Сильные и слабые взаимодействия элементарных частиц. Слабое взаимодействие - одно из четырех фундаментальных взаимодействий

Слабое взаимодействие

Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Напомним, что квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Слабое взаимодействие гораздо интенсивнее гравитационного.

Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра.

Почему можно говорить о слабом взаимодействии как о независимом виде фундаментальных взаимодействий? Ответ прост. Установлено, что есть процессы превращений элементарных частиц, которые не сводятся к гравитационным, электромагнитным и сильным взаимодействиям. Хороший пример, показывающий, что существуют три качественно различных взаимодействия в ядерных явлениях, связан с радиоактивностью. Эксперименты указывают на наличие трех различных видов радиоактивности: a-, b и g-радиоактивных распадов. При этом a-распад обусловлен сильным взаимодействием, g-распад - электромагнитным. Оставшийся b-распад не может быть объяснен электромагнитным и сильным взаимодействиями, и мы вынуждены принять, что есть еще одно фундаментальное взаимодействие, названное слабым. В общем случае необходимость введения слабого взаимодействия обусловлена тем, что в природе происходят процессы, в которых электромагнитные и сильные распады запрещены законами сохранения.

Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Как мы уже отмечали, оно связано с процессом b-радиоактивности. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах.

Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.

В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. В этом смысле оно достаточно универсально. Классической теорией электромагнитного взаимодействия является максвелловская электродинамика. В качестве константы связи принимается заряд электрона e.

Если рассмотреть два покоящихся точечных заряда q1 и q2, то их электромагнитное взаимодействие сведется к известной электростатической силе. Это означает, что взаимодействие является дальнодействующим и медленно спадает с ростом расстояния между зарядами. Заряженная частица испускает фотон, в силу чего состояние ее движения изменяется. Другая частица поглощает этот фотон и также изменяет состояние своего движения. В результате частицы как бы чувствуют наличие друг друга. Хорошо известно, что электрический заряд является размерной величиной. Удобно ввести безразмерную константу связи электромагнитного взаимодействия. Для этого надо использовать фундаментальные постоянные и c. В результате приходим к следующей безразмерной константе связи, называемой в атомной физике постоянной тонкой структуры

Легко заметить, что данная константа значительно превышает константы гравитационного и слабого взаимодействий.

С современной точки зрения электромагнитное и слабое взаимодействия представляют собой различные стороны единого электрослабого взаимодействия. Создана объединенная теория электрослабого взаимодействия - теория Вайнберга-Салама-Глэшоу, объясняющая с единых позиций все аспекты электромагнитных и слабых взаимодействий. Можно ли понять на качественном уровне, как происходит разделение объединенного взаимодействия на отдельные, как бы независимые взаимодействия?

Пока характерные энергии достаточно малы, электромагнитное и слабое взаимодействия отделены и не влияют друг на друга. С ростом энергии начинается их взаимовлияние, и при достаточно больших энергиях эти взаимодействия сливаются в единое электрослабое взаимодействие. Характерная энергия объединения оценивается по порядку величины как 102 ГэВ (ГэВ - это сокращенное от гигаэлектрон-вольт, 1 ГэВ = 109 эВ, 1 эВ = 1.6·10-12 эрг = 1.6·1019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10-8 ГэВ, характерная энергия связи атомного ядра порядка 10-2 ГэВ, характерная энергия связи твердого тела порядка 10-10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.

Сильное взаимодействие

Сильное взаимодействие ответственно за устойчивость атомных ядер. Поскольку атомные ядра большинства химических элементов стабильны, то ясно, что взаимодействие, которое удерживает их от распада, должно быть достаточно сильным. Хорошо известно, что ядра состоят из протонов и нейтронов. Чтобы положительно заряженные протоны не разлетелись в разные стороны, необходимо наличие сил притяжения между ними, превосходящих силы электростатического отталкивания. Именно сильное взаимодействие является ответственным за эти силы притяжения.

Характерной чертой сильного взаимодействия является его зарядовая независимость. Ядерные силы притяжения между протонами, между нейтронами и между протоном и нейтроном по существу одинаковы. Отсюда следует, что с точки зрения сильных взаимодействий протон и нейтрон неотличимы и для них используется единый термин нуклон, то есть частица ядра.

Итак, мы сделали обзор основных сведений, касающихся четырех фундаментальных взаимодействий Природы. Кратко описаны микроскопические и макроскопические проявления этих взаимодействий, картина физических явлений, в которых они играют важную роль.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)"

(СПбГЭТУ)

Факультет экономики и менеджмента

Кафедра физики


По дисциплине "Концепции современного естествознания"

на тему "Слабое взаимодействие"


Проверил:

Альтмарк Александр Моисеевич

Выполнила:

студентка гр. 3603

Колисецкая Мария Владимировна


Санкт-Петербург



1. Слабое взаимодействие - одно из четырех фундаментальных взаимодействий

История изучения

Роль в природе


Слабое взаимодействие - одно из четырех фундаментальных взаимодействий


Слабое взаимодействие, или слабое ядерное взаимодействие, - одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное ), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного . Силы слабого взаимодействия не хватает, чтобы удерживать частицы друг около друга (т.е. образовывать связанные состояния). Оно может проявляться только при распадах и взаимных превращениях частиц.

Слабое взаимодействие является короткодействующим - оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 2·10?18 м).

Переносчиками слабого взаимодействия являются векторные бозоны , и. При этом различают взаимодействие так называемых заряженных слабых токов и нейтральных слабых токов . Взаимодействие заряженных токов (при участии заряженных бозонов) приводит к изменению зарядов частиц и превращению одних лептонов и кварков в другие лептоны и кварки. Взаимодействие нейтральных токов (при участии нейтрального бозона) не меняет заряды частиц и переводит лептоны и кварки в те же самые частицы.

Впервые слабые взаимодействия наблюдались при?-распаде атомных ядер. И, как оказалось, эти распады связаны с превращениями протона в нейтрон в ядре и обратно:


р? n + е+ + ?e, n ? р + е- + e,

где n - нейтрон, p - протон, e- - электрон, ??e - электронное антинейтрино.

Элементарные частицы принято делить на три группы:

) фотоны; эта группа состоит всего лишь из одной частицы - фотона - кванта электромагнитного излучения;

) лептоны (от греч. «лептос» - легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон - t-лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

) адроны (от греч. «адрос» - крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.


Свойства слабого взаимодействия


Слабое взаимодействие обладает отличительными свойствами:

В слабом взаимодействии принимают участие все фундаментальные фермионы (лептоны и кварки ). Фермионы (от фамилии итальянского физика Э. Ферми <#"22" src="doc_zip7.jpg" />, -x, -y, -z, -, .

Операция P изменяет знак любого полярного вектора

Операция пространственной инверсии переводит систему в зеркально симметричную. Зеркальная симметрия наблюдается в процессах под действием сильного и электромагнитного взаимодействий. Зеркальная симметрия в этих процессах означает, что в зеркально симметричных состояниях переходы реализуются с одинаковой вероятностью.

г. ? Янг Чжэньнин, Ли Цзундао получил нобелевскую премию по физике. За глубокие исследования так называемых законов четности, которые привели к важным открытиям в области элементарных частиц.

Помимо пространственной чётности, слабое взаимодействие не сохраняет также и комбинированной пространственно-зарядовой чётности, то есть единственное из известных взаимодействий нарушает принцип CP-инвариантности .

Зарядовая симметрия означает, что если существует какой-либо процесс с участием частиц, то при замене их на античастицы (зарядовом сопряжении), процесс также существует и происходит с той же вероятностью. Зарядовая симметрия отсутствует в процессах с участием нейтрино и антинейтрино. В природе существуют только левоспиральные нейтрино и правоспиральные антинейтрино. Если каждую из этих частиц (для определённости будем рассматривать электронное нейтрино?e и антинейтрино e) подвергнуть операции зарядового сопряжения, то они перейдут в несуществующие объекты с лептонными числами и спиральностями.

Таким образом, в слабых взаимодействиях нарушаются одновременно P- и C-инвариантность. Однако, если над нейтрино (антинейтрино) совершить две последовательные операции? P- и C-преобразования (порядок операций не важен), то вновь получим нейтрино, существующие в природе. Последовательность операций и (или в обратном порядке) носит название CP-преобразования. Результат CP-преобразования (комбинированной инверсии) ?e и e следующий:

Таким образом, для нейтрино и антинейтрино операция, переводящая частицу в античастицу, это не операция зарядового сопряжения, а CP-преобразование.


История изучения


Изучение слабых взаимодействий продолжалось длительный период.
В 1896 году Беккерель обнаружил, что соли урана испускают проникающее излучение (?-распад тория). Это стало началом исследования слабого взаимодействия.
В 1930 году Паули выдвинул гипотезу о том, что при?-распаде наряду с электронами (е) испускаются легкие нейтральные частицы? нейтрино (?). В том же году Ферми предложил квантово-полевую теорию?-распада. Распад нейтрона (n) есть следствие взаимодействия двух токов: адронныи ток переводит нейтрон в протон (р), лептонный - рождает пару электрон + нейтрино. В 1956 году Райнес впервые наблюдал реакцию ер? nе+ в опытах вблизи ядерного реактора.

Ли и Янг объяснили парадокс в распадах K+-мезонов (? ~ ? загадка) ? распад на 2 и 3 пиона. Он связан с несохранением пространственной четности. Зеркальная асимметрия обнаружена в?-распаде ядер, распадах мюонов, пионов, K-мезонов и гиперонов.
В 1957 году Гелл-Манн, Фейнман, Маршак, Сударшан предложили универсальную теорию слабого взаимодействия, основанную на кварковой структуре адронов. Эта теория, получившая название V-A теории, привела к описанию слабого взаимодействия с помощью диаграмм Фейнмана. Тогда же были открыты принципиально новые явления: нарушение СР-инвариантности и нейтральные токи.

В 1960-х годах Шелдоном Ли Глэшоу , Стивеном Вайнбергом и Абдусом Саламом на основе хорошо разработанной к тому времени квантовой теории поля была создана теория электрослабых взаимодействий , объединяющая в себе слабое и эектромагнитное взаимодействия. Ими были введены калибровочные поля и кванты этих полей - векторные бозоны , и в роли переносчиков слабого взаимодествия. Кроме того, было предсказано существование неизвестных ранее слабыхнейтральных токов . Эти токи были обнаружены экспериментально в 1973 году при изучении процессов упругого рассеяния нейтрино и антинейтрино нуклонами .

В 1991-2001 годах на ускорителе LEP2 (ЦЕРН) проводилось изучение распадов Z0-бозонов, которое показало, что в природе существует только три поколения лептонов: ?e, ?? и??.


Роль в природе

ядерное взаимодействие слабое

Наиболее распространённый процесс, обусловленный слабым взаимодействием, - b-распад радиоактивных атомных ядер. Явление радиоактивности <#"justify">Список используемой литературы


1. Новожилов Ю.В. Введение в теорию элементарных частиц. М.: Наука, 1972

Окунь Б. Слабое взаимодействие элементарных частиц. М.: Физматгиз, 1963

Читателю знакомы разные по своей природе силы, проявляющиеся во взаимодействиях между телами. Но глубоко различающихся в принципе типов взаимодействия очень мало. Если не считать тяготения, которое играет существенную роль только в присутствии огромных масс, то известны лишь три вида взаимодействий: сильные , электромагнитные и слабые .

Электромагнитные взаимодействия всем знакомы. Благодаря им движущийся неравномерно электрический заряд (скажем, электрон в атоме) испускает электромагнитные волны (например, видимый свет). С этим классом взаимодействий связаны все химические процессы, а также все молекулярные явления - поверхностное натяжение, капиллярность, адсорбция, текучесть. Электромагнитные взаимодействия , теория которых блестяще подтверждается опытом, глубоко связаны с электрическим зарядом элементарных частиц .

Сильные взаимодействия стали известны только после раскрытия внутренней структуры атомного ядра. В 1932 г. было обнаружено, что оно состоит из нуклонов, нейтронов и протонов. И именно сильные взаимодействия соединяют нуклоны в ядре - отвечают за ядерные силы, которые в отличие от электромагнитных характеризуются очень малым радиусом действия (около 10-13, т.е. одной десятитриллионной доли сантиметра) и большой интенсивностью. Кроме этого, сильные взаимодействия появляются при столкновениях частиц высоких энергии с участием пионов и так называемых "странных" частиц .

Интенсивность взаимодействий удобно оценивать по так называемой длине свободного пробега частиц в некотором веществе, т.е. по средней величине пути, который частица может пройти в этом веществе до разрушающего или сильно отклоняющего соударения. Ясно, что чем больше длина свободного пробега, тем менее интенсивно взаимодействие.

Если рассматривать частицы очень высокой энергии, то соударения, обусловленные сильными взаимодействиями , характеризуются длиной свободного пробега частиц , соответствующей по порядку величины десяткам сантиметров в меди или железе.

Иначе обстоит дело при слабых взаимодействиях . Как мы уже сказали, длина свободного пробега нейтрино в плотном веществе измеряется в астрономических единицах. Это указывает на удивительно малую интенсивность слабых взаимодействий.

Любой процесс взаимодействия элементарных частиц характеризуется некоторым временем, определяющим его среднюю продолжительность. Процессы, вызванные слабыми взаимодействиями , часто называют "медленными", так как время для них относительно велико.

Читатель, правда, может удивиться тому, что явление, происходящее, скажем, за 10-6 (одну миллионную долю) секунды, классифицируется как медленное. Такое время жизни характерно, например, для распада мюона, вызванного слабыми взаимодействиями . Но все познается в сравнении. В мире элементарных частиц такой промежуток времени действительно весьма продолжителен. Естественной единицей длины в микромире служит 10-13 сантиметра - радиус действия ядерных сил. А так как элементарные частицы высокой энергии имеют скорость, близкую к скорости света (порядка 1010 сантиметров в секунду), то "нормальный" масштаб времени для них составит 10-23 секунды.

Это значит, что время 10-6 секунды для "граждан" микромира гораздо более продолжительно, чем для нас с вами весь период существования жизни на Земле

Слабое взаимодействие

Сильное взаимодействие

Сильное взаимодействие – короткодействующее. Его радиус действия порядка 10-13 см.

Частицы, участвующие в сильном взаимодействии, называются адронами. В обычном стабильном веществе при не чересчур высокой температуре сильное взаимодействие не вызывает никаких процессов. Его роль сводится к созданию прочной связи между нуклонами (протонами и нейтронами) в ядрах. Энергия связи в среднем составляет около 8 Мэв на нуклон. При этом при столкновениях ядер или нуклонов, обладающих достаточно высокой энергией (порядка сотни Мэв), сильное взаимодействие приводит к многочисленным ядерным реакциям: расщеплению ядер, превращению одних ядер в другие и т.п.

Начиная с энергий сталкивающихся нуклонов порядка нескольких сотен Мэв, сильное взаимодействие приводит к рождению П-мезонов. При еще больших энергиях рождаются К-мезоны и гипероны, и множество мезонных и барионных резонансов (резонансы - это короткоживущие возбужденные состояния адронов).

Вместе с тем выяснилось, что сильное взаимодействие испытывают не всœе частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 1960-х гᴦ., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков

Квантами сильного взаимодействия являются восœемь глюонов. Свое название глюоны получи­ли от английского слова glue (клей), ибо именно они ответ­ственны за конфайнмент кварков. Массы покоя глюонов равны нулю. При этом глюоны обладают цветным зарядом, благодаря чему они способны к взаимодействию друг с дру­гом, как говорят, к самодействию, что приводит к трудно­стям описания сильного взаимодействия математически вви­ду его нелинœейности.

Его радиус действия меньше 10-15 см. Слабое взаимодействие на несколько порядков слабее не только сильного, но и электромагнитного. При этом оно гораздо сильнее гравитационного в микромире.

Первым обнаруженным и наиболее распространенным процессом, вызываемым слабым взаимодействием, является радиоактивный b-распад ядер.
Размещено на реф.рф
Этот тип радиоактивности был открыт в 1896 году А.А. Беккерелœем. В процессе радиоактивного электронного /b - -/ распада один из нейтронов /n / атомного ядра превращается в протон /р / с испусканием электрона /е- / и электронного антинœейтрино //:

n ® p + е-+

В процессе позитронного /b + -/ распада происходит переход:

p® n + е++

В первой теории b-распада, созданной в 1934 году Э. Ферми, для объяснения этого явления потребовалось ввести гипотезу о существовании особого типа короткодействующих сил, которые вызывают переход

n ® p + е-+

Дальнейшее исследование показало, что введенное Ферми взаимодействие имеет универсальный характер.
Размещено на реф.рф
Оно обуславливает распад всœех нестабильных частиц, массы которых и правила отбора по квантовым числам не позволяют им распадаться за счёт сильного или электромагнитного взаимодействия. Слабое взаимодействие присуще всœем частицам, кроме фотонов. Характерное время протекания процессов слабого взаимодействия при энергиях порядка 100 Мэв на 13-14 порядков больше характерного времени для сильного взаимодействия.

Квантами слабого взаимодействия являются три бо­зона - W + , W − , Z°- бозоны. Верхние индексы указывают знак электрического заряда этих квантов. Кванты слабого взаимодействия имеют значительную массу, что приводит к тому, что слабое взаимодействие проявляется на очень ко­ротких расстояниях.

Необходимо учитывать, что сегодня уже в единую теорию объединœены слабое и электромагнитное взаимодействия. Существует ряд теоретических схем, в которых делается попытка создать единую теорию всœех типов взаимодействия. При этом эти схемы еще не настолько разработаны, чтобы можно было их проверять на опыте.

26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм

Объектами структурной физики являются элементы структуры вещества (к примеру, молекулы, атомы, элементарные частицы ) и более сложное образование из них. Это:

1) плазма - это газ, в котором значительная часть молекул или атомов ионизирована;

2) кристаллы - это твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру;

3) жидкости - это агрегатное состояние вещества, ĸᴏᴛᴏᴩᴏᴇ сочетает в себе черты твердого состояния (сохранение объёма, определœенная прочность на разрыв) и газообразного (изменчивость формы).

Для жидкости характерны:

а) ближний порядок в расположении частиц (молекул, атомов);

б) малое различие в кинœетической энергии теплового движения и их потенциальной энергии взаимодействия.

4) звезды, ᴛ.ᴇ. светящиеся газовые (плазменные) шары.

При выделœении структурных уравнений вещества пользуются такими критериями:

Пространственные размеры: частицы одного уровня имеют пространственные размеры одного порядка (к примеру, всœе атомы имеют размеры порядка 10 -8 см);

Время протекания процессов: на одном уровне оно примерно одного порядка;

Объекты одного уровня состоят из одних и тех же элементов (к примеру, всœе ядра состоят из протонов и нейтронов);

Законы, объясняющие процессы на одном уровне, качественно отличаются от законов, объясняющих процессы на другом уровне;

Объекты разных уровней различаются по основным свойствам (к примеру, всœе атомы электрически нейтральны, а всœе ядра положительно электрически заряжены).

По мере открытия новых уровней структуры и состояний вещества объектная область структурной физики расширяется.

Необходимо учитывать, что при решении конкретных физических задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются.

В корне структурной физики лежит корпускулярный подход к описанию и объяснению природы.

Впервые понятие об атоме как последней и неделимой частице тела возникло в Античной Греции в рамках натурфилософского учения школы Левкиппа-Демокрита. Согласно этому взгляду в мире существуют только атомы, которые движутся в пустоте. Непрерывность материи древние атомисты считали кажущейся. Различные комбинации атомов образуют разнообразные видимые тела. Эта гипотеза не основывалась на данных экспериментов. Она была лишь гениальной догадкой. Но она определила на многие столетия вперед всœе дальнейшее развитие естествознания.

Гипотеза об атомах как неделимых частицах вещества была возрождена в естествознании, в частности, в физике и химии для объяснения некоторых закономерностей, которые устанавливались опытным путем (к примеру, законов Бойля-Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и т.д.). Действительно, закон Бойля-Мариотта утверждает, что объём газа обратно пропорционален его давлению, но он не объясняет, почему это так. Аналогично, при нагревании тела его размеры увеличиваются. Но какова же причина такого расширения? В кинœетической теории вещества с помощью атомов и молекул объясняются эти и другие установленные опытом закономерности.

Действительно, непосредственно наблюдаемое и измеряемое уменьшение давления газа при увеличении его объёма в кинœетической теории вещества объясняется как увеличение свободного пробега составляющих его атомов и молекул. Именно вследствии этого и возрастает объём, занимаемый газом. Аналогично этому, расширение тел при нагревании в кинœетической теории вещества объясняют возрастанием средней скорости движущихся молекул.

Объяснения, при которых свойства сложных веществ или тел пытаются свести к свойствам более простых их элементов или составных частей, называют редукционизмом. Такой способ анализа позволил решить в естествознании большой класс задач.

Вплоть до конца XIX в. считалось, что атом - это мельчайшая, неделимая, бесструктурная частица вещества. При этом, открытия электрона, радиоактивности показали, что это не так. Возникает планетарная модель атома Резерфорда. Потом ее сменяет модель Н. Бора. Но по-прежнему мысль физиков устремлена на то, чтобы свести всœе многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных частиц. Впоследствии эти частицы были названы элементарными . Сейчас их общее число превышает 350. По этой причине вряд ли всœе такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков. Согласно ей, известные элементарные частицы состоят из частиц с дробными электрическими зарядами. Их называют кварками.

По типу взаимодействия, в котором участвуют элементарные частицы, всœе они, кроме фотона, бывают отнесены к двум группам:

1) адроны. Стоит сказать, что для них характерно наличие сильного взаимодействия. При этом они могут участвовать также в слабом и электромагнитном взаимодействиях;

2) лептоны. Οʜᴎ участвуют только в электромагнитном и слабом взаимодействиях;

По времени жизни различают:

а) стабильные элементарные частицы. Это электрон, фотон, протон и нейтрино;

б) квазистабильные. Это частицы, которые распадаются вследствие электромагнитного и слабого взаимодействия. К примеру, к + ® m + +;

в) нестабильные. Οʜᴎ распадаются за счёт сильного взаимодействия, к примеру, нейтрон.

Электрические заряды элементарных частиц являются кратными наименьшего заряда, присущего электрону. Вместе с тем, элементарные частицы делят на пары частица – античастица, к примеру е - - е + (у них всœе характеристики одинаковы, а знаки электрического заряда противоположны). Электрически нейтральные частицы тоже имеют античастицы, к примеру, п -, - .

Итак, атомистическая концепция опирается на представление о дискретном строении материи. Атомистический подход объясняет свойства физического объекта͵ исходя из свойств составляющих его мельчайших частиц, которые на определœенном этапе познания считаются неделимыми. Исторически, такими частицами сначала признавались атомы, затем элементарные частицы, а сейчас - кварки. Трудность такого подхода - это полная редукция сложного к простому, при которой не учитываются качественные различия между ними.

Вплоть до конца первой четверти ХХ века идея единства строения макро- и микрокосмоса понималась механистически, как полное тождество законов и как полное сходство строения того и другого.

Микрочастицы трактовались как миниатюрные копии макротел, ᴛ.ᴇ. как чрезвычайно малые шарики (корпускулы), двигающиеся по точным орбитам, которые совершенно аналогичны планетным орбитам, с той лишь разницей, что небесные тела связываются силами гравитационного взаимодействия, а микрочастицы - силами электрического взаимодействия.

После открытия электрона (Томсон, 1897 ᴦ.), создания теории квантов (Планк, 1900 ᴦ.), введения понятия фотон (Эйнштейн, 1905 ᴦ.), атомное учение приобрело новый характер.
Размещено на реф.рф
Идея дискретности была распространена на область электрических и световых явлений, на понятие энергии (в XIX веке учение об энергии служило сферой представления о непрерывных величинах и функциях состояния). Важнейшую черту современного атомного учения составляет атомизм действия. Он связан с тем, что движение, свойства и состояния различных микробъектов поддаются квантованию, ᴛ.ᴇ. бывают выражены в форме дискретных величин и отношений. Новая атомистика признает относительную устойчивость каждого дискретного вида материи, его качественную определœенность, его относительную неделимость и непревращаемость в известных границах явлений природы. К примеру, будучи делимым некоторыми физическими способами, атом неделим химически, ᴛ.ᴇ. в химических процессах он ведет себя как нечто целое, неделимое. Молекула, будучи делима химически на атомы, в тепловом движении (до известных пределов) ведет себя как целое, неделимое и т.д.

Особенно важно в концепции новой атомистики признание взаимопревращаемости любых дискретных видов материи.

Разные уровни структурной организации физической реальности (кварки, микрочастицы, ядра, атомы, молекулы, макротела, мегасистемы) имеют свои специфические физические законы. Но как бы ни отличались изучаемые явления от явлений, изучаемых классической физикой, всœе опытные данные должны описываться с помощью классических понятий. Существует принципиальное различие между описанием поведения изучаемого микрообъекта и описанием действия измерительных приборов. Это результат того, что действие измерительных приборов в принципе должно описываться языком классической физики, а изучаемый объект может и не описываться этим языком.

Корпускулярный подход в объяснении физических явлений и процессов всœегда сочетался с континуальным подходом с момента возникновения физики взаимодействия. Он выражался в понятии поля и раскрытии его роли в физическом взаимодействии. Представление поля как потока определœенного рода частиц (квантовая теория поля) и приписывание любому физическому объекту волновых свойств (гипотеза Луи де Бройля) соединила вместе эти два подхода к анализу физических явлений.

Слабое взаимодействие - понятие и виды. Классификация и особенности категории "Слабое взаимодействие" 2017, 2018.

В 1896 г. французский ученый Анри Беккерель обнаружил радиоактивность урана. Это был первый экспериментальный сигнал о неизвестных до того силах природы - слабом взаимодействии. Теперь мы знаем, что слабое взаимодействие кроется за многими привычными явлениями, - например, оно принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Название «слабое» досталось этому взаимодействию по недоразумению, - так, для протона оно в 1033 раз сильнее гравитационного взаимодействия (см. Тяготение, Единство сия природы). Это, скорее, разрушительное взаимодействие, единственная сила природы, которая не скрепляет вещество, а только разрушает его. Можно было назвать его и «беспринципным», так как в разрушении оно не считается с принципами пространственной четности и временной обратимости, которые соблюдают остальные силы.

Основные свойства слабого взаимодействия стали известны еще в 1930-х гг., главным образом благодаря работам итальянского физика Э. Ферми. Оказалось, что, в отличие от гравитационных и электрических, слабые силы имеют очень малый радиус действия. В те годы казалось, что радиуса действия вообще нет - взаимодействие происходит в одной точке пространства, и к тому же мгновенно. Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон - в позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино. В стабильных ядрах (см. Ядро атомное) эти превращения так и остаются виртуальными, подобно виртуальным рождениям электрон-позитронных пар или протон-антипротонных пар в вакууме.

Если разница масс ядер, отличающихся на единицу по заряду, достаточно велика, эти виртуальные превращения делаются реальными, и ядро изменяет свой заряд на 1, выбрасывая электрон и антинейтрино (электронный -распад) или позитрон и нейтрино (позитронный -распад). Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрогна. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин, хотя в связанном состоянии, например, в дейтоне, который состоит из нейтрона и протона, эти частицы живут неограниченно долго.

Аналогичное событие происходит с мюоном (см. Пептоны) - он распадается на электрон, нейтрино и антинейтрино. Перед тем как распасться, мюон живет около с - гораздо меньше, чем нейтрон. Теория Ферми объясняла это разницей масс участвующих частиц. Чем больше энергии выделяется при распаде, тем быстрее он идет. Выделение энергии при -распаде около 100 МэВ, примерно в 100 раз больше, чем при распаде нейтрона. Время жизни частицы обратно пропорционально пятой степени этой энергии.

Как выяснилось в последние десятилетия, слабое взаимодействие нелокально, т. е. оно происходит не мгновенно и не в одной точке. По современной теории, слабое взаимодействие передается не мгновенно, а виртуальная пара электрон - антинейтрино рождается через с после того, как мюон переходит в нейтрино, и происходит это на расстоянии см. Ни одна линейка, ни один микроскоп не могут, конечно, измерить такое малое расстояние, так же как ни один секундомер не может измерить такой малый интервал времени. Как это почти всегда бывает, в современной физике мы должны довольствоваться косвенными данными. Физики строят различные гипотезы о механизме процесса и проверяют всевозможные следствия этих гипотез. Те гипотезы, которые противоречат хотя бы одному достоверному опыту, отметаются, а для проверки оставшихся ставятся новые опыты. Этот процесс в случае слабого взаимодействия продолжался около 40 лет, пока физики не пришли к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г. в ЦЕРНе, Швейцария - Франция).

Есть два заряженных векторных бозона и один нейтральный (значок вверху, как обычно, указывает заряд в единицах протонного). В распадах нейтрона и мюона «работает» заряженный векторный бозон . Ход распада мюона изображен на рис. (вверху, справа). Такие рисунки называют диаграммами Фейнмана, они не только иллюстрируют процесс, но и помогают его рассчитать. Это своего рода стенографическая запись формулы для вероятности реакции; здесь она используется только для иллюстрации.

Мюон переходит в нейтрино, испуская -бозон, который распадается на электрон и антинейтрино. Выделяемой энергии недостаточно для реального рождения -бозона, поэтому он рождается виртуально, т. е. на очень короткое время. В данном случае это с. За это время поле, соответствующее -бозону, не успевает сформировать волну, или иначе, реальную частицу (см. Поля и частицы). Образуется сгусток поля размером см, и через с из него рождаются электрон и антинейтрино.

Для распада нейтрона можно было бы нарисовать такую же диаграмму, но тут она уже ввела бы нас в заблуждение. Дело в том, что размер нейтрона см, что в 1000 раз больше радиуса действия слабых сил. Поэтому эти силы действуют внутри нейтрона, где находятся кварки. Один из трех кварков нейтрона испускает -бозон, переходя при этом в другой кварк. Заряды кварков в нейтроне: -1/3, - 1/ 3 и так что один из двух кварков с отрицательным зарядом -1/3 переходит в кварк с положительным зарядом . В результате получатся кварки с зарядами - 1/3, 2/3, 2/3, составляющие вместе протон. Продукты реакции - электрон и антинейтрино - беспрепятственно вылетают из протона. Но ведь кварк, испустивший -бозон. получил отдачу и начал двигаться в противоположном направлении. Почему же он не вылетает?

Его удерживает сильное взаимодействие. Это взаимодействие увлечет за кварком его двух неразлучных спутников, в результате чего получится движущийся протон. По аналогичной схеме происходят слабые распады (связанные со слабым взаимодействием) остальных адронов. Все они сводятся к испусканию векторного бозона одним из кварков, переходу этого векторного бозона в лептоны (, и -частицы) и дальнейшему разлету продуктов реакции.

Иногда, впрочем, происходят и адронные распады: векторный бозон может распасться на пару кварк - антикварк, которая перейдет в мезоны.

Итак, большое количество различных реакций сводится к взаимодействию кварков и лептонов с векторными бозонами. Это взаимодействие универсально, т. е. одинаково для кварков и лептонов. Универсальность слабого взаимодействия в отличие от универсальности гравитационного или электромагнитного взаимодействия не получила пока исчерпывающего объяснения. В современных теориях слабое взаимодействие объединяется с электромагнитным взаимодействием (см. Единство сил природы).

О нарушении симметрии слабым взаимодействием см. Четность, Нейтрино. В статье Единство сил природы рассказано о месте слабых сил в картине микромира