Скорость биологического круговорота в водной среде. Круговорот элементов в неживой природе

Биологический круговорот химических элементов в распространенных тропических сообществах

Биоклиматические условия тропической территории весьма разнообразны. Представление о тропиках как о сплошной полосе джунглей совершенно не отвечает действительности. Меняющиеся соотношения атмосферных осадков и эвапотранспирации, длитель­ности сухих и дождливых сезонов создают широкую гамму экосистем с разной степенью атмосферного увлажнения - от крайне засушливых или пустынных ландшафтов до постоянно влажных тропических лесов. При наличии сезона, на протяжении которого испаряемость превышает количество осадков, существуют разреженные светлые высокотравные леса, которые при продолжительном сухом сезоне сбрасывают листву. Для более засушливых условий типичны редкостойные группы деревьев, чередующиеся с открытыми пространствами, покрытыми травянистой растительностью. С усилением аридности деревья заменяются зарослями колючих кустарников, а пышный покров высоких злаков - низкотравной растительностью с невысокой степенью покрытия почвы.

Соотношения площадей разной степени атмосферного увлажне­ния на континентах неодинаковы. Засушливые области занимают подавляющую часть Австралии, значительную часть Индии, но менее распространены в Южной Америке. В экваториальной полосе Африки, ограниченной 6° с. ш. и 6° ю. ш., площади разной степе­ни атмосферного увлажнения распределяются следующим образом:

Из приведенных данных следует, что влажные леса занимают всего около "/5 экваториальной полосы Африки, а большая ее часть занята комбинацией светлых лесов и высокотравных саванн. На остальной территории распространены более или менее засушливые ландшафты, вплоть до почти пустынных, где выпадает менее 200 мм осадков в год. Согласно данным Б.Г.Розанова (1977), зона распространения всех видов тропических лесов занимает 20 448 тыс. км 2 , или 13,33% Мировой суши, саванновая зона - 14 259 тыс. км 2 (9,56%), области тропических пустынь - 4506 тыс. км 2 , или 3,02%. При этом не учитывались площади развеиваемых песков, безжизненных каме­нистых пустынь, солончаков.

Биологический круговорот элементов в тропических лесах. Пос­тоянно влажные тропические леса - самая мощная растительная формация. Обилие тепла и влаги обусловливает самую большую биомассу среди биоценозов Мировой суши - в среднем 50 000 т/км 2 сухого вещества, а в отдельных случаях до 170 000 т/км 2 . Фактором, лимитирующим рост биомассы, является необходимая для фотосинтеза световая энергия. С целью ее максимального ис­пользования под покровом деревьев высотой 30-40 м расположено еще несколько ярусов деревьев, приспособленных к рассеянному свету. Значительная часть отмирающих и опадающих листьев высо­ких деревьев перехватывается многочисленными эпифитами. По этой причине химические элементы, содержащиеся в листьях, вновь захватываются в биологический круговорот, не достигая почвы. Во влажных тропических лесах вегетация продолжается весь год. Годовая продукция в среднем равна 2500 т/км 2 .

Биогеохимическая специфика влажных тропических лесов заключается в том, что почти все количество химических элементов, необходимое для питания огромной массы растительности, содержится в самих растениях. Биогеохимический цикл массообмена сильно замкнут. Если вырубить дождевой тропический лес, то вместе с гибелью деревьев нарушится вся тысячелетиями создаваемая система биологического круговорота и под сведенным лесом останутся бесплодные земли.

Биогеохимическая ситуация в светлых листопадных тропических лесах и саваннах близка к таковой в лиственных лесах умеренного климата, но периоды подавления биогеохимических процессов обусловлены не понижением температуры, а отсутствием дождей и сезонным дефицитом влаги. Биомасса сухих саванн около 200-600 т/км 2 . Количество опада (меньше 150-200 т/км 2) отвечает условиям тропических пустынь. Биомасса листопадных тропичес­ких лесов разной степени увлажнения и высокотравных парковых саванн занимает промежуточное положение между постоянно влаж­ными лесами и сухими саваннами.

Согласно имеющимся данным Л.Е.Родина и Н.И.Базилевич (1965), распределение и динамика масс в растительности постоянно влажного тропического леса характеризуются следующими показа­телями (т/км 2):

Необходимо отметить, что концентрация химических элементов в древесине стволов и ветвей тропических деревьев, как правило, более низкая, чем в листьях, которые образуют основную массу опада. Концентрация азота в древесине редко достигает 0,5% массы сухого вещества, а в листьях - около 2%. В листьях обычно в несколько раз выше, чем в древесине, концентрация кальция, ка­лия, магния, натрия, кремния, фосфора. Содержание элементов в листьях деревьев и в травянистой растительности, обильно представленной в светлых листопадных лесах, слабо разли­чается. Концентрация большей части рассеянных элементов в лис­тьях деревьев и травах также более высокая, чем в древесине, хотя бария и особенно стронция больше в древесине.

На основании имеющихся данных мы принимаем среднее значе­ние суммы зольных элементов в биомассе постоянно влажного тро­пического леса равным 800 т/км 2 ; массу этих элементов, вовлекае­мую в биологический круговорот, равной 150 т/км 2 в год. Для светлых лесов средние значения составляют соответственно 200 и 50 т/км 2 в год. Исходя из этих цифр определены ориентировочные значения масс рассеянных элементов, ежегодно вовлекаемых в биологический круговорот.

Концентрация зольных элементов в экваториальной растительности Восточной Африки, % сухой массы (по В.В.Добровольскому 1975)

№ образца Элементы "Чистая зола" Примесь
Si А1 Fe Mn Ti Са Mg Na Р S минеральных частиц
52 2,27 0,41 0,40 0,008 0,006 0,24 0,12 0,03 0,06 0,01 7,29 3,21
76 0,05 0,01 0,02 0,001 0,001 0,29 0,02 0,01 0,02 0,04 0,79 0,40
42 1,06 1,87 1,48 0,05 0,07 0,45 0,27 0,22 0,06 0,04 9,07 11,33
210 0,69 0,01 0,08 0,02 0,001 0,08 0,08 0,05 0,08 0,06 6,32 0,68

Образцы: 52 - разреженный травянистый покров низкотравной саван­ны с преобладанием представителей родов Sporobolus, Cynodon, KyUinga, Северо-Западная Танзания.

76 - ствол Podocarpus, дождевой лес южного склона Килиманджаро, Танзания.

42 - лесная подстилка дождевого леса южного склона Килиманджаро, Танзания.

210 - стебли папируса (Cyperuspapyrus), пойма Белого Нила вблизи истока из озера Альберта, Уганда.

Массы рассеянных элементов, вовлекаемые в биологический круговорот в тропических лесах

Уровни концентрации рассеянных элементов в почвообразующем субстрате разных районов тропической суши неодинаковы. Это отражается на содержании элементов в растениях. Например, в Восточной Африке в злаковых травах, собранных на площади распространения кристаллических пород докембрийского фунда­мента, концентрация меди равна 71*10 -4 %, а в аналогичных травах на площади распространения вулканических лав - 120*10 -4 %. Кон­центрация цинка соответственно меняется от 120 до 450 10- 4 %), TiOz - от 200 до 1800 10 -4 %.

В таблице сопоставлено содержание рассеянных элементов в золе трав и ветвей деревьев (акаций) из саванн Восточной Африки. Видно, что тяжелые металлы сильнее аккумулируются в травах, а барий и стронций - в деревьях. Следует отметить, что концентра­ция последнего возрастает с усилением засушливости. В аридных районах южной Танзании мы обнаружили концентрацию стронция в золе ветвей баобаба около 4500 мкг/г, а в одном случае в ветвях акаций в 3 раза больше.

Интенсивность биологического поглощения и концентрация рассеянных элементов в золе трав и деревьев саванн Восточной Африки (по В.В.Добровольскому, 1973)

Элементы Концентрация, мкг/г Коэффициент биологического
" поглощения Кб
травы, ветви акаций, травы ветви акаций
6 проб 9 проб
Ti 1140 230 0,1 0,03
Mn 1880 943 1,9 0,9
V 59 45 0,3 0,2
Сг 28 12 0,2 0,08
39 144 0,6 2,0
Со 20 12 0,6 0,4
Си " 85 39 1,5 0,7
РЬ 34 21 1.5 0,9
Zn 118 79 1,2 0,8
Mo 57 6 7,1 0,8
Nb 59 18 0,9 0,3
Zr 165 92 0,5 0,3
Ga 36 4 1,6 0,2
Sr 450 3340 3,5 25,7
Ba 440 630 3,0 4,3

Надземная часть саванновых трав обладает высокой зольностью - от 6 до 10%, отчасти обусловленной примесью мелких частиц минеральной пыли, обнаруживаемой под микроскопом, а иногда и невооруженным глазом. Количество минеральной пыли составляет 2-3% от массы абсолютно сухого вещества надземной части трав. По-видимому, примесь минеральной пыли сказывается на повышен­ной концентрации галлия, слабо поглощаемого растениями, но содержащегося в высокодисперсном глинистом материале, энергич­но переносимом ветром. Но даже после исключения нерастворимой силикатной пыли сумма зольных элементов в саванновых злаках в 2 раза больше, чем в злаках высокогорных лугов.

Круговорот веществ в природе представляет собой совокупность повторяющихся процессов превращения или перемещения веществ, имеющую более или менее выраженный циклический характер.

Начнем с круговорота воды. Это сложный геофизический процесс, основными звеньями которого являются: испарение воды, перенос ее паров воздушными потоками, образование облаков и выпадение осадков, поверхностный и подземный сток вод в океан.

В этот геологический круговорот воды встраивается биологический (или биотический) круговорот. Растения всасывают воду из почвы, а затем испаряют ее (см. Транспирация). Часть поглощенной растениями воды идет на построение органических веществ, которые, окисляясь, снова образуют воду (см. Биологическое окисление). Любой живой организм поглощает и выделяет воду, используя при этом энергию, полученную зелеными растениями от солнечного света (см. Фотосинтез). Таким образом, именно излучаемая в виде света энергия Солнца «вращает колесо» круговорота воды, и не только воды, а и всех других веществ.

Рассмотрим круговорот азота. Азот Земли находится в основном в ее атмосфере. Некоторые микроорганизмы, как свободноживущие (например, цианобактерии, азотобактер), так и симбиотические (например, клубеньковые бактерии бобовых), способны поглощать азот из воздуха и фиксировать его в своем теле в виде азотсодержащих органических соединений, превращать молекулярный азот в аммиак, хорошо усваиваемый растениями. Из растений азот в составе органических соединений поступает в организмы животных и других гетеротрофов.

В конечных звеньях пищевых цепей органические вещества, попавшие в почву при разложении трупов и с выделениями организмов, служат пищей для бактерий и грибов. Определенные группы почвенных микроорганизмов (деструкторы) разлагают органические вещества до неорганических, которые могут усваиваться зелеными растениями. Так, органические соединения азота превращаются в почве в аммиак, который снова может быть усвоен растениями. Почвенные бактерии-хемосинтетики (см. Хемосинтез) окисляют аммиак до нитритов и нитратов, которые поступают с водой в растения и там восстанавливаются до аммиака. Есть в почве и микроорганизмы, превращающие аммиак в молекулярный азот, который поступает в атмосферу.

В местах, где выпадает мало осадков, нитраты, образующиеся из гуано - помета колониальных птиц, питающихся живущей в океане рыбой, накапливаются в виде залежей селитры (например, в Чили). Вновь в круговорот азота ее возвращает человек, используя селитру для удобрения полей.

Человек все активнее вмешивается в круговорот веществ. Например, осуществляется синтез сотен миллионов тонн азотных удобрений, но по своей интенсивности промышленная фиксация азота атмосферы уступает биологической и сопряжена с отравлением окружающей среды: излишки азотных удобрений атмосферные осадки смывают с полей в реки. Так они попадают в воду, потребляемую человеком. Оказалось, что нитраты не безвредны для человека - их излишек способствует образованию злокачественных опухолей. Кроме того, синтез азотных удобрений требует больших затрат энергии. Поэтому ученые интенсивно изучают механизм биологической фиксации атмосферного азота, чтобы разработать более эффективные пути обеспечения растений азотом (см. Азотфиксация).

Источником фосфора биосферы являются в основном апатиты, встречающиеся во многих горных породах. Организмы извлекают его из почв и водных растворов, включая в многочисленные фосфорсодержащие органические соединения. С гибелью организмов он возвращается в почву и илы морей, где может концентрироваться в виде отложений (гуано, отложения костей рыб и т. д.). Поскольку большинство почв содержит недостаточное количество фосфора, внесение фосфорных удобрений исключительно важно для получения высоких урожаев сельскохозяйственных культур.

Так же можно описать круговорот многих других элементов. Каждый из них имеет свои особенности, но важно подчеркнуть, что энергия для любого круговорота в конечном счете поступает от Солнца.

Круговорот веществ сложен, и элемент «течет» от соединения к соединению не по одному руслу, а по нескольким, которые разветвляются и снова сливаются, причем круговороты различных элементов взаимосвязаны.

Биологический круговорот лишь часть геологического, но его скорость в сотни тысяч и миллионы раз больше, поскольку все биологические превращения катализируются ферментами, которые в сотни тысяч и миллионы раз активнее неорганических катализаторов.

Другая особенность биологического круговорота - это очень сильное концентрирование биологически важных химических элементов, например фосфора, а иногда даже редкоземельных (например, иттрия в хвощах).

Биолбгический круговорот цикличен, потому что пищевые цепи имеют замкнутый характер. Это обеспечило возможность длительного существования жизни на Земле, поскольку в противном случае самые богатые запасы любого вещества были бы быстро исчерпаны.

Из-за активного вмешательства человека в процессы, происходящие в природе, возникла проблема ее охраны (см. Охрана природы).

Ряд веществ в результате геологических и космических процессов теряется, выходит из круговорота. Так, улетучивается с Земли в космическое пространство водород, образующийся при разложении воды. На дне океанов отлагаются биогенные карбонаты, выводя из круговорота углерод. А из космического пространства с солнечным ветром и метеоритами поступает на Землю углерод и ряд других элементов. При извержении вулканов из земных недр на поверхность выбрасываются углекислый газ, вода и другие соединения. Таким образом, круговорот веществ на Земле связан с глобальными геологическими, биологическими и астрономическими процессами, а также с сознательной деятельностью человечества.


Циклы массообмена различной протяженности в пространстве и неодинаковой длительности во времени образуют динамическую систему биосферы. В. И. Вернадский считал, что история большинства химических элементов, образующих более 99% массы биосферы, может быть понята лишь с учетом круговых миграций (циклов). При этом он подчеркивал, что "эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым". Неполная обратимость и несбалансированность миграционных циклов допускают определенные концентрации мигрирующего элемента, к которым организмы могут адаптироваться, но в то же время, обеспечивают вывод избыточного количества элемента из данного цикла.

То есть, целостность биосферы как системы обусловлена непрерывным обменом веществом между её компонентами, в котором ключевую роль играют процессы, связанные с синтезом и разложением органического вещества. Реализуются они как в ходе обмена веществ между живыми организмами и окружающей средой, так и в процессах минерализации органического вещества после смерти организма в целом или отмирания отдельных его органов. Кроме того, свой вклад в круговорот вещества в биосфере сносят и небиогенные по своей природе процессы обмена веществом между различными компонентами географической оболочки.

Абиогенный и биологический круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, который является основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие – обязательно совместным! Именно в этом смысле употребляются термины биогеохимический круговорот веществ и биогеохимические циклы.

Биологический круговорот не является полностью компенсированным замкнутым циклом.

Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В. В. Докучаев. Далее оно было раскрыто в трудах В. И. Вернадского, Б. Б. Полынова, Д. Н. Прянишникова, В. Н. Сукачева, Л. Е. Родина, Н. И. Базилевич, В. А. Ковды и других исследователей.

Прежде чем мы приступим к изучению природных биологических круговоротов химических элементов, необходимо познакомиться с наиболее часто употребляемыми терминами.

Биомасса – масса живого вещества, накопленная к данному моменту времени.

Фитомасса (или биомасса растений0 – масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой конкретной площади или на планете в целом.

Структура фитомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Ветошь – отмершие части растений, сохранившие механическую связь с растением.

Опад – количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка – масса многолетних отложений растительных остатков разной степени минерализации.

Прирост – масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

Истинный прирост – отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция – масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площакди за единицу времени.

Вторичная продукция – масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Следует различать также емкость и скорость биологического круговорота.

Емкость биологического круговорота – количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота – количество химических элементов, содержащихся в приросте биомассы на единицу площади в единицу времени.

Скорость биологического круговорота – промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества.

По Л. Е. Родину и Н. И. Базилевич (1965), полный цикл биологического круговорота элементов на суше слагается из следующих составляющих:

1. Поглощение растениями из атмосферы углерода, а из почвы – азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

2. Поедание частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

3. Газообмен между растениями и атмосферой (в том числе, почвенным воздухом).

4. Прижизненные выделения надземными органами растений и их корневыми системами некоторых элементов непосредственно в почву.

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга – континентальный и океанический. В современную эпоху суша в целом является элювиальной системой, океан – аккумулятивной системой. История "геохимических отношений" между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни – Si, Al, Fe, Mn, C, P, N, Ca, K – аккумулируются в почве, а H, O, Na, Cl, S, Mg – составляют химическую основу океана.

Растения, животные и почвенный покров Мировой суши образуют сложную систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта систама постоянно формирует новую биомассу и генерирует свободный кислород.

В океане существует вторая система (водные растения и животные), выполняющая на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.

Вам уже известно, что существует три формы накопления и перераспределения космической энергии (прежде всего, энергии Солнца) в биосфере.

Суть первой из них в том. Что живые организмы, а через пищевые цепи и связанные с ними животныхе и бактерии строят свои ткани, используя многие химические элементы и их соединения. Среди важнейших из них макроэлементы– H, O, N, P, S, Ca, K, Mg, Si, Al, Mn, а также микроэлементы I, Co, Cu, Zn, Mo и др. При этом происходит избирательная селекция легких изотопов углерода, водорода, кислорода, азота и серы от более тяжелых.

В течении всей своей жизни и даже после смерти живые организмы суши, водной и воздушной среды, находятся в состоянии непрерывного обмена с окружающей средой. При этом суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) в несколько раз превышают биомассу живого вещества.

Элементами биогеохимического круговорота являются следующие составляющие:

1. Непрерывные или регулярно повторяющиеся процессы притока энергии, образование и синтез новых соединений.

2. Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов.

3. Направленные ритмические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных и абиогенных воздействий среды.

4. Постоянное или периодическое образование простейших минеральных или органо-минеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ.

Биологические обусловлены жизнедеятельностью организмов (питание, пищевые связи, размножение, рост, перемещение продуктов метаболизма, смерть, разложение, минерализация)

Обязательными параметрами, учитываемыми при исследовании биогеохимических циклов являются следующие основные показатели:

1. Общая биомасса и ее фактический прирост (фито-, зоо-, микробная масса по отдельности).

2. Органический опад (количество, состав)

3. Органическое вещество почвы (гумус, неразложившиеся органические остатки).

4. Элементарный вещественный состав почв, вод, воздуха, осадков, отдельных фракций биомассы.

5. Наземные и подземные запасы биогенной энергии.

6. Прижизненные метаболиты

7. Число видов живых организмов, их численность, сост

8. Продолжительность жизни организмов каждого вида, динамика жизни популяций живых организмов и почв.

9. Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека.

10. Характеристика различных ландшафтов и их элементов.

11. Количество загрязнителей, их химические, физические, биологические свойства.

Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения, который определяется отношением содержания элемента в золе растений (по массе) к содержанию того же элемента в почве (или в земной коре).

В 1966 году В. А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза-минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что доля суши в целом этот цикл укладывается в период от 300-400 до 1000 лет. Соответственно, с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В. А. Ковда предложил сопоставлять запас минеральных веществ биомассы, а также количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины сопоставимы. А это означает, что большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения-почвы, до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин.

Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа, поэтому Н. И. Базилевич и Л. Е. Родин предложили рассчитывать дополнительный коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза, равный отношению массы подстилки к массе годичного опада. По данным этих исследователей индексы разложения фитомассы наибольшие в тундре и болотах севера, а наименьшие (около 1) – в степях и полупустынях.

Б. Б. Полынов предложил рассчитывать индекс водной миграции равный отношению количества элемента в минеральном остатке выпаренной речной или грунтовой воды к содержанию того же химического компонента в горных породах (или земной коре). Расчет индексов водной миграции показал, что наиболее подвижными мигрантами в биосфере являются хлор, сера, бор, бром, йод, кальций, натрий, магний, фтор, стронций, цинк, уран, молибден. Наименее подвижны – кремний, алюминий, железо, калий, фосфор, барий, марганец, рубидий, медь, никель, кобальт, мышьяк, литий.

Ненарушенные биогеохимические циклы имеют почти круговой, т.е. почти замкнутый характер. Степень воспроизводства (повторяемости) циклов в природе очень высока (по данным В.а. Ковды – 90-98%). Тем самым поддерживается известное постоянство состава, количества и концентрации компонентов, вовлеченных в круговорот. Но неполная замкнутость биогеохимических циклов, как мы увидим далее, имеет очень важное геохимическое значение и способствует эволюции биосферы. Именно поэтому происходит биогенное накопление кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки)

Давайте несколько подробнее рассмотрим основные параметры биогеохимического круговорота на суше.

Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, самых необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах.



Круговорот веществ в биосфере — цикличный, многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ. Наличие круговорота веществ является необходимым условием существования биосферы. После использования одними организмами вещества должны переходить в доступную для других организмов форму. Такой переход веществ от одного звена к другому требует энергетических затрат, поэтому возможен только при участии энергии Солнца. С использованием солнечной энергии на планете протекают два взаимосвязанных круговорота веществ: большой — геологический и малый — биологический (биотический).

Геологический круговорот веществ — процесс миграции веществ, осуществляемый под влиянием абиотических факторов: выветривания, эрозии, движения вод и т. д. Живые организмы участия в нем не принимают.

С возникновением на планете живого вещества появился биологический (биотический) круговорот . В нем принимают участие все живые организмы, поглощающие из окружающей среды одни вещества и выделяющие другие. Например, растения в процессе жизнедеятельности потребляют из окружающей среды углекислый газ, воду, минеральные вещества и выделяют кислород. Животные используют выделенный растениями кислород для дыхания. Они поедают растения и в результате пищеварения усваивают образовавшиеся в процессе фотосинтеза органические вещества. Выделяют углекислый газ и непереваренные остатки пищи. После отмирания растения и животные образуют массу мертвого органического вещества (детрит). Детрит доступен для разложения (минерализации) микроскопическими грибами и бактериями. В результате их жизнедеятельности в биосферу поступает дополнительное количество углекислого газа. А органические вещества превращаются в исходные неорганические компоненты — биогены. Образовавшиеся минеральные соединения, попадая в водоемы и почву, снова становятся доступны растениям для фиксации посредством фотосинтеза. Такой процесс повторяется бесконечно и носит замкнутый характер (круговорот). Например, весь атмосферный кислород проходит по этому пути примерно за 2 тыс. лет, а углекислому газу для этого требуется около 300 лет.

Энергия, заключенная в органических веществах, по мере перемещения в пищевых цепях уменьшается. Большая часть ее рассеивается в окружающей среде в виде тепла или расходуется на поддержание процессов жизнедеятельности организмов. Например, на дыхание животных и растений, транспорт веществ у растений, а также на процессы биосинтеза живых организмов. К тому же образовавшиеся в результате деятельности редуцентов биогены не содержат доступной для организмов энергии. В данном случае можно говорить лишь о потоке энергии в биосфере, но не о круговороте. Поэтому условием устойчивого существования биосферы является постоянно протекающий в биогеоценозах круговорот веществ и поток энергии.

Геологический и биологический круговороты в совокупности формируют общий биогеохимический круговорот веществ, основу которого составляют циклы азота, воды, углерода и кислорода.

Круговорот азота

Азот — один из самых распространенных элементов в биосфере. Основная часть биосферного азота находится в атмосфере в газообразной форме. Как известно из курса химии, химические связи между атомами в молекулярном азоте (N 2) очень прочные. Поэтому большинство живых организмов не способны использовать его непосредственно. Отсюда важным этапом в круговороте азота является его фиксация и перевод в доступную для организмов форму. Различают три пути фиксации азота.

Атмосферная фиксация . Под воздействием атмосферных электрических разрядов (молний) азот может взаимодействовать с кислородом с образованием оксида (NO) и диоксида (NO 2) азота. Оксид азота (NO) при этом очень быстро окисляется кислородом и превращается в диоксид азота. Диоксид азота растворяется в парах воды и в виде азотистой (HNO 2) и азотной (HNO 3) кислот с осадками попадает в почву. В почве в результате диссоциации этих кислот образуются нитрит- (NO 2 –) и нитрат-ионы (NO 3 –). Нитрит- и нитрат-ионы уже могут поглощаться растениями и включаться в биологический круговорот. На долю атмосферной фиксации азота приходится около 10 млн т азота в год, что составляет около 3 % ежегодной азотфиксации в биосфере.

Биологическая фиксация . Она осуществляется азотфиксирующими бактериями, которые переводят азот в доступные для растений формы. Благодаря микроорганизмам связывается около половины всего азота. Наиболее известны бактерии, фиксирующие азот в клубеньках бобовых растений. Они поставляют растениям азот в виде аммиака (NH 3). Аммиак хорошо растворим в воде с образованием иона аммония (NH 4 +), который и усваивается растениями. Поэтому бобовые — лучшие предшественники культурных растений в севообороте. После отмирания животных и растений и разложения их остатков почва обогащается органическими и минеральными соединениями азота. Далее гнилостные (аммонифицирующие) бактерии расщепляют азотсодержащие вещества (белки, мочевину, нуклеиновые кислоты) растений и животных до аммиака. Этот процесс называется аммонификацией . Большая часть аммиака впоследствии подвергается окислению нитрифицирующими бактериями до нитритов и нитратов, которые вновь используются растениями. Возвращение азота в атмосферу происходит путем денитрификации, которую осуществляет группа денитрифицирующих бактерий. В результате происходит восстановление азотистых соединений до молекулярного азота. Часть азота в нитратной и аммонийной формах с поверхностным стоком попадает в водные экосистемы. Здесь азот усваивается водными организмами или поступает в донные органические отложения.

Промышленная фиксация . Большое количество азота ежегодно связывается промышленным путем при производстве минеральных азотных удобрений. Азот из таких удобрений усваивается растениями в аммонийной и нитратной формах. Объем выпускаемых азотных удобрений в Беларуси в настоящее время составляет около 900 тыс. т в год. Крупнейшим производителем является ОАО «ГродноАзот». На данном предприятии выпускают карбамид, аммиачную селитру, сульфат аммония и другие азотные удобрения.

Примерно 1/10 искусственно внесенного азота используется растениями. Остальное с поверхностным стоком и грунтовыми водами переходит в водные экосистемы. Это приводит к накоплению в воде больших количеств соединений азота, доступных для усвоения фитопланктоном. В результате возможно бурное размножение водорослей (эвтрофикация) и, как следствие, заморы в водных экосистемах.

Круговорот воды

Вода — основной компонент биосферы. Она является средой для растворения практически всех элементов при осуществлении круговорота. Большая часть биосферной воды представлена жидкой водой и водой вечных льдов (более 99 % всех запасов воды в биосфере). Незначительная часть воды находится в газообразном состоянии — это атмосферные водяные пары. Биосферный круговорот воды основывается на том, что ее испарение с поверх ности Земли компенсируется выпадением осадков. Попадая на поверхность суши в виде осадков, вода способствует разрушению горных пород. Это делает составляющие их минералы доступными для живых организмов. Именно испарение воды с поверхности планеты обусловливает ее геологический круговорот. На него расходуется около половины падающей солнечной энергии. Испарение воды с поверхности морей и океанов происходит с большей скоростью, чем возвращение ее с осадками. Эта разница компенсируется за счет поверхностного и глубинного стоков благодаря тому, что на континентах осадки преобладают над испарением.

Увеличение интенсивности испарения воды на суше во многом обусловлено жизнедеятельностью растений. Растения извлекают воду из почвы и активно транспирируют ее в атмосферу. Часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород выделяется в атмосферу.

Животные используют воду для поддержания осмотического и солевого равновесия в организме и выделяют ее во внешнюю среду вместе с продуктами обмена веществ.

Круговорот углерода

Углерод как химический элемент присутствует в атмосфере в составе углекислого газа. Это и обусловливает обязательное участие живых организмов в круговороте этого элемента на планете Земля. Основной путь, по которому углерод из неорганических соединений переходит в состав органических веществ, где он является обязательным химическим элементом, — это процесс фотосинтеза. Часть углерода выделяется в атмосферу в составе углекислого газа при дыхании живых организмов и при разложении бактериями мертвого органического вещества. Усвоенный растениями углерод потребляется животными. Кроме того, коралловые полипы, моллюски используют соединения углерода для построения скелетных образований и раковин. После их отмирания и оседания на дне формируются отложения известняков. Таким образом, углерод может исключаться из круговорота. Выведение углерода из круговорота на длительный срок достигается путем формирования полезных ископаемых: каменного угля, нефти, торфа.

На протяжении существования нашей планеты выведенный из круговорота углерод компенсировался углекислым газом, поступающим в атмосферу при вулканических извержениях и в ходе других естественных процессов. В настоящее время к природным процессам пополнения углерода в атмосфере добавилось значительное антропогенное воздействие. Например, при сжигании углеводородного топлива. Это нарушает отрегулированный веками круговорот углерода на Земле.

Увеличение концентрации углекислого газа за столетие всего на 0,01 % привело к заметному проявлению парникового эффекта. Среднегодовая температура на планете повысилась на 0,5 °С, а уровень Мирового океана поднялся почти на 15 см. По прогнозам ученых, если среднегодовая температура увеличится еще на 3-4 °С, начнется таяние вечных льдов. При этом уровень Мирового океана поднимется на 50-60 см, что приведет к затоплению значительной части суши. Это расценивается как глобальная экологическая катастрофа, ведь на этих территориях проживает около 40 % населения Земли.

Круговорот кислорода

В функционировании биосферы кислород играет исключительно важную роль в процессах обмена веществ и дыхании живых организмов. Уменьшение количества кислорода в атмосфере в результате процессов дыхания, сжигания топлива и гниения компенсируется кислородом, выделяемым растениями при фотосинтезе.

Кислород образовывался в первичной атмосфере Земли при ее остывании. В силу своей высокой реакционной способности он переходил из газообразного состояния в состав различных неорганических соединений (карбонатов, сульфатов, оксидов железа и др.). Сегодняшняя кислородсодержащая атмосфера планеты образовалась исключительно за счет осуществляемого живыми организмами фотосинтеза. Содержание кислорода в атмосфере повышалось до нынешних значений в течение длительного времени. Поддержание его количества на постоянном уровне в настоящее время возможно только благодаря фотосинтезирующим организмам.

К сожалению, в последние десятилетия деятельность человека, приводящая к вырубке лесов, эрозии почв, снижает интенсивность фотосинтеза. А это, в свою очередь, нарушает естественный ход круговорота кислорода на значительных территориях Земли.

Небольшая часть кислорода атмосферы участвует в процессах образования и разрушения озонового экрана при действии ультрафиолетового излучения Солнца.

Основой биогенного круговорота веществ является солнечная энергия. Главным условием устойчивого существования биосферы являются постоянно протекающий в биогеоценозах круговорот веществ и поток энергии. В круговоротах азота, углерода и кислорода основная роль принадлежит живым организмам. Основу же глобального круговорота воды в биосфере обеспечивают физические процессы.

Круговороты веществ

Малые миграционные потоки химических элементов как между взаимосвязанными организмами, так и между организ­мами и окружающей их средой складываются в более крупные циклы - круговороты . Продолжительность и постоянство су­ществования жизни поддерживают именно круговороты, пото­му что без них даже в масштабах всей Земли запасы необходи­мых элементов были бы очень скоро исчерпаны.

Круговорот биологический (биотический) - явление не­прерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энер­гии 1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до био­сферы. Круговорот веществ в масштабах всей биосферы назы­вают большим кругом, а в пределах конкретного био­геоценоза - малым кругом биотического обмена. Часть биологического круговорота, состоящая из кругово­ротов углерода, воды, азота, фосфора, серы и других биоген­ных веществ, называют биогеохимическим круговоротом.

Некоторое количество вещества может на время выбы­вать из биологического круговорота (осаждаться на дне океа­нов, морей, выпадать в глубины земной коры и т. п.). Однако в результате протекания тектонических и геологических про­цессов (вулканической деятельности, подъема и опускания земной коры, изменения границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот, назы­ваемый геологическим циклом или кругово­ротом.

Круговороты веществ от продуцентов к консументам раз­личных уровней, затем к редуцентам, а от них вновь к проду­центам замкнуты не полностью. Если бы в экосистемах су­ществовала их полная замкнутость, то не возникало бы ника­ких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким обра­зом, биотический круговорот можно условно изобразить в виде незамкнутого кольца. Потери вещества из-за незамкнутости круговорота мини­мальны в биосфере (самой крупной экосистеме планеты). Ин­формация в экосистемах теряется с гибелью видов и необрати­мыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает свое су­ществование за счет круговорота биогенов и постоянного прито­ка солнечной энергии. Круговорот энергии в экосистемах прак­тически отсутствует, поскольку от редуцентов она (энергия) воз­вращается к консументам в мизерных количествах. Считают, что коэффициент круговорота энергии не превышает 0,24%. Энергия может накапливаться, сберегаться (т. е. преобразовы­ваться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растений-продуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При дви­жении через экосистему поток энергии затрагивает в основном ее биоценоз, поэтому он подробно рассмотрен ранее.