С 9 перестановки размещения сочетания 1 вариант. Топологическая комбинаторика

Комбинаторика — раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.

Комбинаторика возникла в XVI веке. Первые комбинаторные задачи касались азартных игр. Сегодня комбинаторные методы используются для решения транспортных задач, составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики. Комбинаторика используется для составления и декодирования шифров, для решения других проблем теории информации.

Значительную роль комбинаторные методы играют и в чисто математических вопросах — теории групп и их представлений, изучении основ геометрии, неассоциативных алгебр и др.

Пример комбинаторной задачи. Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

I способ. Постараемся выписать все такие числа. На первом месте может стоять любая цифра кроме 0. Например, 2. На втором месте любая цифра из 0, 4, 6 и 8. Пусть 0. Тогда в качестве третьей цифры можно выбрать любую из 4, 6, 8. Получаем три числа

Вместо 0 на второе место можно было поставить 4, тогда третье цифрой можно записать или 0, или 6, или 8:

Рассуждая аналогично, получаем ещё две тройки трёхзначных чисел с цифрой 2 на первом месте:

Других, кроме выписанных 12-ти, трёхзначных чисел с цифрой 2 на первом месте, и удовлетворяющих условию, нет.

Если на первом месте записать цифру 4, а остальные выбирать из цифр 0, 2, 6, 8, то получим ещё 12 чисел:

По столько же трёхзначных чисел можно составить с цифрой 6 на первом месте и цифрой 8 на первом месте. Значит, искомое количество:

Вот эти числа:

204, 206, 208, 240, 246, 248, 260, 264, 268, 280, 284, 286;

402, 406, 408, 420, 426, 428, 460, 462, 468, 480, 482, 486;

602, 604, 608, 620, 624, 628, 640, 642, 648, 680, 682, 684;

802, 804, 806, 820, 824, 826, 840, 842, 846, 860, 862, 864.

Ответ: 48.

Метод рассуждения, которым мы воспользовались при решении предыдущей задачи, называется перебором возможных вариантов .

Правила сложения и умножения

Комбинаторное правило сложения (правило "или") — одно из основных правил комбинаторики, утверждающее, что, если имеется n элементов и элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 A n можно выбрать m n способами, то выбрать или A 1 , или A 2 , или, и так далее, A n можно

m 1 + m 2 + ... + m n

способами.

Например, выбрать подарок ребёнку из 9 машинок, 7 плюшевых медведей и 3 железных дорог можно

способами.

Ответ: 19.

Правило умножения (правило "и") — ещё одно из важных правил комбинаторики. Согласно ему, если элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 способами и так далее, элемент A n можно выбрать m n способами, то набор элементов (A 1 , A 2 , ... , A n ) можно выбрать

m 1 · m 2 · ... · m n

способами.

Например.

1) Выбрать ребёнку в подарок машинку, плюшевого медведя и железную дорогу, выбирая из 9 машинок, 7 плюшевых медведей и 3 железных дорог, можно

9 · 7 · 3 = 189

способами.

Ответ: 189.

2) Воспользуемся правилом умножения для решения задачи, уже рассмотренной выше: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II способ.

0 не может стоять первым, значит первую цифру нужно выбрать из 2, 4, 6, 8 — 4 способа;

второй цифрой может быть любая из четырёх оставшихся — 4 способа;

третью цифру можно выбрать среди трёх оставшихся — 3 способа.

Итак, искомое количество трёхзначных чисел:

4 · 4 · 3 = 48.

Ответ: 48.

Перестановки

Множество из n элементов называется упорядоченным , если каждому его элементу поставлено в соответствие натуральное число от 1 до n .

Перестановкой из n элементов называется любое упорядоченное множество из n элементов.

Например, из 4 элементов ♦ ♣ ♠ можно составить следующие 24 перестановки:

♦ ♣ ♠
♣ ♠


♦ ♠



♦ ♣ ♠



♦ ♣ ♠
♣ ♠


♦ ♠







Количество перестановок из n элементов принято обозначать P n . С помощью перебора возможных вариантов легко убедиться, в том что

P 1 = 1; P 2 = 2; P 3 = 6; P 4 = 24.

Вообще, число всевозможных перестановок из n элементов равно произведению всех натуральных чисел от 1 до n , то есть n ! (читается "эн факториал"):

P n = 1 · 2 · 3 · ... · (n - 1 ) · n = n !.

Для P n справедлива рекуррентная формула:

P n = n · P n - 1 .

Значение факториала определено не только для натуральных чисел, но и для 0:

0! = 1 .

Таблица факториалов целых чисел от 0 до 10
n
1
2
3
4
5
6
7
8
9
10
n !
1
1
2
6
24
120
720
5 040
40 320
362 880
3 628 800

Например, сколькими способами 5 мальчиков и 5 девочек могут занять в театре места в одном ряду с 1-го по 10-е место, если никакие два мальчика и никакие две девочки не сидят рядом?

Возможны два случая с одинаковым количеством способов: 1) мальчики — на нечётных местах, девочки на чётных и 2) наоборот.

Рассмотрим первый случай. Мальчики по нечётным местам могут сесть

P 5 = 120

способами. Столько способов и для девочек на чётных местах. Согласно правилу умножения, мальчики — на нечётных местах, девочки на чётных могут расположиться

120 · 120 = 14 400

способами. Значит, всего способов

14 400 + 14 400 = 28 800.

Ответ: 28 800.

Перестановки с повторениями

Перестановкой с повторениями из n элементов, среди которых k разных, при этом насчитывается n 1 неразличимых элементов первого типа, n 2 неразличимых элементов второго типа и так далее, n k неразличимых элементов k -го типа (где n 1 + n 2 + … + n k = n ), называется любое расположение этих элементов по n различным местам.

Число перестановок с повторениями длины n из k разных элементов, взятых соответственно по n 1 , n 2 , …, n k раз каждый обозначается и вычисляется следующим образом:$$P_{n_1,n_2, ... , n_k}=\frac{n!}{n_1!n_2! ... n_k!}~.$$

Например, сколько различных десятизначных чисел можно составить из цифр: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

В данном случае: n = 10, n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4,$$P_{1, 2, 3, 4}=\frac{10!}{1!2! 3! 4!}=\frac{10!}{1!2! 3! 4!}=12~600.$$

Ответ: 12 600.

Размещения

Размещением из n элементов по m (m ≤ n) m элементов, взятых в определённом порядке из данных n элементов.

Два размещения из n элементов по m считаются различными, если они различаются самими элементами или порядком их расположения.

Например, составим все размещения из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B A; B C; B D;

C A; C В; C D;

D A; D В; D C.

Число всех размещений из n элементов по m обозначают \(A_n^m\) (читается: "А из n по m ") и вычисляется по любой из формул:$$A_n^m=n\cdot (n-1)\cdot (n-2)\cdot ...\cdot (n-m+1)\\A_n^m=\frac{n!}{(n-m)!}$$

Примеры задач.

1) Воспользуемся понятием размещений из n элементов по m для решения задачи, уже дважды рассмотренной ранее: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II I способ.

Первую цифру можно выбрать четырьмя способами из набора 2, 4, 6, 8. В каждом из этих случаев количество пар второй и третей цифры равно числу размещений из 4 оставшихся цифр по 2. Значит искомое количество трёхзначных чисел равно:$$4\cdot A_4^2=4\cdot \frac{4!}{(4-2)!}=4\cdot \frac{4!}{2!}=4\cdot (3\cdot 4)=48.$$Ответ: 48.

2) Для полёта в космос необходимо укомплектовать экипаж из шести человек. В него должны входить: командир корабля, первый и второй его помощники, два бортинженера, один из которых старший, и один врач. Командный состав выбирается из 20 лётчиков, бортинженеры — из 15 специалистов, а врач — из 5 медиков. Сколькими способами можно укомплектовать экипаж?

Поскольку в выборе командного состава важен порядок, то командира и двух его помощников можно выбрать \(A_{20}^3\) способами. Порядок бортинженеров тоже важен, значит, для их выбора существует \(A_{15}^2\) способов. Врач всего один, для его выбора существует 5 способов. Воспользуемся комбинаторным правилом умножения и найдём количество возможных экипажей корабля:$$A_{20}^3\cdot A_{15}^2\cdot 5=\frac{20!}{17!}\cdot \frac{15!}{13!}\cdot 5=(18\cdot 19\cdot 20)\cdot (14\cdot 15)\cdot 5=7~182~000.$$Ответ: 7 182 000.

Понятно, что, если m = n , то$$A_n^m=A_n^n=P_n=n!.$$

Справедливо также, что, если m = n - 1 , то$$A_n^{n-1}=A_n^n=P_n=n!.$$

Размещения с повторениями

Помимо обычных размещений бывают и размещения с повторениями или выборки с возвращением .

Пусть имеется n различных объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем под номером 1 его название, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был только что взят), запишем его название, пометив номером 2, и снова вернём объект обратно. И так далее, пока не получим m названий.

Размещения с повторениями обозначаются \(\overline{A}_n^m\) и, согласно правилу умножения, вычисляются по формуле$$\overline{A}_n^m=n^m.$$Заметим, что здесь допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Это неудивительно: каждый объект после "использования" возвращается обратно и может быть использован повторно.

Например, количество вариантов шестизначного пароля, в котором каждый знак является цифрой от 0 до 9 или буквой латинского алфавита (одна и та же строчная и прописная буква — один символ) и может повторяться, равно:$$\overline{A}_{10+26}^6=\overline{A}_{36}^6=36^6=2~176~782~336.$$Если же строчные и прописные буквы считаются различными символами (как это обычно и бывает), то количество возможных паролей становится ещё более колоссальным:$$\overline{A}_{10+26+26}^6=\overline{A}_{62}^6=62^6=56~800~235~584.$$

Сочетания

Сочетанием из n элементов по m (m ≤ n) называется любое множество, состоящее из m элементов, выбранных из данных n элементов.

В отличии от размещений в сочетаниях не имеет значения, в каком порядке указаны элементы. Два сочетания из n элементов по m считаются различными, если они различаются хотя бы одним элементом.

Например, составим все сочетания из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B C; B D;

C D .

Число всех сочетаний из n элементов по m обозначают \(C_n^m\) (читается: "C из n по m ") и вычисляется по любой из формул:$$C_n^m=\frac{A_n^m}{P_m}$$$$C_n^m=\frac{n\cdot (n-1)\cdot (n-2)~\cdot~ ...~\cdot~ (n-m+1)}{1\cdot2\cdot3~\cdot~...~\cdot ~m}$$$$C_n^m=\frac{n!}{m!\cdot (n-m)!}.$$

Примеры задач.

1) Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта физкультурного зала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

Так как порядок маляров в каждой выбранной четвёрке и порядок плотников в каждой выбранной паре не имеет значения, то, согласно комбинаторному правилу умножения, искомое количество способов равно:$$C_{12}^4 \cdot C_5^2 =\frac{12!}{4!\cdot 8!}\cdot \frac{5!}{2!\cdot 3!}=\frac{9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4}\cdot \frac{4\cdot5}{1\cdot 2}=4~950.$$Ответ: 4 950.

2) В классе обучаются 30 учащихся, среди которых 13 мальчиков и 17 девочек. Сколькими способами можно сформировать команду из 7 учащихся этого класса, если в неё должна входить хотя бы одна девочка?

Количество всех возможных команд по 7 человек из класса равно \(C_{30}^7\). Количество команд в которых только мальчики — \(C_{13}^7\). Значит, количество команд, в которых есть хотя бы одна девочка, равно:$$C_{30}^7 - C_{13}^7 =\frac{30!}{7!\cdot 23!} - \frac{13!}{7!\cdot 6!}=2~035~800-1~716=2~034~084.$$Ответ: 2 034 084.

Сочетания с повторениями

Помимо обычных сочетаний рассматривают сочетания с повторениями .

Пусть в множестве имеется n объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был взят и записан ранее), запишем его название и снова вернём объект обратно. И так далее, пока не получим m названий.

Принципиальное отличие от размещений с повторениями заключается в том, что в данном случае элементы списка не нумеруются. Например, список "A, С, A, В" и список "А, А, В, С" считаются одинаковыми.

Сочетания с повторениями обозначаются \(\overline{C}_n^m\) и вычисляются по формуле$$\overline{C}_n^m=P_{m,~n-1}=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$И ещё один способ записи той же формулы:$$\overline{C}_n^m=C_{m+n-1}^m=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$Заметим, что подобно размещениям с повторениями, допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Действительно, каждый объект после "использования" возвращается обратно и может быть использован снова и снова.

Например, выясним сколькими способами можно купить 7 пирожных в кондитерском отделе, если в продаже 4 их сорта?

Естественно полагать, что количество пирожных каждого вида не меньше 7, и при желании можно купить только пирожные одного из них. Так как порядок в котором кладут купленные пирожные в коробку не важен, то имеем дело с сочетаниями с повторениями. Так как нужно выбрать 7 пирожных из 4 его видов, то искомое количество способов равно:$$\overline{C}_4^7=\frac{(7+4-1)!}{7!\cdot (4-1)!}=\frac{10!}{7!\cdot 3!}=\frac{8\cdot 9\cdot 10}{1\cdot 2\cdot 3}=120.$$

Ответ: 120.

Бином Ньютона и биномиальные коэффициенты

Равенство$$(x+a)^n=C_n^0x^na^0+C_n^1x^{n-1}a^1+...+C_n^mx^{n-m}a^m+...+C_n^nx^0a^n$$называют биномом Ньютона или формулой Ньютона . Правая часть равенства называется биномиальным разложением в сумму , а коэффициенты \(C_n^0,~C_n^1,~...~,~C_n^n\) — биномиальными коэффициентами .

Свойства биномиальных коэффициентов:

\(~~~~~~~~1.~~C_n^0=C_n^n=1\\ ~~~~~~~~2.~~C_n^m=C_n^{n-m}\\ ~~~~~~~~3.~~C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\\ ~~~~~~~~4.~~C_n^0+C_n^1+C_n^2+~...~+C_n^n=2^n\\ ~~~~~~~~5.~~C_n^0+C_n^2+C_n^4+~... =C_n^1+C_n^3+C_n^5+~...=2^{n-1}\\ ~~~~~~~~6.~~C_n^n+C_{n+1}^n+C_{n+2}^n+~...~+C_{n+m-1}^n=C_{n+m}^{n+1}\\ \)

Свойства биномиального разложения:

1. Число всех членов разложения на единицу больше показателя степени бинома,

то есть равно n + 1 .

2. Сумма показателей степеней x и a каждого члена разложения равна показателю степени бинома,

то есть (n - m) + m = n .

3. Общий член разложения (обозначается T n +1 ) имеет вид$$T_{n+1}=C_n^m x^{n-m}a^m,~~~~m=0,~1,~2,~...~,~n.$$

Треугольник Паскаля

Все возможные значения биномиальных коэффициентов (числа сочетаний) для каждого показателя степени бинома n можно записать в виде бесконечной треугольной таблицы. Такая таблица называется треугольником Паскаля:






\(C_0^0\)









\(C_1^0\)

\(C_1^1\)







\(C_2^0\)

\(C_2^1\)

\(C_2^2\)





\(C_3^0\)

\(C_3^1\)

\(C_3^2\)

\(C_3^3\)



\(C_4^0\)

\(C_4^1\)

\(C_4^2\)

\(C_4^3\)

\(C_4^4\)

\(C_5^0\)

\(C_5^1\)

\(C_5^2\)

\(C_5^3\)

\(C_5^4\)

\(C_5^5\)

. . .



. . .



. . .

В этом треугольнике крайние числа в каждой строке равны 1. Действительно, \(C_n^0=C_n^n=1\). А каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним: \(C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\).

Таким образом, этот треугольник предлагает ещё один (рекуррентный) способ вычисления чисел \(C_n^m\):

n = 0








1








n = 1







1

1







n = 2






1

2

1






n = 3





1

3

3

1





n = 4




1

4

6

4

1




n = 5



1

5

10

10

5

1



n = 6


1

6

15

20

15

6

1


n = 7

1

7

21

35

35

21

7

1

n = 8
1

8

28

56

70

56

28

8

1
...



...



...

...



...



Комбинаторика - это раздел математики, основной задачей которой является подсчёт числа вариантов, возникающих в той или иной ситуации. При решении задач с использованием классического определения вероятности нам понадобятся некоторые формулы комбинаторики.

Размещения .

Определение 1. Размещением без повторений из n элементов по k называется всякое упорядоченное подмножество данного множества M={a 1 ,a 2 ,¼,a n }, содержащее k элементов.

Отметим, что из определения сразу следует, что, во-первых, все элементы в размещении без повторений различны (в противном случае найдется два одинаковых элемента), во-вторых, k£ n , в-третьих, два различных размещения без повторений различаются либо составом входящих в них элементов, либо порядком их расположения. То есть порядок следования существенен.

Теорема 1. Число различных размещений без повторений из n элементов по k (k£ n) равно

Доказательство.

Пусть M ={a 1 ,a 2 ,¼,a n }. Требуется определить число различных строк вида (x 1 ,x 2 ,¼,x k ), где все элементы x 1 ,x 2 ,¼,x k ÎM и различны. Первый элемент x 1 можно выбрать n способами. Если x 1 уже выбран, то для выбора x 2 осталось n-1 элементов. Аналогично, x 3 можно выбрать n -2 способами и т.д. Последний элемент x k можно выбрать n-k+1 способами. Перемножая эти числа, получим формулу (4).Теорема доказана.

Пример 1. В классе 12 учебных предметов и в понедельник 5 разных уроков. Сколькими способами может быть составлено расписание занятий на понедельник?

Число всевозможных вариантов расписания есть, очевидно, число различных размещений из 12 элементов по 5, то есть

Важным частным случаем, является случай, когда n=k , то есть когда в строке (x 1 ,x 2 ,¼,x n) участвуют все элементы множества M . Строки без повторений, составленные из n элементов множества M называют перестановками из n элементов. Напомним, что в математике через n! обозначают произведение всех натуральных чисел от 1 до n, то есть ¼и по определению считают, что 0!=1.

Следствие 1 . Пользуясь формулой (4), находим, что число различных перестановок P n из n элементов равно P n = n !.

Определение 2. Размещением с повторениями из n элементов по k называется любая упорядоченная строка из k элементов множества M={a 1 ,a 2 ,¼,a n }, некоторые из которых могут повторяться.

Например, слово “мама” есть размещение с повторениями из 2-х элементов M ={м, а} по 4.

Теорема 2. Число различных размещений с повторениями из n элементов по k

Доказательство.

Первый элемент в строку из k элементов может быть выбран n способами, поскольку |M|=n. Точно также 2-й, 3-й, …,k-й элементы могут быть выбраны n способами. Перемножая эти числа, получим


k раз

Теорема доказана.

Пример 2. Сколько можно составить различных двузначных чисел из цифр 1, 2, 3, 4, 5?

В этой задаче M ={1, 2, 3, 4, 5}, n=5, k=2.Поэтому ответом является число

Пример 3. Сколькими способами k пассажиров могут распределиться по n вагонам, если для каждого пассажира существенным является только номер вагона, а не занимаемое им в вагоне место?

Перенумеруем всех пассажиров. Пусть x 1 - номер вагона, выбранного первым пассажиром, x 2 - номер вагона второго пассажира, …, x k - номер вагона k -го пассажира. Строка (x 1 ,x 2 ,¼,x k ) полностью характеризует распределение пассажиров по вагонам. Каждое из чисел x 1 ,x 2 ,¼,x k может принимать любое целое значение от 1 до n. Поэтому в этом примере

M ={1, 2,…,n} и различных распределений по вагонам будет столько же, сколько строк длиной k можно составить из элементов множества M , то есть

Отметим ещё раз, что в размещениях с повторениями и без повторений важен порядок следования элементов. Если порядок следования элементов не существенен, то в этом случае говорят о сочетаниях.

Сочетания (без повторения ).

Определение 3. Пусть M={a 1 ,a 2 ,¼,a n }. Любое подмножество X мно-жества M , содержащее k элементов, называется сочетанием k элементов из n.

Отметим сразу, что в этом определении порядок следования элементов множества X несущественен и, что k£n , поскольку k=½X½, n=½M½ и XÍM .

Теорема 3. Число различных сочетаний k элементов из n равно

. (6)

Доказательство.

Каждое сочетание k элементов из n порождает k! различных размещений без повторений из n по k с помощью различных перестановок (см. следствие 1). Таким образом, все сочетаний из k элементов из n после различных k! перестановок порождают все размещений без повторений из n по k . Поэтому . Следовательно,

Сочетания. Размещения. Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Рассмотрим пример : сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

Решение:

Или такой пример . Порядок выступления семи участников на студенческой конференции определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение: каждый вариант жеребьевки отличается только порядком участников, то есть является перестановкой из 7 элементов. Их число находится

Пример. К кассе за получением денег подошли одновременно 4 человека. Сколькими способами они могут выстроиться в очередь?

Решение: очередь состоит из 4 различных лиц, поэтому в каждом способе составления очереди учитывается порядок их расположения. Таким образом, имеют место перестановки из четырех человек, их число равно

Размещениями n различных элементов по m элементов, которые отличаются либо их порядком, либо составом элементов.

Число всех возможных размещений рассчитывается

Пример: сколько можно составить сигналов из 6 флажков различного цвета, взятых по два?

Решение:

Пример: расписание одного дня состоит из пяти уроков. Определить число вариантов расписания при выборе из 11 дисциплин.

Решение: каждый вариант расписания представляет набор 5 дисциплин из 11, отличающийся от других вариантов, как составом дисциплин, так и порядком их следования, то есть является размещением из 11 элементов по 5. Число вариантов расписания находят по формуле

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример: сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?

Решение:

Пример: в шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение: каждая партия играется двумя участниками из 16 и отличается только составом пар участников, то есть представляет собой сочетание из 16 элементов по два

Пример: имеется 6 штаммов бактерий. Для определения скорости их роста необходимо выбрать три штамма. Сколькими способами можно это сделать?

Решение: способы отбора считаются различными, если каждый отобранный штамм различается хотя бы одним элементом. Это число

То есть имеется 20 способов.

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила.

Правило суммы: если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А , либо В можно способами.

Правило произведения: если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А,В) в указанном порядке может быть выбрана способами.

Реферат на тему:

Выполнил ученик 10 класса «В»

средней школы №53

Глухов Михаил Александрович

г. Набережные Челны

2002 г.
Содержание

Из истории комбинаторики_________________________________________ 3
Правило суммы___________________________________________________ 4
-
Правило произведения_____________________________________________ 4
Примеры задач____________________________________________________ -
Пересекающиеся множества________________________________________ 5
Примеры задач____________________________________________________ -
Круги Эйлера_____________________________________________________ -
Размещения без повторений________________________________________ 6
Примеры задач____________________________________________________ -
Перестановки без повторений_______________________________________ 7
Примеры задач____________________________________________________ -
Сочетания без повторений__________________________________________ 8
Примеры задач____________________________________________________ -
Размещения и сочетания без повторений______________________________ 9
Примеры задач____________________________________________________ -
Перестановки с повторениями_______________________________________ 9
Примеры задач____________________________________________________ -
Задачи для самостоятельного решения________________________________ 10
Список используемой литературы___________________________________ 11

Из истории комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Нидийцы умели вычислять числа, которые сейчас называют "сочетания". В XII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из n слогов. Как научная дисциплина, комбинаторика сформировалась в XVII в. В книге "Теория и практика арифметики" (1656 г.) французский автор А. Также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в "Трактате об арифметическом треугольнике" и в "Трактате о числовых порядках" (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин "комбинаторика" стал употребляться после опубликования Лейбницем в 1665 г. работы "Рассуждение о комбинаторном искусстве", в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги "Ars conjectandi" (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в XIX в.

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств – правило суммы и правило произведения.

Правило суммы

Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и числа элементов множества Y.

То есть, если на первой полке стоит X книг, а на второй Y, то выбрать книгу из первой или второй полки, можно X+Y способами.

Примеры задач

Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?

Решение: X=17, Y=13

По правилу суммы X U Y=17+13=30 тем.

Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?

Решение: Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.

Правило произведения

Если элемент X можно выбрать k способами, а элемент Y-m способами то пару (X,Y) можно выбрать k*m способами.

То есть, если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Примеры задач

Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?

Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX , где Y и Z -любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.


Пересекающиеся множества

Но бывает, что множества X и Y пересекаются, тогда пользуются формулой

, где X и Y - множества, а - область пересечения. Примеры задач

20 человекзнаютанглийскийи 10 - немецкий, изних 5 знаютианглийский, инемецкий. СколькоЧеловеквсего?

Ответ: 10+20-5=25 человек.

Также часто для наглядного решения задачи применяются круги Эйлера. Например:

Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?

Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий.

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.

Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.


Размещения без повторений.

Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?

Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.

Если X-множество, состоящие из n элементов, m≤n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество X, содержащее m элементов называется упорядоченное множество X, содержащее m элементов.

Количество всех размещений из n элементов по m обозначают

n! - n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n

n!=1*2*3*...*n 0!=1

Значит, ответ на вышепоставленную задачу будет

Задача

Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?

Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому:

Возможно 360 вариантов.


Перестановки без повторений

В случае n=m (см. размещения без повторений) из n элементов по m называется перестановкой множества x.

Количество всех перестановок из n элементов обозначают P n.

Действительно при n=m:

Примеры задач

Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?

1) Найдем количество всех перестановок из этих цифр: P 6 =6!=720

2) 0 не может стоять впереди числа, поэтому от этого числа необходимо отнять количество перестановок, при котором 0 стоит впереди. А это P 5 =5!=120.

P 6 -P 5 =720-120=600

Проказница Мартышка

Да косолапый Мишка

Затеяли играть квартет

Стой, братцы стой! –

Кричит Мартышка, - погодите!

Как музыке идти?

Ведь вы не так сидите…

И так, и этак пересаживались – опять музыка на лад не идет.

Перестановка – это комбинация элементов из N разных элементов взятых в определенном порядке. В перестановке важен порядок следования элементов, и в перестановке должны быть задействованы все N элементов.

Задача : Найти все возможные перестановки для последовательности чисел 1, 2, 3.
Существуют следующие перестановки:

1: 1 2 3
2: 1 3 2
3: 2 1 3
4: 2 3 1
5: 3 1 2
6: 3 2 1

Перестановки без повторений

Количество перестановок для N различных элементов составляет N! . Действительно:

  • на первое место может быть помещен любой из N элементов (всего вариантов N ),
  • на вторую позицию может быть помещен любой из оставшихся (N-1) элементов (итого вариантов N·(N-1) ),
  • если продолжить данную последовательность для всех N мест, то получим: N·(N-1)·(N-2)· … ·1 , то есть всего N! перестановок.

Рассмотрим задачу получения всех перестановок чисел 1…N (то есть последовательности длины N ), где каждое из чисел входит ровно по 1 разу. Существует множество вариантов порядка получения перестановок. Однако наиболее часто решается задача генерации перестановок в лексикографическом порядке (см. пример выше). При этом все перестановки сортируются сначала по первому числу, затем по второму и т.д. в порядке возрастания. Таким образом, первой будет перестановка 1 2 … N , а последней — N N-1 … 1 .

Рассмотрим алгоритм решения задачи. Дана исходная последовательность чисел. Для получения каждой следующей перестановки необходимо выполнить следующие шаги:

  • Необходимо просмотреть текущую перестановку справа налево и при этом следить за тем, чтобы каждый следующий элемент перестановки (элемент с большим номером) был не более чем предыдущий (элемент с меньшим номером). Как только данное соотношение будет нарушено необходимо остановиться и отметить текущее число (позиция 1).
  • Снова просмотреть пройденный путь справа налево пока не дойдем до первого числа, которое больше чем отмеченное на предыдущем шаге.
  • Поменять местами два полученных элемента.
  • Теперь в части массива, которая размещена справа от позиции 1 надо отсортировать все числа в порядке возрастания. Поскольку до этого они все были уже записаны в порядке убывания необходимо эту часть подпоследовательность просто перевернуть.

Таким образом мы получим новую последовательность, которая будет рассматриваться в качестве исходной на следующем шаге.

Реализация на С++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include
using namespace std;

{
int s = a[i];
a[i] = a[j];
a[j] = s;
}
bool NextSet(int *a, int n)
{
int j = n - 2;
while (j != -1 && a[j] >= a) j--;
if (j == -1)
return false; // больше перестановок нет
int k = n - 1;
while (a[j] >= a[k]) k--;
swap(a, j, k);
int l = j + 1, r = n - 1;
while (l swap(a, l++, r--);
return true;
}
void Print(int *a, int n) // вывод перестановки
{
static int num = 1; // номер перестановки
cout.width(3);
cout << num++ << ": " ;
for (int i = 0; i < n; i++)
cout << a[i] << " " ;
cout << endl;
}
int main()
{
int n, *a;
cout << "N = " ;
cin >> n;
a = new int [n];
for (int i = 0; i < n; i++)
a[i] = i + 1;
Print(a, n);
while (NextSet(a, n))
Print(a, n);
cin.get(); cin.get();
return 0;
}

Результат выполнения

Перестановки с повторениями

Особого внимания заслуживает задача генерации перестановок N элементов в случае если элементы последовательности могут повторяться. Допустим, исходная последовательность состоит из элементов n 1 , n 2 ... n k , где элемент n 1 повторяется r 1 раз, n 2 повторяется r 2 раз и т.д. При этом n 1 +n 2 +...+n k =N . Если мы будем считать все n 1 +n 2 +...+n k элементов перестановки с повторениями различными, то всего различных вариантов перестановок (n 1 +n 2 +...+n k)! . Однако среди этих перестановок не все различны. В самом деле, все r 1 элементов n 1 мы можем переставлять местами друг с другом, и от этого перестановка не изменится. Точно так же, можем переставлять элементы n 2 , n 3 и т. д. В итоге имеем r 1 ! вариантов записи одной и той же перестановки с различным расположением повторяющихся элементов n 1 . Таким образом, всякая перестановка может быть записана r 1 !·r 2 !·...·r k ! способами. Следовательно, число различных перестановок с повторениями равно

Для генерации перестановок с повторениями можно использовать алгоритм генерации перестановок без повторений, приведенный выше. Введем повторяющийся элемент в массив a. Ниже приведен код программы для генерации перестановок с повторениями (изменен только код функции main() ).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include
using namespace std;
void swap(int *a, int i, int j)
{
int s = a[i];
a[i] = a[j];
a[j] = s;
}
bool NextSet(int *a, int n)
{
int j = n - 2;
while (j != -1 && a[j] >= a) j--;
if (j == -1)
return false; // больше перестановок нет
int k = n - 1;
while (a[j] >= a[k]) k--;
swap(a, j, k);
int l = j + 1, r = n - 1; // сортируем оставшуюся часть последовательности
while (l swap(a, l++, r--);
return true;
}
void Print(int *a, int n) // вывод перестановки
{
static int num = 1; // номер перестановки
cout.width(3); // ширина поля вывода номера перестановки
cout << num++ << ": " ;
for (int i = 0; i < n; i++)
cout << a[i] << " " ;
cout << endl;
}
int main()
{
int n, *a;
cout << "N = " ;
cin >> n;
a = new int [n];
for (int i = 0; i < n; i++)
a[i] = i + 1;
a = 1; // повторяющийся элемент
Print(a, n);
while (NextSet(a, n))
Print(a, n);
cin.get(); cin.get();
return 0;
}

Результат работы приведенного выше алгоритма: