Смысл числа e. История числа е

Описывать е как «константу, приблизительно равную 2,71828…» - это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи - это соотношение длины окружности к диаметру, одинаковое для всех окружностей . Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Понятие экспоненциального роста

Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:

  • Бактерии делятся и «удваиваются» в количестве каждые 24 часа
  • Мы получаем вдвое больше лапшинок, если разламываем их пополам
  • Ваши деньги каждый год увеличиваются вдвое, если вы получаете 100% прибыли (везунчик!)

И выглядит это примерно так:

Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.

Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:

рост = 2 x

Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:

рост = (1+100%) x

Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?

Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:

рост = (1+прирост ) x

Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.

Приглядимся поближе

Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.

Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:

Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.

Эта информация как-то изменит наше уравнение?

Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.

| Число Эйлера (Е)

e - основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Приблизительно равно 2,71828. Иногда число называют числом Эйлера или числом Непера . Обозначается строчной латинской буквой «e ».

История

Число e впервые появилось в математике как нечто незначительное. Это случилось в 1618 г. В приложении к работе Джона Непера (Napier) по логарифмам была дана таблица натуральных логарифмов различных чисел. Однако никто не понял, что это логарифмы по основанию e , так как в понятие логарифма того времени такая вещь как основание не входила. Это сейчас мы называем логарифмом степень, в которую нужно возвести основание, чтобы получить требуемое число. Мы еще вернемся к этому позже. Таблица в приложении скорее всего была сделана Отредом (Ougthred), хотя автор ее не был указан. Через несколько лет, в 1624 г., в математической литературе снова появляется e , но опять-таки завуалированно. В этом году Бриггс (Briggs) дал численное приближение десятичного логарифма e , но само число e в его работе не упоминается.

Следующее появление числа e снова cомнительно. В 1647 г. Сен-Винсент (Saint-Vincent) вычислил площадь сектора гиперболы. Понимал ли он связь с логарифмами, остается только догадываться, но даже если понимал, то вряд ли он мог прийти к самому числу e . Только к 1661 г. Гюйгенс (Huygens) понял связь между равнобочной гиперболой и логарифмами. Он доказал, что площадь под графиком равнобочной гиперболы xy = 1 равнобочной гиперболы на промежутке от 1 до e равна 1. Это свойство делает e основанием натуральных логарифмов, но это не понимали математики того времени, однако они медленно приближались к этому пониманию.

Гюйгенс сделал следующий шаг в 1661 г. Он определил кривую, которую назвал логарифмической (в нашей терминологии мы будем называть ее экспоненциальной). Это кривая вида y = ka x . И снова появляется десятичный логарифм e , который Гюйгенс находит с точностью до 17 десятичных цифр . Однако он возник у Гюйгенса как некая константа и не был связан с логарифмом числа (итак, снова подошли вплотную к e , но само число e остается неузнанным).

В дальнейших работах по логарифмам опять-таки число e не появляется в явном виде. Однако изучение логарифмов продолжается. В 1668 г. Никола Меркатор (Nicolaus Mercator) опубликовал работу Logarithmotechnia , которая содержит разложение в ряд log(1 + x) . В этой работе Меркатор впервые использует название “натуральный логарифм” для логарифма по основанию e . Число e явно опять не появляется, а остается неуловимым где-то в стороне.

Удивительно, что число e в явном виде впервые возникает не в связи с логарифмами, а в связи с бесконечными произведениями. В 1683 г. Якоб Бернулли пытается найти

Он использует биномиальную теорему для доказательства того, что этот предел находится между 2 и 3, и это мы можем рассматривать как первое приближение числа e . Хотя мы принимаем это за определение e , это первый случай, когда число определяется как предел. Бернулли, конечно, не понял связи между своей работой и работами по логарифмам.

Ранее упоминалось, что логарифмы в начале их изучения никак не связывались с экспонентами. Конечно, из уравнения x = a t мы находим, что t = log a x , но это гораздо более поздний способ восприятия. Здесь мы в самом деле подразумеваем под логарифмом функцию, тогда как сначала логарифм рассматривался только как число, которое помогало в вычислениях. Возможно, Якоб Бернулли первым понял, что логарифмическая функция является обратной показательной. С другой стороны, первым, кто связал логарифмы и степени, мог быть Джеймс Грегори (Games Gregory). В 1684 г. он определенно осознал связь между логарифмами и степенями, но, возможно, он был не первым.

Мы знаем, что число e появилось в том виде, как сейчас, в 1690 г. Лейбниц в письме к Гюйгенсу использовал для него обозначение b . Наконец у e появилось обозначение (хотя оно не совпадало с современным), и это обозначение было признано.

В 1697 г. Иоганн Бернулли начинает изучение показательной функции и публикует Principia calculi exponentialum seu percurrentium . В этой работе вычисляются суммы различных экспоненциальных рядов, и получены некоторые результаты их почленным интегрированием.

Леонард Эйлер (Euler) ввел так много математических обозначений, что неудивительно, что обозначение e также принадлежит ему. Кажется смешным утверждение, что он использовал букву e из-за того, что это первая буква его имени. Вероятно, это даже не потому, что e взято от слова “exponential”, а просто это следующая гласная за “a”, а Эйлер уже использовал обозначение “a” в своей работе. Независимо от причины, обозначение впервые появляется в письме Эйлера Гольдбаху (Goldbach) в 1731 г. Он сделал много открытий, изучая e в дальнейшем, но только в 1748 г. в Introductio in Analysin infinitorum он дал полное обоснование всем идеям, связанным с e . Он показал, что

Эйлер также нашел первые 18 десятичных знаков числа e :

Правда, не объясняя, как он их получил. Похоже, что он вычислил это значение сам. На самом деле, если взять около 20 членов ряда (1), то получится точность, которую получил Эйлер. Среди других интересных результатов в его работе приведена связь между функциями синус и косинус и комплексной показательной функцией, которую Эйлер вывел из формулы Муавра.

Интересно, что Эйлер нашел даже разложение числа e в непрерывные дроби и привел образцы такого разложения. В частности, он получил

Эйлер не привел доказательства, что эти дроби так же продолжаются, однако он знал, что если бы такое доказательство было, то оно доказывало бы иррациональность e . Действительно, если бы непрерывная дробь для (e - 1) / 2 , продолжалась так же, как в приведенном образце, 6,10,14,18,22,26, (каждый раз прибавляем по 4), то она никогда бы не прервалась, и (e -1) / 2 (а значит, и e ) не могло бы быть рациональным. Очевидно, это первая попытка доказать иррациональность e .

Первым, кто вычислил довольно большое число десятичных знаков числа e , был Шенкс (Shanks) в 1854 г. Глейшер (Glaisher) показал, что первые 137 знаков, вычисленные Шенксом, были верными, однако далее нашел ошибку. Шенкс ее исправил, и было получено 205 десятичных знаков числа e . В действительности, нужно около 120 членов разложения (1), чтобы получить 200 верных знаков числа e .

В 1864 г. Бенджамен Пирс (Peirce) стоял у доски, на которой было написано

В своих лекциях он мог бы сказать своим студентам: “Джентльмены, мы не имеем ни малейшего представления, что бы это значило, но мы можем быть уверены, что это значит что-то очень важное”.

Большинство считает, что Эйлер доказал иррациональность числа e . Однако это сделал Эрмит (Hermite) в 1873 г. До сих пор остается открытым вопрос, является ли число e e алгебраическим. Последний результат в этом направлении - это то, что по крайней мере одно из чисел e e и e e 2 является трансцендентным.

Далее вычисляли следующие десятичные знаки числа e . В 1884 г. Бурман (Boorman) вычислил 346 знаков числа e , из которых первые 187 совпали со знаками Шенкса, но последующие различались. В 1887 г. Адамс (Adams) вычислил 272 цифры десятичного логарифма e .

J.J.Connor, E.F.Robertson. The number e .

e - математическая константа, основание натурального логарифма, иррациональное и трансцендентное число.e = 2,718281828459045… Иногда числоe называютчислом Эйлера илинеперовым числом . Играет важную роль в дифференциальном и интегральном исчислении.

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Джона Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 г.). Однако это название не совсем корректно, т. к. у него логарифм числаx был равен.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 г. Негласно, потому что там содержится только таблица натуральных логарифмов, сама же константа не определена. Предполагается, что автором таблицы был английский математик Вильям Отред. Саму же константу впервые вывел швейцарский математик Якоб Бернулли при попытке вычислить значение следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Готфрида Лейбница Кристиану Гюйгенсу, 1690 и 1691 гг. Буквуe начал использовать Леонард Эйлер в 1727 г., а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 г. Соответственно,e иногда называютчислом Эйлера . Хотя впоследствии некоторые учёные использовали буквуc , букваe применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается словоexponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквыa ,b ,c иd уже довольно широко использовались в иных целях, иe была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбралe как первую букву в своей фамилии (нем.Euler ), поскольку он был очень скромным человеком и всегда старался подчеркнуть значимость труда других людей.

Способы запоминания

Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 ,90 и45 градусов).

В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

В ещё одном небезынтересном способе предлагается запомнить число e с точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки):.

В четвёртом способе предлагается запомнить e как.

Грубое (с точностью до 0,001), но красивое приближение полагает e равным. Совсем грубое (с точностью 0,01) приближение даётся выражением.

«Правило Боинга»: даёт неплохую точность 0,0005.

«Стих»: Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли.

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 02123 40784 98193 34321 06817 01210 05627 88023 51920

Как нечто незначительное. Это случилось в 1618 г. В приложении к работе Непера (Napier) по логарифмам была дана таблица натуральных логарифмов различных чисел. Однако никто не понял, что это логарифмы по основанию , так как в понятие логарифма того времени такая вещь как основание не входила. Это сейчас мы называем логарифмом степень, в которую нужно возвести основание, чтобы получить требуемое число. Мы еще вернемся к этому позже. Таблица в приложении скорее всего была сделана Отредом (Ougthred), хотя автор ее не был указан. Через несколько лет, в 1624 г., в математической литературе снова появляется , но опять-таки завуалированно. В этом году Бриггс (Briggs) дал численное приближение десятичного логарифма , но само число в его работе не упоминается.

Следующее появление числа снова cомнительно. В 1647 г. Сен-Винсент (Saint-Vincent) вычислил площадь сектора гиперболы. Понимал ли он связь с логарифмами, остается только догадываться, но даже если понимал, то вряд ли он мог прийти к самому числу . Только к 1661 г. Гюйгенс (Huygens) понял связь между равнобочной гиперболой и логарифмами. Он доказал, что площадь под графиком равнобочной гиперболы равнобочной гиперболы на промежутке от до равна . Это свойство делает основанием натуральных логарифмов, но это не понимали математики того времени, однако они медленно приближались к этому пониманию.

Гюйгенс сделал следующий шаг в 1661 г. Он определил кривую, которую назвал логарифмической (в нашей терминологии мы будем называть ее экспоненциальной). Это кривая вида . И снова появляется десятичный логарифм , который Гюйгенс находит с точностью до 17 десятичных цифр. Однако он возник у Гюйгенса как некая константа и не был связан с логарифмом числа (итак, снова подошли вплотную к , но само число остается неузнанным).

В дальнейших работах по логарифмам опять-таки число не появляется в явном виде. Однако изучение логарифмов продолжается. В 1668 г. Никола Меркатор (Nicolaus Mercator) опубликовал работу Logarithmotechnia , которая содержит разложение в ряд . В этой работе Меркатор впервые использует название “натуральный логарифм” для логарифма по основанию . Число явно опять не появляется, а остается неуловимым где-то в стороне.

Удивительно, что число в явном виде впервые возникает не в связи с логарифмами, а в связи с бесконечными произведениями. В 1683 г. Якоб Бернулли пытается найти

Он использует биномиальную теорему для доказательства того, что этот предел находится между и , и это мы можем рассматривать как первое приближение числа . Хотя мы принимаем это за определение , это первый случай, когда число определяется как предел. Бернулли, конечно, не понял связи между своей работой и работами по логарифмам.

Ранее упоминалось, что логарифмы в начале их изучения никак не связывались с экспонентами. Конечно, из уравнения мы находим, что , но это гораздо более поздний способ восприятия. Здесь мы в самом деле подразумеваем под логарифмом функцию, тогда как сначала логарифм рассматривался только как число, которое помогало в вычислениях. Возможно, Якоб Бернулли первым понял, что логарифмическая функция является обратной показательной. С другой стороны, первым, кто связал логарифмы и степени, мог быть Джеймс Грегори (Games Gregory). В 1684 г. он определенно осознал связь между логарифмами и степенями, но, возможно, он был не первым.

Мы знаем, что число появилось в том виде, как сейчас, в 1690 г. Лейбниц в письме к Гюйгенсу использовал для него обозначение . Наконец у появилось обозначение (хотя оно не совпадало с современным), и это обозначение было признано.

В 1697 г. Иоганн Бернулли начинает изучение показательной функции и публикует Principia calculi exponentialum seu percurrentium . В этой работе вычисляются суммы различных экспоненциальных рядов, и получены некоторые результаты их почленным интегрированием.

Эйлер (Euler) ввел так много математических обозначений, что
неудивительно, что обозначение также принадлежит ему. Кажется смешным утверждение, что он использовал букву из-за того, что это первая буква его имени. Вероятно, это даже не потому, что взято от слова “exponential”, а просто это следующая гласная за “a”, а Эйлер уже использовал обозначение “a” в своей работе. Независимо от причины, обозначение впервые появляется в письме Эйлера Гольдбаху (Goldbach) в 1731 г. Он сделал много открытий, изучая в дальнейшем, но только в 1748 г. в Introductio in Analysin infinitorum он дал полное обоснование всем идеям, связанным с . Он показал, что

Эйлер также нашел первые 18 десятичных знаков числа :

правда, не объясняя, как он их получил. Похоже, что он вычислил это значение сам. На самом деле, если взять около 20 членов ряда (1), то получится точность, которую получил Эйлер. Среди других интересных результатов в его работе приведена связь между функциями синус и косинус и комплексной показательной функцией, которую Эйлер вывел из формулы Муавра.

Интересно, что Эйлер нашел даже разложение числа в непрерывные дроби и привел образцы такого разложения. В частности, он получил
и
Эйлер не привел доказательства, что эти дроби так же продолжаются, однако он знал, что если бы такое доказательство было, то оно доказывало бы иррациональность . Действительно, если бы непрерывная дробь для продолжалась так же, как в приведенном образце, (каждый раз прибавляем по ), то она никогда бы не прервалась, и (а значит, и ) не могло бы быть рациональным. Очевидно, это первая попытка доказать иррациональность .

Первым, кто вычислил довольно большое число десятичных знаков числа , был Шенкс (Shanks) в 1854 г. Глейшер (Glaisher) показал, что первые 137 знаков, вычисленные Шенксом, были верными, однако далее нашел ошибку. Шенкс ее исправил, и было получено 205 десятичных знаков числа . В действительности, нужно около
120 членов разложения (1), чтобы получить 200 верных знаков числа .

В 1864 г. Бенджамен Пирс (Peirce) стоял у доски, на которой было написано

В своих лекциях он мог бы сказать своим студентам: “Джентльмены, мы не имеем ни малейшего представления, что бы это значило, но мы можем быть уверены, что это значит что-то очень важное”.

Большинство считает, что Эйлер доказал иррациональность числа . Однако это сделал Эрмит (Hermite) в 1873 г. До сих пор остается открытым вопрос, является ли число алгебраическим. Последний результат в этом направлении — это то, что по крайней мере одно из чисел и является трансцендентным.

Далее вычисляли следующие десятичные знаки числа . В 1884 г. Бурман (Boorman) вычислил 346 знаков числа , из которых первые 187 совпали со знаками Шенкса, но последующие различались. В 1887 г. Адамс (Adams) вычислил 272 цифры десятичного логарифма .

Число Архимеда

Чему равно: 3,1415926535… На сегодня просчитано до 1,24 трлн знаков после запятой

Когда праздновать день π - единственная константа, у которой есть свой праздник, и даже два. 14 марта, или 3.14, соответствует первым знакам в записи числа. А 22 июля, или 22/7 - не что иное, как грубое приближение π дробью. В университетах (например, на мехмате МГУ) предпочитают отмечать первую дату: она, в отличие от 22 июля, не попадает на каникулы

Что такое π? 3,14, число из школьных задач про окружности. И в то же время - одно из главных чисел в современной науке. Физикам π обычно нужно там, где об окружностях ни слова, - скажем, чтобы смоделировать солнечный ветер или взрыв. Число π встречается в каждом втором уравнении - можно открыть учебник теоретической физики наугад и выбрать любое. Если учебника нет, сойдет карта мира. Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку.

В этом виновато само пространство: оно однородно и симметрично. Именно поэтому фронт взрывной волны - это шар, а от камней на воде остаются круги. Так что π здесь оказывается вполне уместным.

Но все это относится только к привычному евклидовому пространству, в котором мы все живем. Будь оно не­евклидовым, симметрия была бы другой. А в сильно искривленной Вселенной π уже не играет такой важной роли. Скажем, в геометрии Лобачевского окружность бывает вчетверо длиннее своего диаметра. Соответственно реки или взрывы «кривого космоса» потребовали бы других формул.

Числу π столько же лет, сколько всей математике: около 4 тысяч. Старейшие шумерские таблички приводят для него цифру 25/8, или 3,125. Ошибка - меньше процента. Вавилоняне абстрактной математикой особо не увлекались, так что π вывели опытным путем, просто измеряя длину окружностей. Кстати, это первый эксперимент по численному моделированию мира.

Самой изящной из арифметических формул для π больше 600 лет: π/4=1–1/3+1/5–1/7+… Простая арифметика помогает вычислить π, а само π - разобраться с глубинными свойствами арифметики. Отсюда его связь с вероятностями, простыми числами и многим другим: π, например, входит в известную «функцию ошибок», которая одинаково безотказно работает и в казино, и у социологов.

Есть даже «вероятностный» способ сосчитать саму константу. Во-первых, нужно запастись мешком иголок. Во-вторых, бросать их, не целясь, на пол, расчерченный мелом на полосы шириной в иглу. Потом, когда мешок опустеет, поделить число брошенных на количество тех, что пересекли меловые линии, - и получить π/2.

Хаос

Константа Фейгенбаума

Чему равно: 4,66920016…

Где применяется: В теории хаоса и катастроф, с помощью которых можно описывать любые явления - от размножения кишечной палочки до развития российской экономики

Кто и когда открыл: Американский физик Митчелл Фейгенбаум в 1975 году. В отличие от большинства других открывателей констант (Архимеда, например), он жив и преподает в престижном Рокфеллеровском университете

Когда и как праздновать день δ: Перед генеральной уборкой

Что общего у капусты брокколи, снежинок и елки? То, что их детали в миниатюре повторяют целое. Такие объекты, устроенные как матрешка, называют фракталами.

Фракталы возникают из беспорядка, как картинка в калейдоскопе. Математика Митчелла Фейгенбаума в 1975 году заинтересовали не сами узоры, а хаотические процессы, которые заставляют их появляться.

Фейгенбаум занимался демографией. Он доказал, что рождение и смерть людей тоже можно моделировать по фрактальным законам. Тут у него и появилась эта δ. Константа оказалась универсальной: она встречается в описании сотен других хаотических процессов, от аэродинамики до биологии.

С фрактала Мандельброта (см. рис.) началось повсеместное увлечение этими объектами. В теории хаоса он играет примерно ту же роль, что и круг в обычной геометрии, а число δ фактически задает его форму. Получается, что эта константа - то же π, только для хаоса.

Время

Число Непера

Чему равно: 2,718281828…

Кто и когда открыл: Джон Непер, шотландский математик, в 1618 году. Самого числа он не упоминал, зато выстроил на его основе свои таблицы логарифмов. Одновременно кандидатами в авторы константы считаются Якоб Бернулли, Лейбниц, Гюйгенс и Эйлер. Достоверно известно только то, что символ e взялся из фамилии последнего

Когда и как праздновать день e: После возврата банковского кредита

Число е - тоже своего рода двойник π. Если π отвечает за пространство, то е - за время, и тоже проявляет себя почти всюду. Скажем, радиоактивность полония-210 уменьшается в е раз за средний срок жизни одного атома, а раковина моллюска Nautilus - это график степеней е, обернутый вокруг оси.

Число е встречается и там, где природа заведомо ни при чем. Банк, обещающий 1% в год, за 100 лет увеличит вклад примерно в е раз. Для 0,1% и 1000 лет результат будет еще ближе к константе. Якоб Бернулли, знаток и теоретик азартных игр, вывел е именно так - рассуждая о том, сколько зарабатывают ростовщики.

Как и π, е - трансцендентное число. Говоря проще, его нельзя выразить через дроби и корни. Есть гипотеза, что у таких чисел в бесконечном «хвосте» после запятой встречаются все комбинации цифр, какие только возможны. Например, там можно обнаружить и текст этой статьи, записанный двоичным кодом.

Свет

Постоянная тонкой структуры

Чему равно: 1/137,0369990…

Кто и когда открыл: Немецкий физик Арнольд Зоммерфельд, аспирантами которого были сразу два нобелевских лауреата - Гейзенберг и Паули. В 1916 году, еще до появления настоящей квантовой механики, Зоммерфельд ввел константу в рядовой статье про «тонкую структуру» спектра атома водорода. Роль константы вскоре переосмыслили, а вот название осталось прежним

Когда праздновать день α: В День электрика

Скорость света - величина исключительная. Быстрее, показал Эйнштейн, не могут двигаться ни тело, ни сигнал - будь то частица, гравитационная волна или звук внутри звезд.

Вроде бы ясно, что это - закон вселенской важности. И все-таки скорость света - не фундаментальная константа. Проблема в том, что ее нечем измерить. Километры в час не годятся: километр определен как расстояние, которое свет проходит за 1/299792,458 секунды, то есть сам выражается через скорость света. Платиновый эталон метра - тоже не выход, потому что скорость света входит и в уравнения, которые описывают платину на микроуровне. Словом, если скорость света без лишнего шума изменится во всей Вселенной, человечество об этом не узнает.

Вот тут-то на помощь физикам и приходит величина, связывающая скорость света с атомными свойствами. Константа α - это деленная на скорость света «скорость» электрона в атоме водорода. Она безразмерна, то есть не привязана ни к метрам, ни к секундам, ни к каким-либо еще единицам.

Кроме скорости света в формулу для α входят также заряд электрона и константа Планка, мера «квантовости» мира. С обеими постоянными связана та же проблема - их не с чем сверить. А вместе, в виде α, они являют собой что-то вроде залога постоянства Вселенной.

Можно задаться вопросом, не менялась ли α c начала времен. Физики всерьез допускают «дефект», достигавший когда-то миллионных долей от нынешней величины. Достигни он 4%, человечества не было бы, потому что внутри звезд прекратился бы термоядерный синтез углерода, главного элемента живой материи.

Добавка к реальности

Мнимая единица

Чему равно: √-1

Кто и когда открыл: Итальянский математик Джероламо Кардано, друг Леонардо да Винчи, в 1545 году. Карданный вал назван так именно в его честь. По одной из версий, свое открытие Кардано украл у Никколо Тартальи, картографа и придворного библиотекаря

Когда праздновать день i: Мартобря 86 числа

Число i ни константой, ни даже настоящим числом назвать нельзя. Учебники описывают его как величину, которая, будучи возведенной в квадрат, дает минус один. Другими словами, это сторона квадрата с отрицательной площадью. В реальности такого не бывает. Но иногда из нереального тоже можно извлечь пользу.

История открытия этой постоянной такова. Математик Джероламо Кардано, решая уравнения с кубами, ввел мнимую единицу. Это был просто вспомогательный трюк - в итоговых ответах i не было: результаты, которые его содержали, выбраковывались. Но позже, присмот­ревшись к своему «мусору», математики попробовали пустить его в дело: умножать и делить обычные числа на мнимую единицу, складывать результаты друг с другом и подставлять в новые формулы. Так родилась теория комплексных чисел.

Минус в том, что «реальное» с «нереальным» нельзя сравнивать: сказать, что больше - мнимая единица или 1 - не получится. С другой стороны, неразрешимых уравнений, если воспользоваться комплексными числами, практически не остается. Поэтому при сложных расчетах удобнее работать с ними и только в самом конце «вычищать» ответы. Например, чтобы расшифровать томограмму мозга, без i не обойтись.

Физики именно так обращаются с полями и волнами. Можно даже считать, что все они существуют в комплексном пространстве, а то, что мы видим, - только тень «настоящих» процессов. Квантовая механика, где и атом, и человек - волны, делает такую трактовку еще убедительнее.

Число i позволяет свести в одной формуле главные математические константы и действия. Формула выглядит так: e πi +1 = 0, и некоторые говорят, что такой сжатый свод правил математики можно отправлять инопланетянам, чтобы убедить их в нашей разумности.

Микромир

Масса протона

Чему равно: 1836,152…

Кто и когда открыл: Эрнест Резерфорд, физик родом из Новой Зеландии, в 1918 году. За 10 лет до этого получил Нобелевскую премию по химии за изучение радиоактивности: Резерфорду принадлежат понятие «период полураспада» и сами уравнения, описывающие распад изотопов

Когда и как праздновать день μ: В День борьбы с лишним весом, если такой введут - это соотношение масс двух базовых элементарных частиц, протона и электрона. Протон - не что иное, как ядро атома водорода, самого распространенного элемента во Вселенной.

Как и в случае скорости света, важна не сама величина, а ее безразмерный эквивалент, не привязанный к каким-то единицам, то есть во сколько раз масса протона больше массы электрона. Получается примерно 1836. Без такой разницы в «весовых категориях» заряженных частиц не было бы ни молекул, ни твердых тел. Впрочем, атомы бы остались, но вели бы себя совсем по-другому.

Как и α, μ подозревают в медленной эволюции. Физики изучали свет квазаров, дошедший до нас через 12 млрд лет, и обнаружили, что протоны со временем тяжелеют: разница между доисторическим и современным значениями μ составила 0,012%.

Темная материя

Космологическая константа

Чему равно: 110-²³ г/м3

Кто и когда открыл: Альберт Эйнштейн в 1915 году. Сам Эйнштейн называл ее открытие своим «главным промахом»

Когда и как праздновать день Λ: Ежесекундно: Λ, согласно определению, присутствует всегда и везде

Космологическая константа - самая туманная из всех величин, какими оперируют астрономы. С одной стороны, ученые не до конца уверены в ее существовании, с другой - готовы объяснять с ее помощью, откуда взялась большая часть массы-энергии во Вселенной.

Можно сказать, что Λ дополняет константу Хаббла. Они соотносятся как скорость и ускорение. Если Н описывает равномерное расширение Вселенной, то Λ - непрерывно ускоряющийся рост. Первым ее ввел в уравнения общей теории относительности Эйнштейн, когда заподозрил у себя ошибку. Его формулы указывали, что космос либо расширяется, либо сжимается, а в это было сложно поверить. Новый член понадобился, чтобы устранить выводы, казавшиеся неправдоподобными. После открытия Хаббла Эйнштейн от своей константы отказался.

Вторым рождением, в 90-х годах прошлого века, постоянная обязана идее темной энергии, «спрятанной» в каждом кубическом сантиметре пространства. Как следовало из наблюдений, энергия неясной природы должна «расталкивать» пространство изнутри. Грубо говоря, это микроскопический Большой взрыв, происходящий каждую секунду и повсеместно. Плотность темной энергии - это и есть Λ.

Гипотезу подтвердили наблюдения за реликтовым излучением. Это доисторические волны, родившиеся в первые секунды существования космоса. Астрономы считают их чем-то вроде рентгена, просвечивающего Вселенную насквозь. «Рентгенограмма» и показала, что темной энергии в мире 74% - больше, чем всего остального. Однако так как она «размазана» по всему космосу, получается всего 110-²³ грамма на кубический метр.

Большой взрыв

Постоянная Хаббла

Чему равно: 77 км/с /МПс

Кто и когда открыл: Эдвин Хаббл, отец-основатель всей современной космологии, в 1929 году. Чуть раньше, в 1925-м, он первым доказал существование других галактик за пределами Млечного пути. Соавтор первой статьи, где упоминается константа Хаббла, - некто Милтон Хьюмасон, человек без высшего образования, работавший в обсерватории на правах лаборанта. Хьюмасону принадлежит первый снимок Плутона, тогда еще не открытой планеты, из-за дефекта фотопластинки оставленный без внимания

Когда и как праздновать день H: 0 января. С этого несущест­вующего числа астрономические календари начинают отсчет Нового года. Как и о самом моменте Большого взрыва, о событиях 0 января известно мало, что делает праздник вдвойне уместным

Главная константа космологии - мера скорости, с которой расширяется Вселенная в результате Большого взрыва. И сама идея, и постоянная H восходят к выводам Эдвина Хаббла. Галактики в любом месте Вселенной разбегаются друг от друга и делают это тем быстрее, чем больше расстояние между ними. Знаменитая константа - просто коэффициент, на который умножают дистанцию, чтобы получить скорость. Со временем она меняется, но довольно медленно.

Единица, деленная на H, дает 13,8 млрд лет - время, прошедшее с момента Большого взрыва. Эту цифру первым получил сам Хаббл. Как доказали позднее, метод Хаббла был не совсем верен, но все равно он ошибся меньше чем на процент, если сравнивать с современными данными. Ошибка отца-основателя космологии состояла в том, что он считал число Н постоянным с начала времен.

Сферу вокруг Земли радиусом 13,8 млрд световых лет - скорость света, деленная на константу Хаббла, - называют хаббловской сферой. Галактики за ее границей должны «убегать» от нас со сверхсветовой скоростью. Противоречия с теорией относительности здесь нет: стоит подобрать правильную систему координат в искривленном пространстве-времени, и проблема превышения скорости сразу исчезает. Поэтому за хаббловской сферой видимая Вселенная не заканчивается, ее радиус примерно втрое больше.

Гравитация

Планковская масса

Чему равно: 21,76… мкг

Где работает: Физика микромира

Кто и когда открыл: Макс Планк, создатель квантовой механики, в 1899 году. Планковская масса - это всего-навсего одна из набора величин, предложенных Планком в качестве «сис­темы мер и весов» для микромира. Определение, упоминающее черные дыры, - и сама теория гравитации - появились несколькими десятилетиями позже

Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку

Когда и как праздновать день m p: В день открытия Большого адронного коллайдера: микроскопические черные дыры собираются получать именно там

Якоб Бернулли, знаток и теоретик азартных игр, вывел e, рассуждая о том, сколько зарабатывают ростовщики

Подбирать явлениям теорию по размеру - популярный в XX веке подход. Если элементарная частица требует квантовой механики, то нейтронная звезда - уже теории относительности. Ущербность такого отношения к миру была понятна с самого начала, но единой теории всего так и не создали. Пока удалось примирить только три из четырех фундаментальных видов взаимодействия - электромагнитные, сильные и слабые. Гравитация все еще остается в стороне.

Поправка Эйнштейна и есть плотность темной материи, которая расталкивает космос изнутри

Планковская масса - условная граница между «большим» и «малым», то есть как раз между теорией гравитации и квантовой механикой. Столько должна весить черная дыра, размеры которой совпадают с длиной волны, отвечающей ей как микрообъекту. Парадокс заключается в том, что астрофизика трактует границу черной дыры как строгий барьер, за который не могут проникнуть ни информация, ни свет, ни вещество. А с квантовой точки зрения волновой объект будет равномерно «размазан» по пространству - и барьер вместе с ним.

Планкова масса - это масса личинки комара. Но пока гравита­ционный коллапс комару не грозит, квантовые парадоксы его не коснутся

mp - одна из немногих единиц в квантовой механике, которыми стоит измерять объекты в нашем мире. Столько может весить личинка комара. Другое дело, что пока гравитационный коллапс комару не грозит, квантовые парадоксы его не коснутся.

Бесконечность

Число Грэхема

Чему равно:

Кто и когда открыл: Рональд Грэхем и Брюс Ротшильд
в 1971 году. Статья была опубликована под двумя фамилиями, но популяризаторы решили сэкономить бумагу и оставили только первую

Когда и как праздновать день G: Очень нескоро, зато очень долго

Ключевая для этой конструкции операция - стрелки Кнута. 33 - это три в третьей степени. 33 - это три, возведенное в три, которое в свою очередь возведено в третью степень, то есть 3 27 , или 7625597484987. Три стрелки - это уже число 37625597484987, где тройка в лестнице степенных показателей повторяется именно столько - 7625597484987 - раз. Это уже больше числа атомов во Вселенной: тех всего 3 168 . А в формуле для числа Грэхема с такой же скоростью растет даже не сам результат, а количество стрелок на каждой стадии его подсчета.

Константа появилась в абстрактной комбинаторной задаче и оставила позади все величины, связанные с нынешними или будущими размерами Вселенной, планетами, атомами и звездами. Чем, похоже, лишний раз подтвердила несерьезность космоса на фоне математики, средствами которой тот может быть осмыслен.

Иллюстрации: Варвара Аляй-Акатьева