Смотрим на мир глазами рака-богомола: ближний инфракрасный диапазон. Об инфракрасном излучении

В различных сферах жизни человек использует инфракрасные лучи. Польза и вред излучения зависят от длины волны и времени воздействия.

В повседневной жизни человек постоянно находится под действием инфракрасного излучения (ИК-излучение). Естественным его источником является солнце. К искусственным относятся электронагревательные элементы и лампы накаливания, любые нагретые или раскаленные тела. Этот вид излучения используется в обогревателях, системах отопления, приборах ночного видения, пультах дистанционного управления. На ИК-излучении основан принцип действия медицинского оборудования для физиотерапии. Что же собой представляют инфракрасные лучи? В чем польза и вред этого вида излучения?

Что такое ИК-излучение

ИК-излучение - это электромагнитное излучение , форма энергии, которая нагревает предметы и примыкает к красному спектру видимого света. Глаз человека не видит в этом спектре, но мы чувствуем эту энергию как высокую температуру. Другими словами, люди кожей воспринимают инфракрасное излучение от нагретых предметов как ощущение тепла.

Инфракрасные лучи бывают коротковолновыми, средневолновыми и длинноволновыми. Длины волн, излучаемые нагретым предметом, зависят от температуры нагревания. Чем она выше, тем короче длина волны и интенсивнее излучение.

Впервые биологическое действие этого вида излучения было изучено на примере культур клеток, растений, животных. Обнаружено, что под влиянием ИК-лучей подавляется развитие микрофлоры, улучшаются обменные процессы вследствие активизации кровотока. Доказано, что это излучение улучшает циркуляцию крови и оказывает болеутоляющее и противовоспалительное действие. Отмечено, что под влиянием инфракрасного излучения пациенты после хирургического вмешательства легче переносят послеоперационные боли, а их раны быстрее заживают. Установлено, что ИК-излучение способствует повышению неспецифического иммунитета, что позволяет уменьшить действие ядохимикатов и гамма-излучения, а также ускоряет процесс выздоровления при гриппе. ИК-лучи стимулируют выведение из организма холестерина, шлаков, токсинов и других вредных веществ через пот и мочу.

Польза инфракрасных лучей

Благодаря этим свойствам ИК-излучение широко используется в медицине. Но применение ИК-излучений с широким спектром действия может привести к перегреву организма и покраснению кожи. Вместе с тем, длинноволновое излучение не оказывает негативного влияния, поэтому в быту и медицине более распространены длинноволновые приборы или излучатели с селективной длиной волны.

Воздействием длинноволновых ИК-лучей способствует следующим процессам в организме:

  • Нормализация артериального давления за счет стимуляции кровообращения
  • Улучшение мозгового кровообращения и памяти
  • Очищение организма от токсинов, солей тяжелых металлов
  • Нормализация гормонального фона
  • Прекращение распространения вредных микробов и грибков
  • Восстановление водно-солевого баланса
  • Обезболивание и противовоспалительный эффект
  • Укрепление иммунной системы.

Лечебное воздействие ИК-лучей может использоваться при следующих заболеваниях и состояниях:

  • бронхиальная астма и обострение хронического бронхита
  • очаговая пневмония в стадии разрешения
  • хронический гастродуоденит
  • гипермоторная дискинезия органов пищеварения
  • хронический бескаменный холецистит
  • остеохондроз позвоночника с неврологическими проявлениями
  • ревматоидный артрит в ремиссии
  • обострение деформирующего остеоартроза тазобедренного и коленного суставов
  • облитерирующий атеросклероз сосудов ног, невропатии периферических нервов ног
  • обострение хронического цистита
  • мочекаменная болезнь
  • обострение хронического простатита с нарушением потенции
  • инфекционные, алкогольные, диабетические полиневропатии ног
  • хронический аднексит и нарушения функции яичников
  • абстинентный синдром

Отопление с использованием ИК-излучения способствует укреплению иммунной системы, подавляет размножение бактерий в окружающей среде и в человеческом организме, улучшает состояние кожи за счет усиления циркуляции крови в ней. Ионизирование воздуха является профилактикой обострений аллергии.

Когда ИК-излучение может навредить

Прежде всего, нужно учесть существующие противопоказания, прежде чем в лечебных целях использовать инфракрасные лучи. Вред от их применения может быть в следующих случаях:

  • Острые гнойные заболевания
  • Кровотечения
  • Острые воспалительные заболевания, приведшие к декомпенсации органов и систем
  • Системные заболевания крови
  • Злокачественные новообразования

Кроме того, чрезмерное облучение широким спектром ИК-лучей приводит к сильному покраснению кожи и может вызвать ожог. Известно о случаях появления опухоли на лице у рабочих-металлургов в результате длительного воздействия этого вида излучения. Также отмечены случаи появления дерматита, возникновения теплового удара.

Инфракрасные лучи, особенно в интервале 0,76 - 1,5 мкм (коротковолновая область) представляют опасность для глаз. Продолжительное и длительное воздействие излучения чревато развитием катаракты, светобоязни и других нарушений зрения. По этой причине нежелательно длительно находиться под воздействием коротковолновых обогревателей. Чем ближе к такому обогревателю находится человек, тем меньше должно быть время, которое он проводит возле этого прибора. Нужно отметить, что этот тип обогревателей предназначен для уличного или локального обогрева. Для отопления жилых и производственных помещений, предназначенных для длительного пребывания людей, используются длинноволновые ИК-обогреватели.

Инфракрасное (ИК) излучение – вид электромагнитного излучения, занимающее спектральный диапазон между видимым красным светом (ИНФРАкрасный: НИЖЕ красного) и коротковолновым радиоизлучением. Эти лучи создают тепло и в науке известны, как термические волны. Эти лучи создают тепло и в науке известны, как термические волны.

Все нагретые тела источают инфракрасное изучение, в том числе и человеческое тело и Солнце, которое именно этим способом и греет нашу с вами планету, давая жизнь всему живому на ней. Тепло, которое мы ощущаем от огня у костра или камина, обогревателя или теплого асфальта – все это следствие инфракрасных лучей.

Весь спектр инфракрасного излучения принято делить на три основных диапазона, отличающихся длинной волны:

  • Коротковолновый, с длинной волны λ = 0,74-2,5 мкм;
  • Средневолновый, с длинной волны λ = 2,5-50 мкм;
  • Длинноволновый, с длинной волны λ = 50-2000 мкм.

Ближние или иначе коротковолновые ИК лучи совсем не горячие, фактически мы их даже не чувствуем. Эти волны используются, например, в пультах дистанционного управления телевизоров, системах автоматики, охранных системах и т.д. Их частота больше, и соответственно их энергия выше, чем у дальних (длинных) инфракрасных лучей. Но не на таком уровне, чтобы повредить организму. Тепло же начинает создаваться на средних инфракрасных длинах волн, и их энергию мы уже чувствуем. Инфракрасное излучение также называют «тепловым» излучением, т. к. излучение от нагретых предметов воспринимается кожей человека, как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Например источник с длиной волны 1,1 мкм соответствует расплавленному металлу, а источник с длиной волны 3,4 мкм – металлу к концу прокатки, ковки.

Для нас с вами интерес представляет спектр с длинной волны 5-20 мкм, так как именно в этом диапазоне приходится более 90% производимого инфракрасными системами отопления излучения с пиком излучения в 10 мкм. Очень важно, что именно на данной частоте само человеческое тело излучает инфракрасные волны 9,4 мкм. Таким образом, любое излучение на данной частоте воспринимается человеческим организмом как родственное и оказывает на него благотворное и, даже более того, оздоровительное влияние.

При таком воздействии на организм инфракрасным излучением возникает эффект «резонансного поглощения», которое характеризуется активным поглощением организмом внешней энергии. В результате чего можно наблюдать у человека повышение уровня гемоглобина, усиление активности ферментов и эстрогенов, в общем итоге – стимуляция жизненной активности человека.

Воздействие инфракрасного излучения на поверхность тела человека, как мы уже говорили, полезно и, вдобавок ко всему, приятно. Вспомните первые солнечные дни в начале весны, когда после долгой и пасмурной зимы наконец-то выглянуло солнышко! Вы чувствуете, как оно приятно обволакивает освещаемый участок вашей кожи, лицо, ладони. Уже не хочется надевать перчатки и головной убор, не смотря на достаточно низкую по сравнению с «комфортной» температуру. Но стоит появиться маленькой тучке, как мы сразу испытываем ощутимый дискомфорт от прерывания столь приятного ощущения. Это и есть то самое излучение, которого нам так не хватало на протяжении всей зимы, когда Солнце долгое время отсутствовало, и мы волей-неволей несли свой "инфракрасный пост".

В результате воздействия инфракрасного излучения можно наблюдать:

  • Ускорение обмена веществ в организме;
  • Восстановление кожной ткани;
  • Замедление процесса старения;
  • Вывод из организма излишних жиров;
  • Высвобождение двигательной энергии человека;
  • Повышение антимикробной устойчивости организма;
  • Активация роста растений

и многое многое другое. Более того инфракрасное облучение применяется в физиотерапии для лечения многих заболеваний в том числе онкологических, так как способствует расширению капилляров, стимулирует кровоток в сосудах, повышает иммунитет и производит общий лечебный эффект.

И это совсем не удивительно, потому что данное излучение дано нам от природы как способ передачи тепла, жизни всему живому, нуждающемуся в этом тепле и комфорте, минуя пустое пространство и воздух как посредников.

ВВЕДЕНИЕ

Несовершенство собственной природы, компенсируемое гибкостью интеллекта, непрерывно толкало человека к поиску. Желание летать как птица, плавать как рыба, или, скажем, видеть ночью подобно кошке, воплощались в действительность по мере достижения требуемых знаний и технологий. Научные изыскания часто подстегивались нуждами военной деятельности, а результаты определялись существующим технологическим уровнем.

Расширение диапазона зрения для визуализации недоступной для глаз информации является одной из наиболее трудных задач, так как требует серьезной научной подготовки и значительной технико-экономической базы. Первые успешные результаты в этом направлении были получены в 30-х годах XX века. Особенную актуальность проблема наблюдения в условиях низкой освещенности приобрела в ходе Второй мировой войны.

Естественно, усилия, затраченные в этом направлении, привели к прогрессу в научных исследованиях, медицине, техники связи и других областях.

ФИЗИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны (=м) и коротковолновым радиоизлучением(=м).Открыто инфракрасное излучение было в 1800 г. английским ученым У. Гершелем. Спустя 123 года после открытия инфракрасного излучения советский физик А.А. Глаголева-Аркадьева получила радиоволны с длиной волны равной приблизительно 80 мкм, т.е. располагающиеся в инфракрасном диапазоне длин волн. Это доказало, что свет, инфракрасные лучи и радиоволны имеют одинаковую природу, все это лишь разновидности обычных электромагнитных волн.

Инфракрасное излучение также называют «тепловым» излучением, так как что все тела, твердые и жидкие, нагретые до определенной температуры излучают энергию в инфракрасном спектре.

ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ

ОСНОВНЫЕ ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ НЕКОТОРЫХ ОБЪЕКТОВ

Инфракрасное излучение баллистических ракет и космических объектов

Инфракрасное излучение самолетов

Инфракрасное излучение надводных кораблей

Факел маршевого

двигателя, предста- вляющий собой поток горящих газов, несущих взвешенные твердые частицы золы и сажи, которые образуются при сгорании ракетного топлива.

Корпус ракеты.

Земля, которая отражает часть солнечных лучей, попавших на нее.

Сама Земля.

Отраженное от планера самолета излучение Солнца, Земли, Луны и других источников.

Собственное тепловое излучение удлинительной трубы и сопла турбореак-тивного двигателя или выхлопных патрубков поршневых двигателей.

Собственное тепловое излу-чение струи выхлопных газов.

Собственное тепловое излучение обшивки самолета, возникающее за счет аэродина-мического нагрева при полете с большими скоростями.

Кожух дымовой трубы.

Выхлопное

отверстие дымовой трубы

ОСНОВНЫЕ СВОЙСТВА ИК ИЗЛУЧЕНИЯ

1. Проходит через некоторые непрозрачные тела, также сквозь дождь,

дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

7. Регистрируют тепловыми методами, фотоэлектрическими и

фотографическими.

ХАРАКТЕРИСТИКИ ИК ИЗЛУЧЕНИЯ

Собственное Отраженное Ослабление Физические

тепловое объектами ИК ИК излучения особенности ИК

излучение излучение в атмосфере излучения фонов

Характе-ристики

Осн. понятия

Собствен-ное тепловое излуче-ние нагретых тел

Фундаментальное понятие - абсолютно черное тело. Абсолютно черным телом называется тело, поглощающее все падающие на него излучения на любых длинах волн. Распределение интенсивности излучения черного тела (з/н Планка): ,где -спектральная яркость излучения при температуре Т,-длина волны в мкм, С1 и С2 - постоянные коэффициенты: С1=1,19*Вт*мкм*см*ср,

С2=1,44*мкм*град. Максимумдлины волны(закон Вина): , где Т-абсолютная температура тела.

Интегральная плотность излучения- закон Стефана - Больцмана:

Отраженное объек-тами ИК излуче-ние

Максимум солнечного излучения, определяющий отраженную составляющую, соответствует длинам волн короче 0,75 мкм, а 98% всей энергии излучения Солнца приходится на участок спектра до 3 мкм. Часто эту длину волны считают граничной, разделяющей отраженную (солнечную) и собственную составляющие ИК излучения объектов. Следовательно, можно принять, что в ближней части ИК спектра (до 3 мкм) определяющей является отраженная составляющая и распределение лучистости по объектам зависит от распределения коэффициента отражения и облученности. Для дальней части ИК спектра определяющим является собственное излучение объектов, а распределение лучистости по их площади зависит от распределения коэффициентов излучения и температуры.

В средневолновой части ИК спектра необходимо учитывать все четыре параметра.

Ослабле-ние ИК излуче-ния в атмосфе-ре

В ИК-диапазоне длин волн имеется несколько окон прозрачности и зависимость пропускания атмосферы от длины волны имеет весьма сложный вид. Ослабление ИК излучения определяется полосами поглощения водяных паров и газовых составляющих, главным образом углекислого газа и озона, а также явлениями рассеивания излучения. Смотреть рисунок «Поглощение ИК излучения».

Физи-ческие особен-ности ИК излуче-ния фонов

ИК излучение имеет две составляющие: собственное тепловое излучение и отраженное (рассеянное) излучение Солнца и других внешних источников. В диапазоне длин волн короче 3 мкм доминирует отраженное и рассеянное солнечное излучение. В этом диапазоне длин волн, как правило, можно пренебречь собственным тепловым излучением фонов. Наоборот, в диапазоне длин волн более 4 мкм преобладает собственное тепловое излучение фонов и можно пренебречь отраженным (рассеянным) солнечным излучением. Диапазон длин волн 3-4 мкм является как бы переходным. В этом диапазоне наблюдается ярко выраженный минимум яркости фоновых образований.

ПОГЛОЩЕНИЕ ИК ИЗЛУЧЕНИЯ

Спектр пропускания атмосферы в ближней и средней инфракрасной области (1,2-40 мкм) на уровне моря (нижняя кривая на графиках) и на высоте 4000 м (верхняя кривая); в субмиллиметровом диапазоне (300-500 мкм) излучение до поверхности Земли не доходит.

ВОЗДЕЙСТВИЕ НА ЧЕЛОВЕКА

С древних времен люди хорошо знали благотворную силу тепла или, говоря научным языком, инфракрасного излучения.

В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё». Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние. Приготовление пищи с помощью инфракрасных волн делает пищу особенно вкусной, сохраняет витамины и минералы, при этом не имеет ничего общего с микроволновыми печами.

Воздействуя на организм человека в длинноволновой части инфракрасного диапазона, можно получить явление, называемое «резонансным поглощением», при котором внешняя энергия будет активно поглощаться организмом. В результате этого воздействия повышается потенциальная энергия клетки организма, и из нее уходит не связанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови.

ОСОБЕННОСТИ ИЗОБРАЖЕНИЙ ОБЪЕКТОВ В ИК ДИАПАЗОНЕ

Инфракрасные изображения имеют непривычное для наблюдателя распределение контрастов между известными предметами вследствии иного распределения оптических характеристик поверхностей объектов в ИК диапазоне по сравнению с видимой частью спектра. ИК излучения позволяют обнаружить на ИК снимках предметы, не заметные на обычных фотоснимках. Можно выявлять участки поврежденных деревьев и кустарников, а также вскрывать факты использования свежесрезанной растительности для маскировки объектов. Различная передача тонов на изображениях, привела к созданию так называемой многозональной съемки, при которой один и тот же участок плоскости предметов одновременно фотографируется в разных зонах спектра многозональной камерой.

Другая особенность ИК изображений, свойственная тепловым картам, состоит в том, что в их формировании кроме отраженного излучения участвует и собственное, а в ряде случаев лишь оно одно. Собственное излучение определяется излучательной способностью поверхностей предметов и их температурой. Это дает возможность выявлять на тепловых картах нагретые поверхности или их участки, совершенно не обнаруживающиеся на фотоснимках, и использовать тепловые изображения как источник информации о температурном состо-янии предмета.

ИК изображения позволяют получать информацию и об объектах, которые уже отсутствуют в момент съемки. Так, например, на поверхности площадки в месте стоянки самолета сохраняется в течение некоторого времени его тепловой портрет, который может быть зарегистрирован на ИК снимке.

Четвертой особенностью тепловых карт является возможность регистрации объектов как при отсутствии падающего излучения, так и при отсутствии температурных перепадов; только за счет различий в излучательной способности их поверхностей. Это свойство позволяет наблюдать объекты в полной темноте и в таких условиях, когда темпе-ратурные различия выравнены до невоспринимаемых. В таких условиях особенно четко выявляются неокрашенные металлические поверхности, имеющие низкую излучательную способность, на фоне неметаллических предметов, выглядящих более светлыми ("темными"), хотя их температуры одинаковы.

Еще одна особенность тепловых карт связана с динамичностью тепловых процессов, протекающих в течение суток В связи с естественным суточным ходом температур все предметы на земной поверхности участвуют в постоянно протекающем теплообменном процессе. При этом температура каждого тела зависит от условий теплообмена, физических свойств окружающей среды, собственных свойств данного объекта (теплоемкость, теплопроводность) и др. В зависимости от этих факторов соотношение температур смежных предметов изменяется в течение суток, поэтому тепловые карты, полученные в разное время даже от одних и тех же объектов, отличаются друг от друга.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

В двадцать первом веке началось внедрение инфракрасных излучений в нашу жизнь. Теперь оно находит применение в промышленности и в медицине, в быту и сельском хозяйстве. Оно универсально и может применяться для самых разнообразных целей. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов. Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане.

Приборы ночного видения - история поколений

Нулевое поколение

«Стакан Холста»

Трех- и двухэлектродная системы

    Фотокатод

    Манжета

  1. Фокусирующий электрод

середина 30-х годов

вательском центре фирмы "Филипс", Голландия

За рубежом - Зворыкин, Фарнсворд, Мортон и фон Арденна; в СССР - Г.А. Гринберг, А.А. Арцимович

Этот ЭОП представлял собой два вложенных друг в друга стакана, на плоские донышки которых и наносились фотокатод и люминофор. Приложенное к этим слоям высоковольтное напряжение, создавало

электростатическое поле, обеспечивающее прямой перенос электронного изображения с фотокатода на экран с люминофором. В качестве фоточувствительного слоя в "стакане Холста" использовался серебряно-кислородно-цезиевый фотокатод, имевший довольно низкую чувствительность, хотя и работоспособный в диапазоне до 1,1 мкм. К тому же, этот фотокатод обладал высоким уровнем шумов, для устранения которых требовалось охлаждение до минус 40 °С.

Достижения электронной оптики позволили заменить прямой перенос изображения фокусировкой электростатическим полем. Наибольшим недостатком ЭОП с электростатическим переносом изображения является резкий спад разрешающей способности от центра поля зрения к краям из-за несовпадения криволинейного электронного изображения с плоским фотокатодом и экраном. Для решения этой проблемы их стали делать сферическими, что существенно усложнило конструкцию объективов, рассчитываемых обычно на плоские поверхности.

Первое поколение

Многокаскадные ЭОП

СССР, М.М. Бутслов

фирмами RCA, ITT (США), Philips (Нидерланды)

На базе волоконно-оптических пластин (ВОП), представляющих собой пакет из множества светодиодов, были разработаны плосковогнутые линзы, которые и стали устанавливать взамен входного и выходного окон. Оптическое изображение, спроецированное на плоскую поверхность ВОП, без искажений передается на вогнутую сторону, что и обеспечивает сопряжение плоских поверхностей фотокатода и экрана с криволинейным электронным полем. В результате применения ВОП разрешающая способность стала по всему полю зрения такой же, как и в центре.

Второе поколение

Вторично-эмиссионный усилитель

Псевдобинокуляр

1- фотокатод

3- микроканальная пластина

4– экран

В 70-е годы

фирмами США

фирма "Praxitronic" (ФРГ)

Этот элемент представляет собой сито с регулярно расположенными каналами диаметром около 10 мкм и толщиной не более 1 мм. Число каналов равно числу элементов изображения и имеет порядок 10 6 . Обе поверхности микроканальной пластины (МКП) полируются и металлизируются, между ними прикладывается напряжение в несколько сотен вольт.

Попадая в канал, электрон испытывает соударения со стенкой и выбивает вторичные электроны. В тянущем электрическом поле этот процесс многократно повторяется, позволяя получить коэффициент усиления NxlO 4 раз. Для получения каналов МКП используется разнородное по химическому составу оптическое волокно.

Были разработаны ЭОП с МКП бипланарной конструкции, то есть без электростатической линзы, своего рода технологический возврат к прямому, как и в "стакане Холста", переносу изображения. Полученные миниатюрные ЭОП позволили разработать очки ночного видения (ОНВ) псевдобинокулярной системы, где изображение с одного ЭОП разводится на два окуляра с помощью светоделительной призмы. Оборот изображения здесь осуществляется в дополнительных мини-объективах.

Третье поколение

ЭОП П + и SUPER II +

начато в 70-х годах до нашего времени

в основном американские компании

Длительная научная разработка и сложная технология изготовления, определяющие высокую стоимость ЭОП третьего поколения, компенсируется предельно высокой чувствительностью фотокатода. Интегральная чувствительность некоторых образцов достигает 2000 мА/Вт, квантовый выход (отношение числа эмитированных электронов к числу падающих на фотокатод квантов с длиной волны в области максимальной чувствительности) превышает 30%! Ресурс таких ЭОП составляет около 3 000 часов, стоимость от 600 до 900$, в зависимости от конструкции.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭОП

Поколения ЭОП

Тип фото-катода

Интегральная

чувствитель-ность,

Чувствитель-ность на

длинах волн 830-850

Коэффи-циент усиления,

Доступная

дальность

распознования

фигуры человека в

условиях естественной ночной освещенности, м

"Стакан Холста"

около 1, ИК подсветка

только при свете луны или ИК осветителе

Super II + или II ++

Инфракрасное излучение - электромагнитное излучение в диапазоне длин волн от м дом.В качестве источника инфракрасного (ИК) излучения может рассматриваться любое тело (газообразное, жидкое, твердое) с температурой выше абсолютного нуля (-273°С). Зрительный анализатор человека не воспринимает лучи в инфракрасном диапазоне. Поэтому видовые демаскирующие признаки в этом диапазоне добываются с помощью специальных приборов (ночного видения, тепловизоров), имеющих худшее разрешение, чем глаз человека. В общем случае к демаскирующим признакам объекта в ИК-диапазоне относятся следующие: 1)геометрические характеристики внешнего вида объекта (форма, размеры, детали поверхности); 2) температура поверхности. Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. Нет такой области, где бы не пригодился природный метод передачи тепла. Ведь всем известно, умнее природы человеку не стать, мы можем лишь подражать ей.

СПИСОК ЛИТЕРАТУРЫ

1. Курбатов Л.Н. Краткий очерк истории разработок приборов ночного видения на основе электронных оптических преобразователей и усилителей изображения// Вопр. Оборон. Техники. Сер. 11. - 1994

2. Кощавцев Н.Ф., Волков В.Г. Приборы ночного видения//Вопр. Оборон. Техники. Сер. П.- 1993 - Вып. 3 (138).

3. Леконт Ж., Инфракрасное излучение. М.: 2002. 410 с.

4. Меньшаков Ю.К., М51 Защита объектов и информации от технических средств разведки. М.: Российск. Гос. Гуманит. У-т, 2002. 399 с.

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1-2 мм, частота 300 ГГц).

Весь диапазон инфракрасного излучения условно делят на три области:

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн - терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением », так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Энциклопедичный YouTube

    1 / 3

    ✪ 36 Инфракрасное и ультрафиолетовое излучения Шкала электромагнитных волн

    ✪ Опыты по физике. Отражение инфракрасного излучения

    ✪ Электроотопление (инфракрасное отопление). Какую систему отопления выбрать?

    Субтитры

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:

Аббревиатура Длина волны Энергия фотонов Характеристика
Near-infrared, NIR 0.75-1.4 мкм 0.9-1.7 эВ Ближний ИК, ограниченный с одной стороны видимым светом, с другой - прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR 1.4-3 мкм 0.4-0.9 эВ Поглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530-1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR 3-8 мкм 150-400 мэВ В этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры .
Long-wavelength infrared, LWIR 8-15 мкм 80-150 мэВ В этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR 15 - 1000 мкм 1.2-80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination ) рекомендует разделение инфракрасного излучения на следующие три группы:

  • IR-A: 700 нм – 1400 нм (0.7 мкм – 1.4 мкм)
  • IR-B: 1400 нм – 3000 нм (1.4 мкм – 3 мкм)
  • IR-C: 3000 нм – 1 мм (3 мкм – 1000 мкм)

ISO 20473 схема

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн , излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм . Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме . Примером теплового излучения является свет от лампы накаливания . Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела , описывается законом Стефана - Больцмана . Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа . Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение - тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь - вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр - тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3..14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Инфракрасная термография, тепловое изображение или тепловое видео - это научный способ получения термограммы - изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900-14000 нанометров или 0,9-14 µм) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела , термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения - головка самонаведения , работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью . Представляет собой оптико-электронный прибор , предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам , и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5-10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь - «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR - Heart Rate) и насыщения крови кислородом (Sp02) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии .

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения.При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (

Ежедневно человек находится под влиянием инфракрасного излучения и естественным его источником является солнце. Элементы накаливания и разные электронагревательные приборы относят к неестественным производным . Данная радиация применяется в системах отопления, инфракрасных лампах, обогревательных устройствах, пультах к телевизору, медицинском оборудовании. Поэтому всегда необходимо знать, какая польза и вред инфракрасного излучения для человека.

Инфракрасное излучение: что это

В 1800 году английский физик открыл инфракрасное тепло, разложив солнечный свет в спектр с помощью призмы . Уильям Гершель прикладывал термометр к каждому цвету, пока не заметил повышение температуры при переходе от фиолетового цвета к красному. Таким образом, была открыта область ощущения тепла, но она не видна человеческому взору. Различают излучение по двум основным параметрам: частоту (интенсивность) и длину луча. В то же время длина волны делится на три типа: ближняя (от 0,75 до 1,5 мкм), средняя (от 1,5 до 5,6 мкм), дальняя (от 5,6 до 100 мкм).

Именно длинноволновая энергия обладает положительными свойствами, соответствуя природному излучению человеческого тела с наибольшей длиной волны в 9,6 мкм. Поэтому каждое внешнее воздействие тело воспринимает как «родное». Самым лучшим примером ультракрасного излучения является тепло Солнца. Такой луч имеет отличие в том, что он нагревает объект, а не пространство вокруг него. Инфракрасное излучение – это вариант раздачи тепла .

Польза инфракрасного излучения

Приборы, в которых используется длинноволновое тепловое излучение, воздействуют двумя разными способами на человеческий организм. Первый метод обладает укрепляющим свойством, повышая защитные функции и предотвращая раннее старение. Этот тип позволяет справиться с разными заболеваниями, повышая природную защиту организма к недугам. Это одна из форм лечения, которая основывается на поддержании здоровья и подходит для применения в домашних условиях и медицинских учреждениях.

Второй вид влияния ультракрасных лучей заключается в прямом лечении заболеваний и общих недомоганий. Ежедневно человек сталкивается с расстройствами, связанными со здоровьем. Поэтому длинные излучатели обладают терапевтическим свойством. Во многих лечебных заведениях Америки, Канады, Японии, странах СНГ и Европы применяется такое излучение. Волны способны глубоко проникать в тело, прогревая внутренние органы и костную систему. Эти эффекты способствуют улучшению кровообращения и ускорению потоку жидкостей в организме.

Повышенная циркуляция крови благотворно влияет на метаболизм человека, ткани насыщаются кислородом, а мышечная система получает питание . Многие болезни можно устранить регулярным воздействием излучения, проникающего глубоко в человеческое тело. Такая длина волны избавит от таких недугов, как:

  • повышенное или пониженное давление;
  • болевые ощущения в области спины;
  • лишний вес, ожирение;
  • заболевания сердечно-сосудистой системы;
  • депрессивное состояние, стресс;
  • нарушения работы пищеварительного тракта;
  • артрит, ревматизм, невралгия;
  • артроз, воспаление суставов, судороги;
  • недомогание, слабость, истощение;
  • бронхит, астма, воспаление легких;
  • расстройство сна, бессонница;
  • мышечные и поясничные боли;
  • проблемы с кровоснабжением, циркуляцией крови;
  • оториноларингологические заболевания без гнойных отложений;
  • недуги кожных покровов, ожоги, целлюлит;
  • почечная недостаточность;
  • простудные и вирусные недуги;
  • снижение защитной функции организма;
  • интоксикация;
  • цистит и простатит обостренной формы;
  • холецистит без образования камней, гастродуоденит.

Положительное влияние излучения основывается на том, что когда волна попадает на кожный покров, она действует на окончания нервов и возникает ощущение тепла . Свыше 90% радиации уничтожается влагой, находящейся в верхнем слое кожи, она не вызывает ничего больше чем повышения температуры тела. Спектр воздействия, длина которого составляет 9,6 мкм, абсолютно безопасен для человека.

Истории наших читателей

Владимир
61 год

Излучение стимулирует кровообращение, приводя в норму кровяное давление и обменные процессы. При снабжении мозговых тканей кислородом снижается риск появления головокружения и улучшается память. Ультракрасный луч способен вывести соли тяжелых металлов, холестерин и токсины. Во время терапии у больного повышается иммунитет, нормализуется гормональный фон и восстанавливается водно-солевой баланс. Волны снижают действие разных ядовитых химических веществ, обладают противовоспалительным свойством, подавляют образование грибков, включая плесневых.

Применение инфракрасного излучения

Ультракрасная энергия используется в разных областях, положительно влияя на человека:

  1. Термография. С помощью инфракрасного излучения определяется температура предметов, находящихся на расстоянии. В основном тепловые волны используются в военных и промышленных сферах. Нагретые объекты с таким прибором можно увидеть без освещения.
  2. Обогрев. Ультракрасные лучи способствуют повышению температуры, благотворно сказываясь на человеческом здоровье . Помимо полезных инфракрасных саун, их применяют для сварки, отжига пластмассовых предметов, отверждения поверхностей в промышленной и медицинской сфере.
  3. Слежение. Этот способ использования тепловой энергии заключается в пассивном наведении ракет. В этих летательных элементах внутри находится механизм, называемый «тепловым искателем». Машины, самолеты и другой транспорт, а также люди излучают тепло, помогая ракетам найти правильное направление полета.
  4. Метеорология. Излучение помогает спутникам определиться с расстоянием, на котором находятся облака, определяет их температуру и вид . Теплые облака показываются серым цветом, а холодные – белым. Данные изучаются без помех как днем, так и ночью. Земная горячая плоскость будет обозначена серым или черным цветом.
  5. Астрономия. Астрономы оснащены уникальными приборами – инфракрасными телескопами, позволяющими наблюдать за разными объектами в небе. Благодаря им ученые способны найти протозвезды до того, как они начнут излучать свет, видимый человеческому глазу. Такой телескоп с легкостью определит холодные объекты, но в просматриваемом инфракрасном спектре нельзя увидеть планеты из-за заглушающего света от звезд. Также устройство используется для наблюдения за ядрами галактик, которые закрывает газ и пыль.
  6. Искусство. Рефлектограммы, которые работают на основе инфракрасного излучения, помогают специалистам в этой сфере детальнее рассмотреть нижние слои предмета или наброски художника. Этот метод позволяет сопоставить чертежи рисунка и его видимую часть для выяснения подлинности картины, и была ли она на реставрации. Ранее устройство приспосабливалось для изучения старых документов в письменном виде и изготовления чернил.

Это лишь основные методы использования тепловой энергии в науке, но ежегодно появляется новое оборудование, работающее на его основе.

Вред инфракрасного излучения

Инфракрасный свет приносит не только положительное действие на человеческий организм, стоит помнить о вреде, который он может нанести при неправильном применении и быть опасными для окружающих. Именно ИК-диапазоны с короткой длиной волны негативно воздействуют . Плохое влияние инфракрасного излучения на организм человека проявляется в виде воспаления нижних слоев кожи, расширенных капилляров и образования волдырей.

От использования ИК-лучей необходимо сразу отказаться при таких болезнях и симптомах:

  • заболевания кровеносной системы, кровотечения;
  • хроническая или острая форма гнойных процессов;
  • беременность и лактация;
  • злокачественные опухоли;
  • легочная и сердечная недостаточность;
  • острые воспаления;
  • эпилепсия;
  • при продолжительном влиянии ИК-излучения повышается риск развития светобоязни, катаракты и других заболеваний глаз.

Сильное воздействие инфракрасной радиации приводит к покраснению кожи и возникновению ожога. У рабочих в сфере металлургии иногда наблюдается развитие теплового удара и дерматита. Чем меньше расстояние пользователя к обогревательному элементу, тем меньше времени он должен проводить возле устройства. Перегревание тканей мозга на один градус и тепловой удар сопровождается такими симптомами, как тошнота, головокружение, тахикардия, потемнение в глазах. При повышении температуры на два и выше градуса существует риск развития менингита.

Если под воздействием инфракрасного излучения случился тепловой удар, следует незамедлительно поместить пострадавшего в прохладном помещении и снять с него всю одежду, которая сжимать или стесняет движения. Повязки, смоченные в холодной воде, или мешочки со льдом прикладываются на область груди, шеи, паха, лба, позвоночника и подмышек.

При отсутствии мешочка для льда, можно использовать для этих целей любую ткань или предмет одежды. Компрессы делаются лишь с очень холодной водой, периодически смачивая в ней повязки.

При возможности человек полностью оборачивается холодной простыней. Дополнительно можно обдувать больного потоком холодного воздуха, используя вентилятор. Обильное питье холодной воды поможет облегчить состояние пострадавшего. При тяжелых случаях облучения требуется вызвать скорую помощь и сделать искусственное дыхание.

Как избежать вредного влияния ИК-волн

Чтобы защитить себя от негативного воздействия тепловых волн, необходимо придерживаться некоторых правил:

  1. Если работа напрямую связана с высокотемпературными нагревателями, то требуется использование защитной одежды для оберегания тела и глаз .
  2. С особой осторожностью применяются бытовые обогреватели, у которых открытые нагревательные элементы. Нельзя находиться близко возле них и лучше сократить время их влияния к минимуму.
  3. В помещении должны располагаться такие устройства, которые наименее воздействуют на человека и его здоровье.
  4. Не стоит долго находиться под солнечными лучами . Если изменить это нельзя, то нужно постоянно носить головной убор и одежду, прикрывающую открытые участки тела. В особенности это относится к детям, которые не всегда могут определить повышение температуры тела.

При соблюдении этих правил человек сможет защититься от неприятных последствий чрезмерного теплового влияния. Инфракрасные лучи могут принести как вред, так и пользу при определенном их применении.

Методы лечения

Терапия с помощью инфракрасного цвета делится на два типа: местная и общая. При первом типе отмечается локальное воздействие на тот или иной участок, а при общем лечении волны обрабатывают весь организм человека. Процедура проводится два раза в день по 15-30 минут. Курс лечения составляет от 5 до 20 сеансов. Необходимо обязательно надевать защитные средства при излучении. Для глаз используются картонные накладки или специальные очки. После процедуры на коже появляется покраснение с размытыми границами, которое пропадает по истечении часа после воздействия лучей . Инфракрасное излучение в медицине очень ценится.

Высокая интенсивность излучения может причинить вред здоровью, поэтому нужно следовать всем противопоказаниям.

Тепловая энергия ежедневно сопровождает человека в повседневной жизни. Инфракрасное излучение приносит не только пользу, но и вред . Поэтому требуется к ультракрасному свету относиться осторожно. Устройства, которые излучают эти волны, должны использоваться по правилам безопасности. Многие не знают, вредно ли тепловое воздействие, но при правильном применении приборов можно улучшить состояние здоровья человека и избавиться от тех или иных заболеваний.