Самые элегантные математические уравнения. Решение уравнений с дробью

Математические уравнения не только полезны - они также могут быть и красивы. И многие ученые признают, что они часто любят определенные формулы не только за их функциональность, но еще и за их форму, некую особую поэтичность. Есть те уравнения, которые известны на весь мир, как, например, E = mc^2. Другие не столь широко распространены, но красота уравнения не зависит от его популярности.

Общая теория относительности

Уравнение, описанное выше, было сформулировано Альбертом Эйнштейном в 1915 году как часть инновационной общей теории относительности. Теория на самом деле произвела революцию в мире науки. Это удивительно, как одним уравнением можно описать абсолютно все, что есть вокруг, в том числе пространство и время. Весь истинный гений Эйнштейна воплощен в нем. Это очень элегантное уравнение, которое кратко описывает, как все вокруг вас связано - например, как присутствие Солнца в галактике искривляет пространство и время так, чтобы Земля вращалась вокруг него.

Стандартная модель

Стандартная модель - это еще одна из важнейших теорий физики, в ней описываются все элементарные частицы, из которых состоит вселенная. Существуют различные уравнения, способные описать эту теорию, однако чаще всего пользуются уравнением Лагранжа, французского математика и астронома 18 века. Он успешно описал абсолютно все частицы и силы, которые на них воздействуют, за исключением гравитации. Это также включает недавно открытый бозон Хиггса. Оно в полной мере сочетается с квантовой механикой и общей теорией относительности.

Математический анализ

В то время как первые два уравнения описывают конкретные аспекты вселенной, данное уравнение может быть использовано во всех возможных ситуациях. Фундаментальная теорема математического анализа формирует основу математического метода, известного как исчисление, и связывает две свои основные идеи - концепцию интеграла и понятие производной. Зародился математический анализ еще в древности, однако все теории были собраны воедино Исааком Ньютоном в 17 веке - он использовал их для вычисления и описания движения планет вокруг Солнца.

Теорема Пифагора

Старым добрым известным всем уравнением выражается знаменитая теорема Пифагора, которую учат все школьники на уроках геометрии. Это формула описывает, что в любом прямоугольном треугольнике квадрат длины гипотенузы, самой длинной из всех сторон (c), равен сумме квадратов двух других сторон, катетов (a и b). В итоге, уравнение выглядит следующим образом: a^2 + b^2 = c^2. Эта теорема удивляет многих начинающих математиков и физиков, когда они только учатся в школе и еще не знают, что им готовит новый мир.

1 = 0.999999999….

Это простое уравнение указывает на то, что число 0.999 с бесконечным количеством девяток после запятой, на самом деле, равно единице. Это уравнение замечательно тем, что оно крайне простое, невероятно наглядное, но все же умудряется удивить и поразить многих. Некоторые люди не могут поверить в то, что это на самом деле так. Более того, красиво и само по себе уравнение - левая его часть представляет собой простейшую основу математики, а правая скрывает в себе тайны и загадки бесконечности.

Специальная теория относительности

Альберт Эйнштейн снова попадает в список, на этот раз со своей специальной теорией относительности, которая описывает, как время и пространство являются не абсолютными понятиями, а относительными - к скорости смотрящего. Это уравнение показывает, как время «расширяется», тем сильнее замедляясь, чем быстрее человек движется. На самом деле, уравнение не является таким уж сложным, простые производные, линейная алгебра. Однако то, что оно собой воплощает, представляет абсолютно новый способ смотреть на мир.

Уравнение Эйлера

Эта простая формула включает в себя основные знания о природе сфер. Она говорит о том, что если вы разрезаете сферу и получаете грани, ребра и вершины, то если F принять за число граней, E - за число ребер, а V - за число вершин, то вы всегда получите одно и то же: V - E + F = 2. Именно так и выглядит данное уравнение. Поражает то, что какую бы сферическую форму вы ни взяли - будь-то тетраэдр, пирамида или любая другая комбинация граней, ребер и вершин, у вас всегда получится одинаковый результат. Эта комбинаторика рассказывает людям нечто фундаментальное о сферических формах.

Уравнение Эйлера-Лагранжа и теорема Нетер

Эти понятия являются довольно абстрактными, но очень сильными. Самое интересное заключается в том, что данный новый способ мышления о физике смог пережить несколько революций в данной науке, таких как открытие квантовой механики, теории относительности и так далее. Здесь L означает уравнение Лагранжа, которое является мерой энергии в физической системе. А решение этого уравнения расскажет вам о том, как конкретная система будет развиваться с течением времени. Вариантом уравнения Лагранжа является теорема Нетер, которая является фундаментальной для физики и роли симметрии. Суть теоремы заключается в том, что если ваша система симметрична, то в ней действует соответствующий закон сохранения. Собственно говоря, главная идея этой теоремы заключается в том, что законы физики действуют повсеместно.

Уравнение ренормгруппы

Это уравнение также называется по имени его создателей, уравнением Каллана-Симанчика. Оно является жизненно важным базовым уравнением, написанным в 1970 году. Оно служит для того, чтобы продемонстрировать, как наивные ожидания рушатся в квантовом мире. Уравнение также имеет множество приложений, позволяющих оценить массу и размер протона и нейтрона, которые составляют ядро атома.

Уравнение минимальной поверхности

Данное уравнение невероятным образом вычисляет и кодирует те самые красивые мыльные пленки, которые образуются на проволоке, когда ее окунают в мыльную воду. Данное уравнение, однако, сильно отличается от привычных линейных уравнений из той же области, например, уравнения тепла, образования волн и так далее. Это уравнение - нелинейно, оно включает в себя воздействие сторонних сил и производных продуктов.

Прямая Эйлера

Возьмите любой треугольник, нарисуйте наименьший круг, который может включить в себя треугольник, и отыщите его центр. Найдите центр массы треугольника - ту точку, которая позволила бы треугольнику балансировать, например, на острие карандаша, если бы его можно было вырезать из бумаги. Нарисуйте три высоты этого треугольника (линии, которые были бы перпендикулярны тем сторонам треугольника, от которых они рисуются) и найдите точку их пересечения. Суть теоремы заключается в том, что все три точки будут находиться на одной прямой, именно это и есть прямая Эйлера. Теорема заключает в себе всю красоту и мощь математики, открывая удивительные закономерности в самых простых вещах.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

Обучающие:

  • Обобщить знания по всем видам уравнений, подчеркнуть значимость всех способов, применяемых при решении уравнений.
  • Активизирование работы учащихся за счет, разнообразных приемов на уроке.
  • Проверить теоретические и практические навыки при решении уравнений.
  • Заострить внимание на том, что, одно уравнение можно решить несколькими способами

Развивающие:

  • Повысить интерес учащихся к предмету, через использование ИКТ.
  • Ознакомление учащихся с историческим материалом по теме.
  • Развитие мыслительной деятельности при определении вида уравнения и способов его решения.

Воспитательные:

  • Воспитать дисциплину на уроке.
  • Развитие способности к восприятию прекрасного, в себе самом, в другом человеке и в окружающем мире.

Тип урока:

  • Урок обобщения и систематизации знаний.

Вид урока:

  • Комбинированный.

Материально-техническое оснащение:

  • Компьютер
  • Экран
  • Проектор
  • Диск с презентацией темы

Методы и приемы:

  • Использование презентации
  • Фронтальная беседа
  • Устная работа
  • Игровые моменты
  • Работа в парах
  • Работа у доски
  • Работа в тетрадях

План урока:

  1. Организационный момент (1минуты)
  2. Расшифровка темы урока (3минуты)
  3. Сообщение темы и цели урока (1минута)
  4. Теоретическая разминка (3минут)
  5. Исторический экскурс (3минуты)
  6. Игра “Убери лишнее” (2минуты)
  7. Творческая работа (2минуты)
  8. Задание “Найди ошибку” (2минуты)
  9. Решение одного уравнения несколькими способами (на слайде) (3минуты)
  10. Решение одного уравнения несколькими способами (у доски) (24 минут)
  11. Самостоятельная работа в парах с последующим объяснением (5минут)
  12. Индивидуальное домашнее задание(1минуты)
  13. Итог урока рефлексия (1минута)

Эпиграф урока:

“Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”.
А.Франс

Конспект урока

Организационная часть

Проверяю готовность учащихся к уроку, отмечаю отсутствующих на уроке. Ребята, Французский писатель 19 века А.Франс однажды заметил “ Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”. Так давайте на нашем уроке следовать совету, писателя и переваривать знания с большим аппетитом, ведь они пригодятся в нашей жизни.

Расшифровка темы урока

Для того, чтобы перейти к более сложном заданием, давайте разомнем свои мозги простыми заданиями. Тема нашего урока зашифрована, решив устные задания и найдя к ним ответ, зная, что каждый ответ имеет свою букву, мы раскроем тему урока. Презентация слайд 3

Сообщение темы и цели урока

Вы, сегодня сами назвали тему урока

“Виды уравнений и способы их решения”. Презентация слайд 4

Цель: Вспомнить и обобщить все виды уравнений и способы их решения. Решить одно уравнение всеми способами. Презентация слайд 5 Прочитать высказывание Эйнштейна Презентация слайд 5

Теоретическая разминка

Вопросы Презентация слайд 7

Ответы

  1. Равенство, содержащее переменную величину, обозначенную какой-то буквой.
  2. Это значит найти все его корни, или доказать, что корней нет.
  3. Значение переменной, при котором уравнение обращается в верное равенство.
  4. После этого определения прочесть стихотворение об уравнении Презентация слайд 12,13,14

Ответы на 2 последних вопроса Презентация слайд 9,10,11

Исторический экскурс

Историческая справка, о том “Кто и когда придумал уравнение” Презентация слайд 15

Представим себе, что первобытная мама по имени... впрочем, у неё, наверно, и имени то не было, сорвала с дерева 12 яблок, чтобы дать каждому из своих 4 детей. Вероятно, она не умела считать не только до 12, но и до четырёх, и уж несомненно не умела делить 12 на 4.А яблоки она поделила, наверно, так: сначала дала каждому ребёнку по яблоку, потом ещё по яблоку, потом ещё по одному и тут увидела, что яблок больше нет и дети довольны. Если записать эти действия на современном математическом языке, то получается х4=12, то есть мама решила задачу на составление уравнение. По-видимому, ответить на поставленный выше вопрос невозможно. Задачи, приводящие к решению уравнений, люди решили на основе здравого смысла с того времени, как они стали людьми. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитие учения об уравнениях достиг греческий учёный Диофант(III век), о котором писали:

Он уйму всяких разрешил проблем.
И запахи предсказывал, и ливни.
Поистине, его познанья дивны.

Большой вклад в решение уравнений внёс среднеазиатский математик Мухаммед ал Хорезми (IХ век). Его знаменитая книга ал-Хорезми посвящена решению уравнений. Она называется “Китаб ал-джебр вал-мукабала”, т. е. “Книга о восполнении и противопоставлении”. Эта книга стала известна европейцам, а от слова “ал-джебр” из ее заглавия произошло слово “алгебра” – название одной из главных частей математики. В дальнейшем многие математики занимались проблемами уравнений. Общее правило решений квадратных уравнений приведённых к виду х2+вх=0 было сформулировано немецким математиком Штифелем, проживавшим в ХV веке. После трудов нидерландского математика Жирара (ХVI век), а также Декарта и Ньютона, способ решения принял современный вид. Формулы, выражающие зависимости корней уравнения от его коэффициентов была введена Виетом. Франсуа Виет жил в ХVI веке. Он внёс большой вклад в изучение различных проблем в математике и астрономии; в частности, он ввёл буквенные обозначения коэффициентов уравнения. А сейчас познакомимся с интересным эпизодом из его жизни. Громкую славу Виет получил при короле Генрихе III, вовремя франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись, благодаря которой испанцы вели переписку с врагами Генриха III даже в самой Франции.

Напрасно французы пытались найти ключ к шифру, и тогда король обратился к Виету. Рассказывают, что Виет нашёл за две недели непрерывной работы ключ к шифру, после чего, неожиданно для Испании, Франция стала выигрывать одно сражение за другим. Будучи уверенным, что шифр разгадать не возможно, испанцы обвинили Виета в связи с дьяволом и приговорили к сожжению на костре. К счастью, он не был выдан инквизиции и вошёл в историю как великий математик.

Игра “Убери лишнее”

Цель игры ориентирование в видах уравнений.

У нас даны три столбика уравнений,в каждом из них, уравнения определены по какому-то признаку,но одно из них лишнее ваша задача его найти и охарактеризовать. Презентация слайд 16

Творческая работа

Цель этого задания: Восприятие на слух математической речи ориентировании детей в видах уравнений.

На экране вы видите 9 уравнений. Каждое уравнение имеет свой номер, я буду называть вид этого уравнения, а вы должны найти уравнение этого вида, и поставить только номер, под которым оно стоит, в результате вы получите 9-значное число Презентация слайд 17

  1. Приведенное квадратное уравнение.
  2. Дробно-рациональное уравнение
  3. Кубическое уравнение
  4. Логарифмическое уравнение
  5. Линейное уравнение
  6. Неполное квадратное уравнение
  7. Показательное уравнение
  8. Иррациональное уравнение
  9. Тригонометрическое уравнение

Задание “Найди ошибку”

Один ученик решал уравнения, но весь класс смеялся, в каждом уравнении он допустил ошибку, ваша задача найти ее и исправить. Презентация слайд 18

Решение одного уравнения несколькими способами

А теперь решим одно уравнение всеми возможными способами, для экономии времени на уроке одно уравнение на экране. Сейчас вы назовете вид этого уравнения, и объясните какой способ используется, при решении этого уравнения Презентация слайды 19-27

Решение одного уравнения несколькими способами (у доски)

Мы посмотрели пример, а теперь давайте решим уравнение у доски всевозможными способами.

X-2 - иррациональное уравнение

Возведем в квадрат обе части уравнения.

X 2 +2x+4x-1-4=0

Решаем это уравнение у доски 9 способами.

Самостоятельная работа в парах с последующим объяснением у доски

А сейчас вы поработаете в парах, на парту я даю уравнение, ваша задача определить вид уравнения, перечислить все способы решения этого уравнения, решить 1-2 наиболее рациональными для вас способами. (2 минуты)

Задания для работы в парах

Решите уравнение

После самостоятельной работы в парах один представитель выходит к доске представляет свое уравнение, решает одним способом

Индивидуальное домашнее задание (дифференцируемо)

Решите уравнение

(определить вид уравнения, решить всеми способами на отдельном листе)

Итог урока рефлексия.

Подвожу итог урока, заостряю внимание на том, что одно уравнение можно решить многими способами, выставляю оценки, делаю вывод, кто был активным кому надо быть поактивнее. Зачитываю высказывание Калинина Презентация слайд 28

Посмотрите внимательно на те цели которые мы с вами поставили для сегодняшнего урока:

  • Что на ваш взгляд нам удалось сделать?
  • Что получилось не очень хорошо?
  • Что вам особенно понравилось и запомнилось?
  • Сегодня я узнал новое...
  • На уроке мне пригодились знания...
  • Для меня было сложно...
  • На уроке мне понравилось...

Литература.

  1. Дорофеев Г.В. “Сборник заданий для проведения письменного экзамена по математике за курс средней школы” - М.: Дрофа, 2006.
  2. Гарнер Мартин. Математические головоломки и развлечения.
  3. Ивлев Б.М., Саакян С.М. Дидактические материалы по алгебре и началам анализа для 10 кл., 11 кл. М.: Просвещение. 2002.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«Уравнение - это золотой ключ, открывающий все математические сезамы»

С. Коваль

Математическое образование, получаемое в школе, очень важная часть жизни современного человека. Практически всё, что окружает нас так или иначе связано с математикой. Решение многих практических задач сводится к решению уравнений различных видов.

Уравнения - это наиболее объёмная тема всего курса алгебры. В прошлом учебном году на уроках алгебры мы познакомилась с квадратными уравнениями. Квадратные уравнения находят широкое применение при решении различных задач, как в области математики, так и в области физики и химии.

В школьном курсе математики изучается основные способы решения квадратных уравнений. Однако, имеются и другие приёмы решения квадратных уравнений, некоторые из которых позволяют быстро, рационально решать их.

Нами было проведено анкетирование среди 84 учащихся 8-9 классов по двум вопросам:

    Какие способы решения квадратных уравнений вы знаете?

    Какие вы используете чаще всего?

По результатам анкетирование были получены следующие результаты:

Проанализировав полученные результаты, мы пришли к выводу, что большинство учащихся используют при решении квадратных уравнений формулы корней с использование дискриминанта и недостаточно осведомлены о способах решения квадратных уравнений.

Таким образом, выбранная нами тема является актуальной.

Мы поставили перед собой цель : изучить нетрадиционные способы решения квадратных уравнений, познакомить учащихся 8 и 9 классов с различными способами решения, выработать умение выбирать рациональный способ решения квадратного уравнения.

Для достижения указанной цели нужно решить следующие задачи:

    собрать информацию о различных способах решения квадратных уравнений,

    освоить найденные способы решения,

    составить программу для решения квадратных уравнений по формулам корней квадратного уравнения в Excel,

    разработать дидактический материал для проведения урока или внеурочного мероприятия по нестандартным методам решения квадратных уравнений,

    провести занятие «Необычные способы решения квадратных уравнений» с учащимися 8 - 9 классов.

Объект исследования: квадратные уравнения.

Предмет исследования: различных способы решения квадратных уравнений.

Считаем, что практическая значимость работы состоит в возможности использования банка приёмов и способов решения квадратных уравнений на уроках математики и внеурочной деятельности, а также в ознакомлении учащихся 8 - 9 классов с данных материалом.

ГЛАВА 1. НЕОБЫЧНЫЕ МЕТОДЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

    1. СВОЙСТВА КОЭФФИЦИЕНТОВ (a,b,c)

Метод основан на свойствах коэффициентов a,b,c:

    Если a+b+c=0, то = 1, =

Пример:

-6х 2 + 2х +4=0, то = 1, = = .

    Если a - b+c=0, то = -1, = -

Пример:

2017х 2 + 2001х +16 =0, то = -1, -.

    1. ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ (a,b,c)

Справедливы следующие зависимости коэффициентов a,b,c:

Если b=a 2 +1, c=a, то х 1 =-а; x 2 = - .

Если b=-(a 2 +1), a=c, то x 1 =a; x 2 =.

Если b=a 2 -1, c=-a, то x 1 =-a; x 2 = .

Если b=-(a 2 -1), -a=c, то x 1 =a; x 2 = - .

Решим следующие уравнения:

    5x 2 + 26x + 5 = 0

x 1 = -5

x 2 = - 0,2.

    13x 2 - 167x + 13 = 0

x 1 =13 x 2 =

    14x 2 + 195x - 14 = 0

x 1 = - 14 x 2 =

    10x 2 - 99x - 10 = 0

x 1 =10 x 2 =-0,1.

    1. «ПЕРЕБРОС» ГЛАВНОГО КОЭФФИЦИЕНТА

Коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Далее корни находятся по теореме Виета. Найденные корни делятся на ранее переброшенный коэффициент, благодаря этому мы находим корни уравнения.

Пример:

2 - 3х + 1 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 - 3у + 2 = 0.

Согласно теореме Виета

у 1 = 2 , х 1 = 2/2 , x 1 = 1,

у 2 = 1; x 2 = 1/2; x 2 = 0,5.

Ответ: 0,5; 1.

    1. ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ

Если в уравнении аx 2 + bx + c = 0 перенести второй и третий члены в правую часть, то получим ax 2 = -bx -c .

Построим графики зависимостей у = aх 2 и у = -bx -c в одной системе координат.

График первой зависимости - парабола, проходящая через начало координат. График второй зависимости - прямая.

Возможны следующие случаи:

    прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

    прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

    прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим следующие уравнения:

1) х 2 + 2х - 3 = 0

х 2 = - 2х + 3

В одной системе координат построим график функции у =х 2 и график функции у = - 2х+3. Обозначив абсциссы точек пересечения, получим ответ.

Ответ: х 1 = - 3, х 2 =1.

2) х 2 + 6х +9 = 0

х 2 = - 6х - 9

В одной системе координат построим график функции у = х 2 и график функции у = -6х - 9. Обозначив абсциссу точки касания, получим ответ.

Ответ: х= - 3.

3) 2х 2 + 4х +7=0

2х 2 = - 4х - 7

В одной системе координат построим график функции у =2х 2 и график функции

Парабола у =2х 2 и прямая у = - 4х - 7 не имеют общих точек, следовательно уравнение не имеет корней.

Ответ: нет корней.

    1. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ ЦИРКУЛЯ И ЛИНЕЙКИ

Решим уравнение aх 2 +bх+c=0:

    Построим точки S(-b:2a,(a+c):2a)- центр окружности и точку А(0,1).

    Провести окружность радиуса SA.

    Абсциссы точек пересечения с осью Ох есть корни исходного уравнения.

При этом возможны три случая:

1) Радиус окружности больше ординаты центра (AS>SK , или R> ), окружность пересекает ось Ох в двух точках..B(х 1 ; 0) и D(х 2 ;0), где х 1 и х 2 - корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SВ , или R = ), окружность касается оси Ох в точке B(х 1 ; 0), где х 1 - корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра (AS < SВ , или R < ), окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

а) AS > SВ или R > , б) AS = SВ или R = в) AS < SВ, или R < .

Два решения х 1 и х 2 . Одно решение х 1.. Не имеет решения.

Пример 1: 2х 2 - 8х + 6 = 0.

Решение:

Проведём окружность радиуса SA, где А (0;1).

Ответ: х 1 = 1 , х 2 = 3.

Пример 2: х 2 - 6х + 9 = 0.

Решение : Найдём координаты S: x=3, y=5.

Ответ: x=3.

Пример 3: х 2 + 4 х + 5 = 0.

Решение: Координаты центра окружности: х= - 2 и y = 3.

Ответ: нет корней

    1. РЕШЕНИЕ С ПОМОЩЬЮ НОМОГРАММЫ

Номограмма (от греческого «nomos» - закон и грамма), графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывание линейки) исследовать функциональные зависимости без вычислений. Например, решать квадратное уравнение без применения формул.

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещённый на стр. 83 сборника: Брадис В.М. «Четырехзначные математические таблицы». - М., “ДРОФА”, 2000. Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 (см. Приложение 1).

Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам: ОВ = , АВ =

Полагая ОС = р, ЕD = q, ОЕ = а (все в см), из подобия треугольников САН и СDF получим пропорцию откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Пример 1 : z 2 - 9z + 8 = 0 .

На шкале p находим отметку -9, а на шкале q отметку 8. Проводим через эти метки прямую, которая пересекает кривую шкалу номограммы в отметках 1 и 8. Следовательно, корни уравнения 1 и 8.

Ответ: 1; 8.

Именно данное уравнение решено в таблице Брадиса стр. 83 (см. Приложение 1).

Пример 2: 2z 2 - 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

z 2 - 4,5z + 1 = 0. Номограмма даёт корни z 1 = 4 иz 2 = 0,5.

Ответ: 4; 0,5.

Пример 3: x 2 - 25x + 66 = 0

Коэффициенты p и q выходят за пределы шкалы. Выполним подстановку x = 5z , получим уравнение:

z 2 - 5z + 2,64 = 0,

которое решаем посредством номограммы.

Получим z 1 = 0,6 и z 2 = 4,4,

откудаx 1 = 5 z 1 = 3,0 иx 2 = 5 z 2 = 22,0.

Ответ: 3; 22.

Пример 4: z 2 + 5z - 6 = 0, 1 =1 , а отрицательный корень находим, вычитая положительный корень из - p, т.е. z 2 = - p -1= - 5 - 1= -6.

Ответ: 1; -6.

Пример 5: z 2 - 2z - 8 = 0, номограмма даёт положительный корень z 1 =4, а отрицательный равен z 2 = - p -4 =

= 2 - 4= -2.

Ответ: 4; -2.

ГЛАВА 2. РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ ПО ФОРМУЛАМ КОРНЕЙ С ПОМОЩЬЮ EXCEL

Мы решили составить программу для решения квадратного уравнения с помощью Excel - это широко распространенная компьютерная программа. Нужна она для проведения расчётов, составления таблиц и диаграмм, вычисления простых и сложных функций. Она входит в состав пакета Microsoft Office.

Лист программы Excel, где отображены формулы:

Лист программы Excel, где показан конкретный пример решения квадратного уравнения x 2 - 14x - 15 = 0 :

ГЛАВА 3. СРАВНЕНИЕ РАЗНЫХ СПОСОБОВ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

Формула корней квадратного уравнения с использованием дискриминанта D и D1

Универсальность, т.к. можно использовать для решения абсолютно всех квадратных уравнений

Громоздкий дискриминант, не входящий в таблицу квадратов

Теорема Виета

Быстрота решения в определённых случаях и экономия времени

Если дискриминант не является полным квадратом целого числа.

Не целые коэффициенты b и с.

Выделение полного квадрата

При правильном преобразовании в квадрат двучлена получаем квадратное уравнение неполного вида и следовательно быстрее находятся корни

Сложность выделения полного квадрата при дробных коэффициентах уравнения

Способ группировки

Можно решить, не зная формул

Не всегда среднее слагаемое удаётся разложить на подходящие слагаемые для группировки

Графический способ

Не требуется формул.

Можно быстро узнать количество корней уравнения

Приближённость решения

Свойства коэффициентов a,b,c

Быстрота решения.

Для уравнений с большими коэффициентами

Подходит только для некоторых уравнений

«Переброс» главного коэффициента

Быстрота решения, если корни целые

Такие же как с помощью теоремы Виета

Номограмма

Наглядность

Все, что требуется для решения-это номограмма

Не всегда имеется с собой номограмма.

Неточность решения

Нахождение корней с помощью циркуля и линейки

Наглядность

Если координаты центра нецелые числа.

Нахождении корней уравнений с большими коэффициентами

ЗАКЛЮЧЕНИЕ

«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путём сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Уолтер Варвик Сойер

В ходе работы мы собрали материал и изучили способы решения (нахождения корней) квадратных уравнений. Решение уравнений разными способами представлено в Приложении 2.

Изучая разные способы решения квадратных уравнений, мы сделали вывод, что для каждого уравнения можно подобрать свой наиболее эффективный и рациональный вариант нахождения корней. Каждый из способов решения уникален и удобен в определённых случаях. Некоторые способы решения позволяют сэкономить время, что немаловажно при решении заданий на ОГЭ, другие - помогают решить уравнение с очень большими коэффициентами. Мы постарались сравнить разные способы решения, составив таблицу, в которой отразили плюсы и минусы каждого из способов.

Нами разработан раздаточный материал. Познакомиться с банком заданий по теме можно в Приложении 3.

Используя Microsoft Excel, мы составили электронную таблицу, которая позволяет автоматически рассчитывать корни квадратного уравнения по формулам корней.

Мы провели урок, посвященный необычным способам решения квадратных уравнений, для учащихся 9 классов. Ученикам очень понравились способы, они отметили, что полученные знания пригодятся им в дальнейшем обучении. Результатом проведённого урока стали работы учащихся, в которых они представили различные варианты решения квадратных уравнений (см. Приложение 4).

Материалом работы могут воспользоваться и те, кто любит математику и те, кто хочет знать о математике больше.

ЛИТЕРАТУРА

    Брадис В. М. «Четырехзначные математические таблицы для средней школы», М.: Дрофа, 2000.

    Виленкин Н.Я. «Алгебра для 8 класса», М.: Просвещение, 2000.

    Галицкий М.Л. «Сборник задач по алгебре», М.: Просвещение 2002.

    Глейзер Г. И. «История математики в школе», М.: Просвещение, 1982.

    Звавич Л.И. «Алгебра 8 класс», М.: Мнемозина, 2002.

    Макарычев Ю.Н. “Алгебра 8 класс”, М.: Просвещение, 2015.

    Плужников И. «10 способов решения квадратных уравнений» // Математика в школе. - 2000.- № 40.

    Пресман А.А. «Решение квадратного уравнения с помощью циркуля и линейки»//М., Квант, №4/72, c.34.

    Савин А.П. «Энциклопедический словарь юного математика»,

М.: Педагогика, 1989.

Интернет ресурсы:

http://revolution.allbest.ru/

ПРИЛОЖЕНИЕ 1

«СБОРНИК БРАДИСА В.М.»

ПРИЛОЖЕНИЕ 2

«РЕШЕНИЕ УРАВНЕНИЯ ВСЕМИ СПОСОБАМИ»

Исходноеуравнение: 2 +3х -1 = 0.

1.Формула корней квадратного уравнения с использованием дискриминанта D

2 +3х -1 = 0

D = b 2 - 4ac = 9+16 = 25 > 0, => уравнение имеет два корня

x 1,2 =

x 1 ==

x 2 ==-1

2.Теорема Виета

2 +3х -1 = 0, поделим уравнение на 4, чтобы оно стало приведённым

х 2 +х -=0

х 1 = -1

х 2 =

3. Метод выделения полного квадрата

2 +3х -1 = 0

(4х 2 +2*2х *+)-1=0

(2х +) 2 -=0

(2х + -)(2х + +)=0,

(2х -)=0 (2х +2)=0

х 1 = х 2 = -1

4. Способ группировки

2 +3х -1 = 0

2 +4х-1х-1=0

4х(х+1)-1(х+1)=0

(4х-1)(х+1)=0, произведение =0, когда один из множителей=0

(4х-1)=0 (х+1)=0

х 1 = х 2 = -1

5. Свойства коэффициентов

2 +3х -1 = 0

Если a - b+c=0, то = -1, = -

4-3-1=0, => = -1, =

6. Метод «переброски» главного коэффициента

2 +3х -1 = 0

y 2 +3y - 4 = 0

Теорема Виета:

y 1 = -4

y 2 = 1

Разделим найденные корни на главный коэффициент и получим корни нашего уравнения:

х 1 = -1

х 2 =

7. Способ решения квадратных уравнений с помощью циркуля и линейки

2 +3х -1 = 0

Определим координаты точки центра окружности по формулам:

х 1 = -1

х 2 =

8. Графический способ решения

2 +3х -1 = 0

2 = - 3x + 1

В одной системе координат построим график функции у = 4х 2 и график функции

у = - 3х+1. Обозначив абсциссы точек пересечения, получим ответ:

х 1 = -1

9. С помощью номограммы

2 +3х -1 = 0, разделим коэффициенты уравнения 1/на 4, получим уравнение

х 2 +х -= 0.

Номограмма даёт положительный корень = ,

а отрицательный корень находим, вычитая положительный корень из - p, т.е.

x 2 = - p -=- -= -1.

10. Решение данного уравнения в EXCEL

ПРИЛОЖЕНИЕ 3

«ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ТЕМЫ

РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ” »

10х 2 + 2017х + 2007 = 0 -1 -200,7

-10х 2 + 7х + 3 = 0 -1 0,3

354х 2 -52х -302 = 0 1 -

100х 2 -99х-1 = 0 1 -0,01

2 + 9х + 4 = 0 -1 -0,8

2017х 2 + х -2016 = 0 -1

22х 2 +10х-12 = 0 -1

5432х 2 -3087х-2345 = 0 1 -

2 + 2х -6с = 0 1 -1,5

55х 2 -44х -11= 0 1 -0,2

2 - 7х - 3 = 0 - , 1,5

2 -17х-15 = 0 -0,75, 5

4271х 2 -4272х + 1 = 0 1,

2 +10х + 7 = 0 -1, - 2

2 - 11х + 2 = 0 2, 0,2

2 - 11х + 15 = 0 2,5, 3

2 + 4х -3= 0 -1,5, 0,5

2 -12х + 7 = 0 1,4, 1

2 + 13х + 15 = 0 -1,5 -5

2 -7х + 2 = 0 1/3 2

ПРИЛОЖЕНИЕ 4

«РАБОТЫ УЧАЩИХСЯ»

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

  • дискриминант больше нуля;
  • меньше нуля;
  • равен нулю.

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.