двойной системой колец, похожих на кольца Сатурна. Только у трех планет: Юпитера, Нептуна и Урана есть кольца.

Ширина колец вокруг 250-километрового астероида Чарикло составляет 7 и 3 километра соответственно, а расстояние между ними – 8 км. Они были обнаружены телескопами с семи мест в Южной Америке, включая Европейскую южную обсерваторию в Чили.

Ученые не могут объяснить наличие колец у астероида. Возможно, они состоят из камней и частиц льда, сформировавшихся из-за столкновения с астероидом в прошлом.

Возможно астероид находится в похожей эволюционной стадии, что и Земля раннего периода, после того как объект размером с Марс столкнулся с ней и сформировал кольцо мусора, которое соединилось в Луну.

Научные открытия совершаются постоянно. На протяжении года публикуется огромное количество докладов и статей, посвящённых различным темам, и оформляются тысячи патентов на новые изобретения. Среди всего этого можно найти поистине невероятные достижения. В данной статье представлено десять самых интересных научных открытий, которые были сделаны в первой половине 2016 года.

1. Небольшая генетическая мутация, произошедшая 800 миллионов лет назад, привела к возникновению многоклеточных форм жизни

Согласно результатам исследований, древняя молекула, GK-PID, стала причиной того, что одноклеточные организмы начали эволюционировать в многоклеточные организмы примерно 800 миллионов лет назад. Было установлено, что молекула GK-PID выступала в роли «молекулярного карабина»: она собирала хромосомы вместе и закрепляла их на внутренней стенке клеточной мембраны, когда происходило деление. Это позволяло клеткам размножаться должным образом и не становиться злокачественными.

Увлекательное открытие указывает на то, что древняя версия GK-PID вела себя раньше не так, как сейчас. Причина, почему она превратилась в «генетический карабин», связана с небольшой генетической мутацией, которая воспроизвела саму себя. Выходит, что возникновение многоклеточных форм жизни - это результат одной идентифицируемой мутации.

2. Открытие нового простого числа

В январе 2016 года математики открыли новое простое число в рамках "Great Internet Mersenne Prime Search", широкомасштабного проекта добровольных вычислений по поиску простых чисел Мерсенна. Это 2^74,207,281 - 1.

Вы, наверное, хотели бы уточнить, для чего был создан проект "Great Internet Mersenne Prime Search". Современная криптография для расшифровки кодированной информации использует простые числа Мерсенна (всего известно 49 таких чисел), а также комплексные числа. "2^74,207,281 - 1" на данный момент является самым длинным из всех существующих простых чисел (оно длиннее своего предшественника почти на 5 миллионов цифр). Общее количество цифр, из которых состоит новое простое число, составляет около 24 000 000, поэтому "2^74,207,281 - 1" - единственный практический способ записать его на бумаге.

3. В солнечной системе была обнаружена девятая планета

Ещё до открытия Плутона в ХХ веке учёные выдвинули предположение о том, что за пределами орбиты Нептуна находится девятая планета, Планета Х. Это допущение было обусловлено гравитационной кластеризацией, которая могла быть вызвана только массивным объектом. В 2016 году исследователи из Калифорнийского технологического института представили доказательства того, что девятая планета - с орбитальным периодом 15 000 лет - действительно существует.

По словам астрономов, сделавших данное открытие, существует «всего лишь 0,007%-ная вероятность (1:15 000) того, что кластеризация является совпадением». На данный момент существование девятой планеты остаётся гипотетическим, однако астрономы вычислили, что её орбита является огромной. Если Планета Х действительно существует, то она приблизительно в 2-15 раз весит больше Земли и находится от Солнца на расстоянии 600-1200 астрономических единиц. Астрономическая единица равна 150 000 000 километров; это означает, что девятая планета удалена от Солнца на 240 000 000 000 километров.

4. Обнаружен практически вечный способ хранения данных

Рано или поздно всё устаревает, и на данный момент не существует способа, который позволил бы хранить данные на одном устройстве в течение действительно длительного периода времени. Или существует? Недавно учёные из Саутгемптонского университета сделали удивительное открытие. Они использовали нано-структурированное стекло для того, чтобы успешно создать процесс записи и извлечения данных. Запоминающее устройство представляет собой небольшой стеклянный диск размером с монету в 25 центов, который способен хранить 360 терабайт данных и не подвержен влиянию высоких температур (до 1000 градусов Цельсия). Средний срок его годности при комнатной температуре составляет приблизительно 13,8 миллиарда лет (примерно столько же времени существует наша Вселенная).

Данные записываются на устройство при помощи сверхбыстрого лазера посредством коротких, интенсивных световых импульсов. Каждый файл представляет собой три слоя наноструктурных точек, которые находятся друг от друга на расстоянии всего 5 микрометров. Считывание данных выполняется в пяти измерениях благодаря трёхмерному расположению наноструктурных точек, а также их размеру и направленности.

5. Слепоглазковые рыбы, которые способны «ходить по стенам», проявляют черты сходства с четвероногими позвоночными

За последние 170 лет наука выяснила, что позвоночные, обитающие на суше, произошли от рыб, которые плавали в морях древней Земли. Однако исследователи из Института технологий Нью-Джерси обнаружили, что тайваньские слепоглазковые рыбы, которые способны «ходить по стенам», имеют те же анатомические особенности, что и земноводные или рептилии.

Это очень важное открытие с точки зрения эволюционной адаптации, поскольку оно может помочь учёным лучше понять, каким образом доисторические рыбы эволюционировали в наземных четвероногих. Разница между слепоглазковыми и другими видами рыб, которые способны передвигаться по суше, заключается в их походке, которая обеспечивает при подъёме «поддержку тазового пояса».

6. Частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты

В комиксах и мультфильмах Вы обычно видите, что ракеты приземляются на планеты и Луну вертикальным образом, однако в реальности сделать это крайне сложно. Правительственные учреждения вроде НАСА и Европейского космического агентства разрабатывают ракеты, которые либо падают в океан, откуда их потом достают (дорогое удовольствие), либо целенаправленно сгорают в атмосфере. Существование возможности вертикально посадить ракету позволило бы сэкономить невероятное количество денег.

8 апреля 2016 года частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты; ей удалось это сделать на автономном беспилотном корабле-космопорте (англ. autonomous spaceport drone ship). Это невероятное достижение позволит сэкономить деньги, а также время между запусками.

Для генерального директора компании "SpaceX", Элона Маска, данная цель оставалась приоритетной в течение многих лет. Несмотря на то, что достижение принадлежит частному предприятию, технология вертикального приземления станет доступна и правительственным учреждениям вроде НАСА, чтобы они смогли продвинуться дальше в освоении космоса.

7. Кибернетический имплантат помог парализованному человеку пошевелить своими пальцами

Мужчина, который был парализован в течение шести лет, смог пошевелить своими пальцами благодаря небольшому чипу, вживленному в его мозг.

Это заслуга исследователей из Университета штата Огайо. Им удалось создать устройство, которое представляет собой небольшой имплантат, связанный с электронным рукавом, надеваемым на руку пациента. Этот рукав использует провода для стимуляции определённых мышц, чтобы вызвать движение пальцев в реальном времени. Благодаря чипу, парализованный мужчина смог даже сыграть в музыкальную игру "Guitar Hero", к превеликому удивлению врачей и учёных, принявших участие в проекте.

8. Стволовые клетки, вживлённые в мозг пациентов, которые перенесли инсульт, позволяют им снова ходить

В ходе клинических испытаний исследователи из Школы медицины при Стэнфордском университете вживили модифицированные стволовые клетки человека прямо в мозг восемнадцати пациентов, перенёсших инсульт. Процедуры прошли успешно, без каких-либо негативных последствий, за исключением слабой головной боли, наблюдавшейся у некоторых пациентов после наркоза. У всех пациентов период восстановления после инсульта проходил довольно быстро и успешно. Более того, пациенты, которые ранее передвигались только на инвалидных креслах, смогли снова свободно ходить.

9. Углекислый газ, закачанный в грунт, способен превращаться в твёрдый камень

Улавливание углерода является важной частью поддержания баланса выбросов CO2 на планете. Когда топливо сгорает, происходит высвобождение углекислого газа в атмосферу. Это является одной из причин глобального изменения климата. Исландские учёные, возможно, обнаружили способ, как сделать так, чтобы углерод не попадал в атмосферу и не усугублял проблему парникового эффекта.

Они закачали CO2 в вулканические породы, ускорив естественный процесс превращения базальта в карбонаты, которые затем становятся известняком. Этот процесс обычно занимает сотни тысяч лет, однако исландским учёным удалось сократить его до двух лет. Углерод, закачанный в грунт, может храниться под землёй или использоваться в качестве строительного материала.

10. У Земли есть вторая Луна

Учёные НАСА обнаружили астероид, который находится на орбите Земли и, следовательно, является вторым постоянным околоземным спутником. На орбите нашей планеты есть множество объектов (космические станции, искусственные спутники и прочее), однако видеть мы можем только одну Луну. Тем не менее, в 2016 году НАСА подтвердило существование 2016 HO3.

Астероид находится далеко от Земли и больше находится под гравитационным воздействием Солнца, нежели нашей планеты, однако он действительно вращается вокруг её орбиты. 2016 HO3 значительно меньше Луны: его диаметр составляет всего 40-100 метров.

По словам Пола Чодаса, менеджера Центра НАСА по изучению околоземных объектов, 2016 HO3, который более ста лет был квазиспутником Земли, через несколько столетий покинет орбиту нашей планеты.

Постарайся найти в дополнительной литературе, Интернете информацию о новых научных исследованиях планет Солнечной системы. Подготовь сообщение.

Ответ

Новые космические исследования. Плутон перестал быть планетой.

В научных исследованиях планет Солнечной системы самым ярким событием называют недавний пролёт космической станции мимо Плутона, лишившегося статуса планеты.

Пролетев 14 июля 2015 ода всего в 12 500 км от поверхности этого небесного тела, космический аппарат смог собрать огромное количество разнообразных данных, в том числе о климате и геологии этой карликовой планеты. Сейчас идет фаза активной передачи собранных данных на Землю и постепенно перед нами раскрываются особенности рельефа поверхности Плутона в том его месте, которое называется его сердцем. Уже есть предположения, что под поверхностью небесного тела может находиться океан.

На поверхности Плутона были обнаружены движущиеся льдины и целые горы водяного льда, достигающие высоты 3 км, а также молодая поверхность, практически свободная от кратеров и имеющая форму сердца. Это может указывать на наличие под ее поверхностью океана, который может вызывать повышенную геологическую активность небесного тела.

Последние научные исследования планет Солнечной системы ещё не позволяют точно утверждать или опровергать выдвинутые гипотезы, но учёные надеются, что по мере поступления новой более подробной информации, в этот вопрос удастся внести большую ясность.

На Плутоне есть океан. Научные исследования планет Солнечной системы 2015 года самым ярким событием имеют недавний пролёт мимо Плутона, лишившегося статуса планеты, миссии NASA «Новые горизонты». Пролетев 14 июля всего в 12500 км от поверхности этого планетоида, космический аппарат смог собрать огромный массив разнообразных данных, в том числе о климате и геологии этой карликовой планеты. Сейчас идет фаза активной передачи собранных данных на Землю и постепенно перед нами раскрываются нюансы: особенности рельефа поверхности Плутона в том его месте, которое напоминает стилизованное сердце. Уже есть предположения, что под поверхностью небесного тела может находиться океан - так было объявлено на недавней пресс-конференции для представителей СМИ. На поверхности Плутона были обнаружены движущиеся льдины и целые горы водяного льда, достигающие высоты 3 км, а также молодая поверхность, практически свободная от кратеров и имеющая форму сердца. Это может указывать на наличие под поверхностью далёкого небесного тела океана, который может вызывать повышенную геологическую активность планетоида. Последние научные исследования планет Солнечной системы ещё не позволяют точно утверждать или опровергать выдвинутые гипотезы, но учёные надеются, что по мере поступления новой более подробной информации от зонда на протяжении ближайших 16 месяцев, в этот вопрос удастся внести большую ясность.

Различия между Плутоном и спутником Нептуна Тритоном Ранее учёные выдвигали предположения о значительном сходстве между Плутоном и спутником Нептуна Тритоном. Но самые первые данные, полученные от аппарата «Новые горизонты», продемонстрировали значительное различие между ними. В 2014 году учёные продемонстрировали наиболее подробную карту Тритона, которая существовала на тот момент. Данные для карты были предоставлены «Вояджером-2», когда тот пролетал мимо Тритона в далёком уже 1989 году, устремляясь вон из Солнечной системы. Американцы создали эту карту, в частности, для сравнения Тритона и Плутона. Поскольку оба этих космических объекта родом с окраин Солнечной системы, то было предположено, что между ними есть немало общего

Океан под ледяной коркой Энцелада Последние исследования планет Солнечной системы 2015, в том числе, высокоточное измерение крохотного покачивания Энцелада - спутника Сатурна, которое заметно лишь на снимках с высоким разрешением космического аппарата «Кассини», позволили учёным предположить, что под его тонкой ледяной коркой находится огромный океан. Планетологи Корнелльского университета решили проанализировать собранный за более чем 7 лет аппаратом Кассини, вращающимся по орбите вокруг Сатурна с 2004 года, архив снимков Энцелада. Учёные сравнивали различные по времени снимки Энцелада, проводили измерения и тщательно отмечали положение особенностей топографии поверхности объекта. Для этого ими вручную были нанесены 5800 точек. В результате были обнаружены крохотные отклонения, называемые либрациями, но их амплитуда была всё же намного больше той, которая должна бы присутствовать при условии жёсткой связи каменистого ядра и коры Энцелада. На основании этого был сделан вывод, что под его поверхностью находится мировой океан, который покрывает практически всю планету, поскольку региональные подповерхностные моря, предполагавшиеся возле южного полюса, не могли бы дать наблюдаемого эффекта. Управляемый роботами космический транспортный узел Новые методы исследования планет Солнечной системы должны предполагать монтаж, ремонт и дозаправку космических кораблей на расположенных вдали от Земли станциях. Агентство по перспективным оборонным научно-исследовательским разработкам США (DAPRA) рассчитывает, что в персонале на этих станциях будут только роботы. Под эгидой DAPRA разрабатывается роботизированная многофункциональная рука-манипулятор, которая призвана стать важнейшим элементом подобного транспортного узла в самое ближайшее время. На технологическом форуме, недавно прошедшем в Сент-Луисе, представитель организации поведал, что технологический узел для обслуживания космических кораблей необходимо разместить на геостационарной орбите, расположенной в 36000 км от Земли. В этом случае удастся минимизировать влияние остаточной атмосферы планеты на его движение. Но у такого позиционирования есть и большой минус - на таком большом удалении от Земли ослабевает её защита от космической радиации, поэтому астронавты там получали бы недопустимо высокие дозы облучения. В связи с этим и возникла идея использования роботов. Подобная «рука» уже давно действует на МКС, но новая должна быть более автоматизированной и безопасной.