Роль глубины нарушенного слоя. Агротехнологии

Контроль диффузионных слоев проводится в основном по таким параметрам, как глубина залегания сформированного p–n –перехода, проводимость поверхностного слоя и поверхност­ная концентрация атомов примеси.

Наиболее распространенным методом контроля глубины залегания p–n –перехода является метод окрашивания шлифа. Для измерения глубины залегания примеси порядка единиц микрометра и менее удобно использовать сферический шлиф.

Рис. 9.3. Схема процесса изготовления сфери­ческого шлифа на пластине с диффузионным слоем:

1 – пластина полупроводника; 2 – р–n –перехоя;

3 – стальной шар; 4 – окрашенная р –область шлифа

Его изготовляют при вращении стального шара диаметром 35 – 100 мм, при­жимаемого к поверхности пластины. Образование сферы происходит за счет того, что в место контакта вращающийся шар – кристаллическая пластина подают абразивную суспензию или наносят на поверхность шара алмазный порошок в виде эмульсии. Для большей точности измерения диаметр зерна абразивного материала не должен превышать 1 мкм. Чтобы выявить границы р–n –перехода, глубина сферической лунки должна быть больше глубины залегания р–n –перехода. Границу выявляют по окрашиванию (потемнению) р –области вследствие окисления в травителе, состоящем из 48 %–ной плавиковой кислоты с небольшой добавкой (до 0, 05–0, 1 %) 70 %–ной азот­ной кислоты.

Глубина залегания диффузионного р–n –перехода:

x j = l 2 /(4D) (9.4)

где l – длина хорды контура сферического шлифа (рис.9.3), измеряемая с помощью микроскопа; D – диаметр шара.

Для повышения точности измерений изготовляют несколько шлифов (до 5), а полученные результаты усредняют.

Наиболее распространенным методом измерения поверхностного сопротивления является четырехзондовый метод. Погрешность измерения поверхностного сопротивления обычно не превышает 5 – 10 %. Для определения поверхностной концентрации легирующей примеси необходимо знать характер распределения примесей в диффузионной области, который зависит от условий проведения процесса.

Ионная имплантация

Ионной имплантацией (ионным легированием) называется процесс внедрения в мишень ионизованных атомов с энергией, достаточной для проникновения в ее приповерхностные области. Успешное применение ионной имплантации определяется главным образом возможностью предсказания и управления электрическими и механическими свойствами формируемых элементов при заданных условиях имплантации.

Назначение и применение ионной имплантации

Наиболее распространенным применением ионной имплантации в технологии формирования ИМС является процесс ионного легирования кремния. Часто приходится проводить имплантацию атомов в подложку, которая покрыта одним или несколькими слоями различных материалов. Ими могут быть как тонкие слои тяжелых металлов (например, Та или силицида тантала TaSi 2), так и диэлектриков. Существование многослойной структуры может вызвать резкие перепады в профиле легирования на границе отдельных слоев. За счет столкновения ионов с атомами приповерхностных слоев последние могут быть выбиты в более глубокие области легируемого материала. Такие "осколочные эффекты" способны вызвать ухудшение электрических характеристик готовых приборов.

Во многих случаях для получения необходимого профиля распределения легирующей примеси в подложке применяют метод, основанный на предварительной загонке ионов с их последующей термической разгонкой в мишени. При этом имплантация проводится с малой энергией ионов.

Общая траектория движения иона называется длиной пробега R , а расстояние, проходимое внедряемым ионом до остановки в направлении, перпендикулярном к поверхности мишени, проецированной длиной пробега R p .

9.5.2. Применение ионной имплантации в технологии СБИС. Создание мелких переходов

Требование формирования n + слоев, залегающих на небольшой глубине, для СБИС можно легко удовлетворить с помощью процесса ионной имплантации Аs. Мышьяк имеет очень малую длину проецированного пробега (30 нм) при проведении обычной имплантации с энергией ионов 50 кэВ.

Одной из прогрессивных тенденций развитии СБИС является создание КМОП– транзисторов. В связи с этим большое значение имеет получение мелких p + – слоев. Такие слои очень сложно сформировать путем имплантации ионов В + .

Решение проблемы, связанной с имплантацией бора на небольшую глубину, на практике облегчается использованием в качестве имплантируемых частиц ВF 2 . Диссоциация молекулы ВF 2+ при первом атомном столкновении приводит к образованию низкоэнергетических атомов бора. Кроме того, использование молекулы ВF 2 имеет преимущество при проведении процесса отжига структур.

Ключевые слова

кремниевая пластина / нарушенный слой / оже-электроны / глубина нарушений / silicon wafer / disrupted layer / Auger electron / depth of disruption

Аннотация научной статьи по нанотехнологиям, автор научной работы - Виталий Александрович Солодуха, А. И. Белоус, Г. Г. Чигирь

Предложен метод измерения глубины нарушенного слоя на поверхности кремниевых пластин , основанный на использовании оже-спектрометра с прецизионным распылением поверхностных слоев кремния и регистрацией интенсивности выхода оже-электронов . Для измерения глубины нарушенного слоя с помощью оже-спектроскопии снимается зависимость количества выходящих оже-электронов от времени распыления (профиль), и затем эта зави-симость анализируется. Количество кремния в нарушенном слое меньше, чем в объеме. По мере углубления нару-шенный слой уменьшается, что соответствует увеличению плотности атомов в одиночном слое. Сущность метода заключается в том, что нарушенный слой удаляется распылением пучком ионов, а выявление границы раздела осу-ществляется путем регистрации интенсивности выхода оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода оже-электронов для монокристаллического кремния. Регистрация ин-тенсивности выхода оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контролировать наличие нарушенного слоя на поверхности кремниевой пластины . Причем локальность контроля по глубине из-за особенностей метода оже-спектроскопии составляет около 1,0 нм. Интенсивность выхода оже-электронов определяется на оже-спектрометре автоматически, и по мере удаления нарушенного слоя она посте-пенно возрастает. Глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины . Метод оже-спектроскопии обеспечивает эффек-тивный контроль глубины повреждений поверхности на этапах изготовления кремниевых пластин и интегральных микросхем. Диапазон измерения глубины нарушений 0,001–1,000 мкм.

Похожие темы научных работ по нанотехнологиям, автор научной работы - Виталий Александрович Солодуха, А. И. Белоус, Г. Г. Чигирь

  • Расчет вероятности генерации поверхностных возбуждений электронами, отраженными от поверхности Si

    2014 / Игуменов Александр Юрьевич, Паршин Анатолий Сергеевич, Михлин Юрий Леонидович, Пчеляков Олег Петрович, Никифоров Александр Иванович, Тимофеев Вячеслав Алексеевич
  • Использование атомно-силовой микроскопии для оценки качества очистки и трибометрических свойств поверхности кремниевых пластин

    2019 / Михеев Игорь Дмитриевич, Вахитов Фаат Хасанович
  • Структурный анализ слоев кремния, имплантированных углеродом

    2010 / Бейсенханов Н. Б.
  • Применение методов селективного травления кремния для оценки качества пластин при изготовлении микромеханических датчиков

    2018 / Абдуллин Фархад Анвярович, Пауткин Валерий Евгеньевич, Печерская Екатерина Анатольевна, Печерский Анатолий Вадимович
  • Влияние модифицирования поверхностных слоев никелида титана кремнием в условиях плазменно-иммерсионной обработки на его коррозионную стойкость в хлоридсодержащих средах

    2015 / Коршунов Андрей Владимирович, Лотков Александр Иванович, Кашин Олег Александрович, Абрамова Полина Владимировна, Борисов Дмитрий Петрович
  • Особенности электрохимического осаждения никеля в мезопористый кремний

    2012 / Долгий А.Л., Прищепа С.Л., Петрович В.А., Бондаренко В.П.
  • Исследование травленой в растворе гидроксида калия поверхности кремния

    2018 / Пауткин В.Е., Абдуллин Ф.А., Вергазов И.Р., Мишанин А.Е.
  • Термическое окисление и изготовление контактов к 6H-SiC

    2009 / Рябинина И. А., Рембеза С. И., Рембеза Е. С.
  • Nexafs и xps исследования пористого кремния

    2018 / Некипелов С.В., Ломов А.А., Мингалева А.Е., Петрова О.В., Сивков Д.В., Шомысов Н.Н., Шустова Е.Н., Сивков В.Н.
  • Характеризация электрофизических свойств границы раздела кремний-двуокись кремния с использованием методов зондовой электрометрии

    2017 / Пилипенко В.А., Солодуха В.А., Филипеня В.А., Воробей Р.И., Гусев О.К., Жарин А.Л., Пантелеев К.В., Свистун А.И., Тявловский А.К., Тявловский К.Л.

Depth Measurement of Disrupted Layer on Silicon Wafer Surface using Auger Spectroscopy Method

The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine de-pendence of the released Auger electron amount on sputtering time (profile) and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is re-moved by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the dis-rupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy meth-ods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001–1.000 um.

Текст научной работы на тему «Измерение глубины нарушенного слоя на поверхности кремниевых пластин методом оже-спектроскопии»

DOI: 10.21122/2227-1031 -2016-15-4-329-334 УДК 621.382.049.774.004.58

Измерение глубины нарушенного слоя

на поверхности кремниевых пластин методом оже-спектроскопии

В. А. Солодуха1*, чл.-кор. НАН Беларуси, докт. техн. наук, проф. А. И. Белоус1*, канд. техн. наук Г. Г. Чигирь1*

1)ОАО «Интеграл» - управляющая компания холдинга «Интеграл» (Минск, Республика Беларусь)

© Белорусский национальный технический университет, 2016 Belorusian National Technical University, 2016

Реферат. Предложен метод измерения глубины нарушенного слоя на поверхности кремниевых пластин, основанный на использовании оже-спектрометра с прецизионным распылением поверхностных слоев кремния и регистрацией интенсивности выхода оже-электронов. Для измерения глубины нарушенного слоя с помощью оже-спектроскопии снимается зависимость количества выходящих оже-электронов от времени распыления (профиль), и затем эта зависимость анализируется. Количество кремния в нарушенном слое меньше, чем в объеме. По мере углубления нарушенный слой уменьшается, что соответствует увеличению плотности атомов в одиночном слое. Сущность метода заключается в том, что нарушенный слой удаляется распылением пучком ионов, а выявление границы раздела осуществляется путем регистрации интенсивности выхода оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода оже-электронов для монокристаллического кремния. Регистрация интенсивности выхода оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контролировать наличие нарушенного слоя на поверхности кремниевой пластины. Причем локальность контроля по глубине из-за особенностей метода оже-спектроскопии составляет около 1,0 нм. Интенсивность выхода оже-электронов определяется на оже-спектрометре автоматически, и по мере удаления нарушенного слоя она постепенно возрастает. Глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины. Метод оже-спектроскопии обеспечивает эффективный контроль глубины повреждений поверхности на этапах изготовления кремниевых пластин и интегральных микросхем. Диапазон измерения глубины нарушений 0,001-1,000 мкм.

Ключевые слова: кремниевая пластина, нарушенный слой, оже-электроны, глубина нарушений

Для цитирования: Солодуха, В. А. Измерение глубины нарушенного слоя на поверхности кремниевых пластин методом оже-спектроскопии / В. А. Солодуха, А. И. Белоус, Г. Г. Чигирь // Наука и техника. 2016. T. 15, № 4. С. 329-334

Depth Measurement of Disrupted Layer

on Silicon Wafer Surface using Auger Spectroscopy Method

V. A. Solodukha1*, A. I. Beloys1*, G. G. Chyhir1*

1}JSC "Integral" - Holding managing company "Integral" (Minsk, Republic of Belarus)

Abstract. The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine dependence of the released Auger electron amount on sputtering time (profile) and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is removed by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger

Адрес для переписки

Солодуха Виталий Александрович

ОАО «Интеграл» - управляющая компания холдинга «Интеграл» ул. Казинца, 121а,

220108, г. Минск, Республика Беларусь Тел.: +375 17 212-32-32 [email protected]

Address for correspondence

Solodukha Vitaliy A.

JSC "Integral" - Holding managing company "Integral" 121a Kazinza str.,

220108, Minsk, Republic of Belarus Tel.: +375 17 212-32-32 [email protected]

Наука итехника. Т. 15,

electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the disrupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy methods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001-1.000 um.

Keywords: silicon wafer, disrupted layer, Auger electron, depth of disruption

For citation: Solodukha V. A., Beloys A. I., Chyhir G. G. (2016) Depth Measurement of Disrupted Layer on Silicon Wafer Surface using Auger Spectroscopy Method. Science & Technique. 15 (4), 329-334 (in Russian)

Введение

Основная тенденция развития современной микроэлектроники - постоянное и стремительное уменьшение проектных норм. Интенсивный переход к субмикронным технологиям изготовления микросхем (МС) обусловливает повышенные требования к используемым материалам. Поэтому формирование кремниевых пластин с улучшенными свойствами в тонком приповерхностном слое становится актуальным. Глубина повреждений поверхности (глубина нарушенного слоя) кремниевых пластин -важнейший их параметр, который необходимо контролировать при производстве МС. Повреждения поверхности возникают как в результате механических воздействий на стадии изготовления пластин, так и в результате радиационных процессов, в частности при ионной имплантации легирующей примеси. Знание глубины нарушенного слоя позволяет оптимизировать процессы обработки кремния и выбрать наилучший из них, что в свою очередь повышает выход годных и уменьшает расход материалов.

Существует большое количество методов контроля и определения параметров нарушенного слоя . Однако отсутствуют универсальные методы контроля глубины нарушенного слоя, его отдельных составных зон и дефектов кристаллической решетки кремния. Процесс исследования глубины нарушенного слоя кремниевых пластин состоит из нескольких этапов, включающих применение как методов, чувствительных к дефектам кристаллической структуры, так и методов послойного удаления этих нарушений. Большие нарушения, например, после резки слитка на пластины, где глубина нарушенного слоя составляет десятки микрон, можно измерять сравнительно простыми мето-

дами с достаточной точностью. Нарушенный слой после шлифовки составляет 1-5 мкм, и его измерения уже не так однозначны. В этих случаях следует использовать более современные методы с большим разрешением. Для контроля глубины нарушенного слоя кремниевых пластин после полировки (менее 0,5 мкм) практически не существует количественных методов его оценки. Известные современные методы весьма трудоемки и не пригодны для промышленного использования. Объектом исследования являлся нарушенный слой на поверхности кремниевых пластин, предназначенных для изготовления субмикронных микросхем. Цель работы - разработка эффективного метода контроля глубины нарушенного слоя кремниевых пластин после химико-механической полировки с применением современных аналитических средств.

Физические основы и сущность метода

Предложен новый метод количественного контроля глубины нарушенного слоя кремниевых пластин после полировки для изготовления МС субмикронных размеров. Метод основан на использовании оже-спектроскопии с прецизионным распылением поверхностных слоев кремния и регистрацией интенсивности выхода оже-электронов с поверхности пластины . Для измерения глубины нарушенного слоя с помощью оже-спектроскопии снимается зависимость количества выходящих оже-электро-нов от времени распыления (профиль), и затем эта зависимость анализируется (рис. 1). Количество кремния в нарушенном слое меньше, чем в объеме. По мере углубления нарушенный слой уменьшается, что соответствует увеличению плотности атомов в одиночном слое. На графиках рис. 1 это соответствует плавному выходу на плато.

итехника. Т. 15, № 4 (2016)

4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Время, мин

Рис. 1. Зависимость количества выходящих

оже-электронов от времени распыления для пластин после полировки (1) и шлифовки (2)

Fig. 1. Dependence of released Auger electron amount on sputtering time for wafers after polishing (1) and grinding (2)

Сущность метода заключается в том, что нарушенный слой удаляется распылением пучком ионов, а выявление границы раздела осуществляется путем регистрации интенсивности выхода оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода оже-электронов для монокристаллического кремния. Глубина нарушенного слоя определяется измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины .

Регистрация интенсивности выхода оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контролировать наличие нарушенного слоя на поверхности кремниевой пластины. Причем локальность контроля по глубине (усреднение по глубине) из-за особенностей метода оже-спектроскопии составляет около 1,0 нм. Интенсивность выхода оже-электронов определяется на оже-спектрометре автоматически, и по мере удаления нарушенного слоя она постепенно возрастает. После удаления нарушенного слоя интенсивность выхода достигает максимальной величины, равной значению для монокристаллического кремния (кремний без нарушенного слоя) с погрешностью по глубине, не превышающей ±1,0 нм. Дальнейшее удаление поверхностных слоев кремния прекращается. Таким образом, на поверхности образца формируется ступенька: на верхней ее части находится исходная поверх-

■■ Наука

иТ ехника. Т. 15, № 4 (2016)

ность анализируемои кремниевои пластины с нарушенным слоем, а на нижней - поверхность с удаленным нарушенным слоем. Величина этой ступеньки равна глубине нарушенного слоя.

Использование метода оже-спектроскопии для определения глубины нарушенного слоя кремниевых пластин обусловлено двумя обстоятельствами:

Возможностью последовательного удаления тонких, вплоть до моноатомного, слоев;

Выход оже-электронов зависит от количества (плотности) анализируемого материала на поверхности. Так как в нарушенном слое имеется множество дефектов, его плотность будет меньше, чем монокристаллического материала, и следовательно, будет меньше количество выходящих оже-электронов.

Глубину нарушенного слоя определяли по ступеньке на профилометре после полного удаления нарушенного слоя распылением. Выход на монокристаллический кремний определяли следующим образом. Производили контроль за интенсивностью выхода оже-электронов после каждого шага распыления. Когда выход электронов за три шага не изменялся более чем на один процент, распыление прекращали, извлекали образец из камеры спектрометра и измеряли глубину кратера на профилометре. Профилометр Та1у81ер, который использовался в работе, имеет максимальное увеличение по вертикали 2000000 крат. При данном увеличении минимальная цена деления составляет 0,5 нм/мм. Изображение реальной ступеньки величиной 100 нм на диаграммной ленте самописца профилометра приведено на рис. 2. Данную ступеньку измеряли при увеличении 200000 крат, и ее размер на ленте профиломет-ра составляет 20 мм. Эти данные наглядно иллюстрируют возможности профилометра.

- " " Г""" - ■ li - I .. 1 "" "

P4 ..

L.:F [-■■ T""" Z"Z _ 1_. r 4

Щ -. 1..... --- . 10 нм 1-- (. - -j -"

Рис. 2. Профиль ступеньки на диаграммной ленте профилометра

Fig. 2. Step profile on a profilometer chart tape

Оже-спектрометр РН1-660 позволяет менять скорость распыления в очень широких диапазонах: от десятых долей нанометра в минуту до 100 нм/мин. Поэтому, если глубина нарушенного слоя мала, изменением скорости распыления можно обнаружить различия в способах даже химико-динамической полировки.

Метрологические характеристики метода

Для определения случайной составляющей измерений глубины кратера провели серию измерений на одном образце с глубиной кратера примерно 50 нм. Увеличение профилометра устанавливалось 1000000 крат. Величина среднеквадратичного отклонения результатов измерений не превышала 1,00 нм. По этой причине случайная составляющая ошибки единичного измерения при доверительной вероятности 0,95 не превышала 4,00 %. При уменьшении глубины нарушенного слоя погрешность возрастает. Однако метод позволяет определять глубину нарушенного слоя начиная с величины 1,00 нм. Меньше глубина нарушенного слоя на кремниевой полированной пластине практически быть не может, так как на воздухе быстро образуется пленка естественного оксида кремния толщиной 1,00-2,00 нм, которая тоже входит в нарушенный слой.

Глубину нарушенного слоя можно определить по известной скорости распыления. Для этого необходимо предварительно выбрать оптимальные режимы распыления образца, определить скорость распыления для данного режима и в дальнейшем использовать фиксированные режимы распыления и значение величины скорости. Скорость распыления можно определить двумя способами:

Распылением слоя известной толщины. Например, толщину слоя двуокиси кремния можно достаточно точно определить методом эллипсометрии. Учитывая, что скорость распыления двуокиси кремния практически одинакова с кремнием, а граница раздела «кремний -двуокись кремния» уверенно определяется на оже-спектрометре, скорость распыления в данном случае находится достаточно точно;

Многократным распылением кремниевой пластины, измерением глубины ступенек на профилометре и расчетом скорости распыления статистической обработкой данных.

Получается, что нет необходимости постоянно использовать профилометр для измере-

ния глубины нарушенного слоя. Достаточно настроить оже-спектрометр на известную скорость распыления и, определив время выхода на монокристаллический кремний по снятому профилю, вычислить глубину нарушенного слоя.

Для определения оптимальной скорости распыления провели ряд экспериментов. В ходе испытаний варьировали параметры электронной пушки: ток ионного пучка, растр (развертка), угол наклона образца. В результате выбрали скорость распыления 2,2 нм/мин. При этом режимы распыления были следующими: растр 3x3 мм2, ускоряющее напряжение 3,5 кВ, ток ионного пучка 30 нА, угол между ионным пучком и поверхностью образца 10о.

Предложенный количественный контроль глубины нарушенного слоя имеет следующие характеристики: диапазон измерения глубины нарушенного слоя составляет 0,001-1,000 мкм, разрешение по глубине до 1,000 нм. Данный метод может использоваться в сочетании со сканирующей зондовой микроскопией.

Экспериментальные результаты

и обсуждение

Зависимости выхода оже-электронов от времени распыления для двух кремниевых пластин, изготовленных на разных заводах и имеющих различные режимы финишной обработки поверхности, приведены на рис. 3.

Время распыления, мин

Рис. 3. Зависимость количества оже-электронов от времени распыления пластин № 1, 2 после разных режимов финишной полировки: № 1 - пластина изготовлена на зарубежном предприятии; № 2 - то же в Беларуси

Fig. 3. Dependence of Auger electrons amount on sputtering time for wafers Nos 1, 2 after different modes of final polishing: No 1 - wafer manufactured at a foreign enterprise; No 2 - wafer manufactured in the Republic of Belarus

итехника. Т. 15, № 4 (2016)

Анализ данных рис. 3 показывает, что глубина нарушенного слоя не полностью отражает качество подготовки поверхности. Время выхода на монокристаллический кремний для пластин № 1, 2 одинаково и составляет 1,75 мин. Это означает, что глубина нарушенного слоя для двух пластин одинакова и равна 3,80 нм. Получается, что по глубине нарушенного слоя практически нет различия между пластинами. Из данных рис. 3 следует, что нарушенные слои пластин отличаются. В области нарушенного слоя для пластины № 1 интенсивность выхода оже-электронов существенно выше и, можно полагать, что она более совершенной в сравнении с пластиной № 2. По этой причине предложено дополнительно оценивать качество подготовки поверхности по площади над полученной кривой профиля распыления. Целесообразно предварительно перевести количество выходящих оже-электронов в относительную величину. Для этого надо измеренное количество оже-электронов разделить на количество оже-электронов, выходящих с монокристаллического кремния, и затем произвести расчет площади. После проведения расчетов получается, что для пластины № 1 площадь над полученной кривой профиля распыления равна 0,191 м2, а для пластины № 2 - 0,323 м2. Можно сделать вывод, что качество поверхности пластины № 1 лучше, чем пластины № 2. Сравнение выхода годных субмикронных микросхем показывает, что на пластинах группы № 1 выход годных выше, чем на пластинах группы № 2, что обусловлено различием в качестве подготовки поверхности пластин.

Использование оже-спектроскопии для измерения глубины нарушенного слоя кремниевых пластин после шлифовки и особенно после резки нецелесообразно по нескольким причинам: во-первых, необходимо резко увеличить скорость и время распыления; во-вторых, существуют методы для контроля глубины нарушенного слоя поверхности после резки и шлифовки, менее трудоемкие и достаточно точные . Определение разброса глубины нарушенного слоя от пластины к пластине для различных производителей пластин показало, что минимальное значение глубины нарушенного слоя для полированных пластин составляет 3 нм, а максимальное не превышает 100 нм.

■■ Наука

иТ ехника. Т. 15, № 4 (2016)

1. Предложен метод измерения глубины нарушенного слоя на поверхности кремниевых пластин, основанный на использовании оже-спект-рометра с прецизионным ионным распылением поверхностных слоев кремния и регистрацией интенсивности выхода оже-электронов. Диапазон измерения глубины нарушений 0,001-1,000 мкм. Разрешение по глубине 1,000 нм.

2. При равных глубинах нарушенного слоя качество подготовки поверхности кремниевой пластины предложено оценивать по площади над полученной кривой профиля распыления.

3. Метод является эффективным при оптимизации процессов финишной подготовки поверхности кремниевых пластин в микроэлектронном производстве, выборе оптимальных технологических процессов, способствует снижению расхода технологических материалов.

ЛИТЕРАТУРА

1. Методы контроля нарушенных слоев при механической обработке монокристаллов / А. И. Татаренков [и др.]. М.: Энергия, 1978. 64 с.

2. Луфт, Б. Д. Физико-химические методы обработки поверхности полупроводников / Б. Д. Луфт. М.: Радио и связь, 1982. С. 16-18.

3. Test Method for Measuring the Depth of Crystal Damage of a Mechanically Worked Silicin Slice Surface by Angle Polishing and Defect Etching: Standard SEMI MF950-1106 // Annual Book of ASTM Standard. USA: American Society for Testing and Materials, 1999. Vol. 10.05: Electronics II (Electrical Insulation and Electronics). P. 315.

4. Химическая обработка в технологии ИМС / В. П. Ва-силевич [и др.]. Полоцк: ПГУ, 2001. С. 174-185.

5. Берченко, Н. Н. Методы электронной и ионной спектроскопии для исследования поверхности и границ раздела в полупроводниковой электронике. Ч. 1 / Н. Н. Бер-ченко, Н. Р. Аигина // Зарубежная электронная техника. 1986. № 9 (304). 86 с.

6. Берченко, Н. Н. Методы электронной и ионной спектроскопии для исследования поверхности и границ раздела в полупроводниковой электронике. Ч. 2 / Н. Н. Бер-ченко, Н. Р. Аигина // Зарубежная электронная техника. 1986. № 10 (305). 85 с.

7. Холева, Л. Д. Методы электронной спектроскопии для анализа материалов электронной техники / Л. Д. Хо-лева, В. С. Шкиров // Зарубежная электронная техника. 1979. № 4 (199). С. 3-33.

8. Способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины: пат. 5907 Респ. Беларусь, МПК С1 Н 01 L 21/66 /

Г. Г. Чигирь, Л. П. Ануфриев, В. А. Ухов, Л. П. Пеньков; дата публ. 30.03.2004.

9. Измерение глубины повреждений поверхности кремниевых пластин методом оже-спектроскопии и ионного распыления / А. С. Турцевич [и др.] // Радиационная физика твердого тела: тр. 20-го Междунар. совещания, 6-8 июля 2010 г., Севастополь, Украина. М.: НИИ ПМТ, 2010. Т. 2. С. 556-562.

10. The Measurement of the Depth of Damaged Layer on Surface of Silicon Wafers by the Method of Auger Spec-troscopy / A. Turtsevich // New Electrical and Electronic Technologies and Their Industrial Implementation (NEET 2013): Proceedings of the 8th International conference, Zakopane, Poland, June 18-21, 2013. Warsaw: Pol. Acad. of Sciences, Inst. of Physics, 2014. Р. 17.

11. Analysis of the Disrupted Layer on the Surface of the Silicon Wafers, Based on the Ion-Sputtering and Auger-Spectroscopy / V. А. Solodukha // New Electrical and Electronic Technologies and their Indastrial Implementation: Proc. of the 9th Int. Conf. Zakopane, Poland, 23-26 June 2015. Lublin: Lublin University of Technology, 2015. Р. 21.

Поступила 07.09.2015 Подписана в печать 08.11.2015 Опубликована онлайн 28.07.2016

1. Tatarenkov A. I., Enisherlova K. L., Rusak T. F., Grid-nev V. N. (1978) Methods for Control of Disarrayed Layers During Mechanical Machining of Mono-Crytals. Moscow, Energia. 64 (in Russian).

2. Luft B. D. (1982) Physical and Chemical Methods for Machining of Semiconductor Surface. Moscow, Radio i Svyaz, 16-18 (in Russian).

3. Standard SEMI MF950-1106. Test Method for Measuring the Depth of Crystal Damage of a Mechanically Worked Silicon Slice Surface by Angle Polishing and Defect Etching. Annual Book of ASTM Standard, 10.05. Electronics II (Electrical Insulation and Electronics). American Society for Testing and Materials, 1999, 315.

4. Vasilevich V. P., Kisel A. M., Medvedeva A. B., Pleba-novich V. I., Rodionov Iu. A. (2001) Chemical Treatment in IMS Technology. Polotsk: Polotsk State University, 174-185 (in Russian).

5. Berchenko N. N., Aigina N. R. (1986) Methods for Electronic and Ionic Spectroscopy to Investigate Surface and Interfaces in Semiconductor Electronics. Part 1. Zaru-bezhnaya Elektronnaya Tekhnika , 304 (9). 86 (in Russian).

6. Berchenko N. N., Aigina N. R. (1986) Methods for Electronic and Ionic Spectroscopy to Investigate Surface and Interfaces In Semiconductor Electronics. Part 2. Zaru-bezhnaya Elektronnaya Tekhnika , 305 (10). 85 (in Russian).

7. Kholeva L. D., Shkirov V. S. (1979) Methods for Electronic Spectroscopy to Analyze Materials of Electronic Equipment. Zarubezhnaya Elektronnaya Tekhnika , 199 (4), 3-33 (in Russian).

8. Chigir G. G., Anufriev L. P., Ukhov V. A., Penkov L. P. (2004) Method for Measuring Depth of Disarrayed Layer on the Surface of Silicon Semiconductor Plate. Patent Republic of Belarus No 5907 (in Russian).

9. Turtsevich A. S., Shvedov S. V., Chigir G. G., Ukhov V. A. (2010) Measurement of Damage Depth on Silicon Plate Surface while Using Methods of Auger Spectroscopy and Ion Sputtering. Radiatsionnaia Fizika Tverdogo Tela: tr. 20-go Mezhdunar. Soveshchaniia. T. 2 . Moscow, Research Institute of Advanced Materials and Technologies, 556-562 (in Russian).

10. Turtsevich (2014) The Measurement of the Depth of Damaged Layer on Surface of Silicon Wafers by the Method of Auger Spectroscopy. New Electrical and Electronic Technologies and their Industrial Implementation (NEET 2013): Proceedings of the 8th International Conference, Zakopane, Poland, June 18-21, 2013. Warsaw: Pol. Acad. of Sciences, Inst. of Physics, 17.

11. Solodukha V. A., Shvedov S. V., Ponaryadov V. V., Pili-penko V. A., Chyhir R. R. (2015) Analysis of the Disrupted Layer on the Surface of the Silicon Wafers, Based on the Ion Sputtering and Auger Spectroscopy. New Electrical and Electronic Technologies and their Indastrial Implementation: Proc. of the 9th Int. Conf. Zakopane, Poland, 23-26 June 2015. Lublin: Lublin University of Technology, 21.

Для получения качественных приборов и ИС необходимы однородные полупроводниковые пластины с поверхностью, свободной от дефектов и загрязнений. Приповерхностные слои пластин не должны иметь нарушений кристаллической структуры. Очень жесткие требования предъявляют к геометрическим характеристикам пластин, особенно к их плоскостности. Плоскостность поверхности имеет определяющее значение при формировании структур приборов методами оптической литографии. Важны и такие геометрические параметры пластина как прогиб, непараллельность сторон и допуск по толщине. Полупроводниковые материалы, обладающие высокой твердостью и хрупкостью, не поддаются механической обработке с применением большинства обычных методов, таких, как точе­ние, фрезерование, сверление, штамповка и т. п. Практически единственным методом, применимым для механической обработки полупроводниковых материалов, является обработка с применени­ем связанных или свободных абразивов

Для обеспечения требуемых параметров разработаны базовые технологические операции изготовления пластин. К базовым операциям относят предварительную подготовку монокристалла, разделение его на пластины, шлифование и полирование пластины, формирование фасок, химическое травление пластин, геттерирование нерабочей стороны пластины, контроль геометрии и поверхности пластин и упаковка в тару.

Предварительная подготовка слитка заключается в определении кристаллографической ориентации слитка, калибровке его наружного диаметра до заданного размера, стравливании нарушенного слоя, изготовлении базовых и дополнительных срезов, подготовке торцовых поверхностей с заданной кристаллографической ориентацией. Затем разделяют слиток на пластины определенной толщины. Целью последующего шлифования является выравнивание поверхности отрезанных пластин, уменьшение разброса их толщин, формирование однородной поверхности. Фаски с острых кромок пластин снимают для того, чтобы удалить сколы, образующиеся при резке и шлифовании. Кроме того, острые кромки пластин являются концентраторами напряжений и потенциальными источниками структурных дефектов, которые могут возникнуть при перекладывании пластин и прежде всего при термических обработках (окислении, диффузии, эпитаксии). Химическим травлением удаляют нарушенные приповерхностные слои, после чего полируют обе стороны пластин или ту сторону, которая предназначена для изготовления структур приборов. После полирования пластины очищают от загрязнений, контролируют и упаковывают.

При изготовлении приборов способами наиболее распространенной планарной технологии и ее разновидностей используют только одну, так называемую рабочую сторону пластины. Учитывая значительную трудоемкость и высокую стоимость операций по подготовке высококачественных пластин с бездефектной поверхностью, некоторые варианты изготовления пластин предусматривают несимметричную, т. е. неодинаковую, обработку их сторон. На нерабочей стороне пластины оставляют структурно–деформированный слой толщиной 5-10 мкм, который обладает свойствами геттера, т. е. способностью поглощать пары и газы из корпуса полупроводникового прибора после его герметизации за счет очень развитой поверхности. Дислокационная структура слоя, обращенная к рабочей поверхности пластины, обладает способностью притягивать и удерживать структурные дефекты из объема полупроводникового кристалла, что значительно повышает надежность и улучшает электрофизические параметры приборов. Однако несимметричная обработка сторон пластин создает опасность их изгиба. Поэтому глубину нарушений на нерабочей стороне следует строго контролировать.

Использование в полупроводниковом производстве пластин стандартизованных размеров позволяет унифицировать оборудование и оснастку на всех операциях, начиная от их механической обработки и заканчивая контролем параметров готовых структур. В отечественной и зарубежной промышленности нашли применение пластины диаметром 40, 60, 76, 100, 125, 150 и 200 мм. Для получения пластины заданного диаметра осуществляют калибровку выращенного проводникового монокристал- лического слитка.

Ориентацию или поиск заданной кристаллографической плоскости монокристалла и определение положения этой плоскости относительно торца слитка производят на специальном оборудовании оптическим или рентгеновским методами. В основу оптического метода ориентации монокристаллов положено свойство протравленных поверхностей отражать световые лучи в строго определенном направлении. При этом отражающая плоскость всегда совпадает с кристаллографическими плоскостями типа {111}. Отклонение торца слитка от кристаллографической плоскости (111) приводит к отклонению отраженного луча на матовом экране, характери-зующееся углом разориентации торца от плоскости (111). Отраженный луч образует на экране световые фигуры, форма которых определяется конфигурацией ямок, вытравленных на торце слитка селективными травителями. Типичной световой фигурой для слитка, выращенного в направлении , является трехлепестковая звезда, а для слитка, выращенного в направлении , – четырехлепестковая звезда.

Калибровку производят способом наружного круглого шлифования алмазными кругами на металлической связке (рис. 1.1). При этом используют как универсальные круглошлифовальные станки, так и специализированные станки, позволяющие производить калибровку с малыми радиальными силами резания. Если при калибровке кремниевого слитка на универсальном круглошлифовальном станке глубина нарушенного слоя достигает 150-250 мкм, то применение специализированных станков обеспечивает снижение глубины нарушенного слоя до 50-80 мкм. Калибровку чаще всего проводят в несколько проходов. Сначала за первые черновые проходы снимают основной припуск алмазными кругами зернистостью 160-250 мкм, затем осуществляют чистовую обработку алмазными кругами зернистостью 40-63 мкм.

Рисунок 1.1 – Схема калибровки слитка

После калибровки цилиндрической поверхности на слитке выполняют базовый и дополнительные (маркировочные) срезы. Базовый срез делают для ориентации и базирования пластин на операциях фотолитографии. Дополнительные срезы предназначены для обозначения кристаллографической ориентации пластин и типа проводимости полупроводниковых материалов. Ширины базового и дополнительных срезов регламентированы и зависят от диаметра слитка. Базовый и дополнительные срезы изготовляют шлифованием на плоскошлифовальных станках чашечными алмазными кругами по ГОСТ 16172-80 или кругами прямого профиля по ГОСТ 16167-80. Зернистость алмазного порошка в кругах выбирают в пределах 40/28-63/50 мкм. Один или несколько слитков закрепляют в специальном приспособлении, ориентируя необходимую кристаллографическую плоскость параллельно поверхности стола станка. В зону обработки подают смазочно-охлаждающую жидкость (например, воду).

Срезы можно также изготовлять на плоскодоводочных станках с применением абразивных суспензий на основе.порошков карбида кремния или карбида бора с размером зерен 20-40 мкм. Шлифование свободным абразивом позволяет уменьшить глубину нарушенного слоя, но при этом снижается скорость обработки. Поэтому наиболее широко в промышленности распространено шлифование цилиндрической поверхности и срезов алмазными кругами.

После шлифования слиток травят в полирующей смеси азотной, плавиковой и уксусной кислот, удаляя нарушенный слой. Обычно стравливают слой толщиной 0,2-1,0 мм. После калибровки и травления допуск на диаметр слитка составляет 0,5 мм. Например, слиток с номинальным (заданным) диаметром 60 мм может иметь фактический диаметр 59,5-60,5 мм.

Промышленное получение полупроводниковых монокристаллов представляет собой выращивание близких к цилиндрической форме слитков, которые необходимо разделить на заготовки-пластины. Из многочисленных способов разделения слитков на пластины (резка алмазными кругами с внутренней или наружной режущей кромкой, электрохимическая, лазерным лучом, химическим травлением, набором полотен или проволокой, бесконечной лентой и др.) в настоящее время наибольшее применение нашли резка алмазными кругами с внутренней режущей кромкой (АКВР), набором полотен и бесконечной проволокой.

AКВP обеспечивает разделение слитков достаточно большого диаметра (до 200 мм) с высокой производительностью, точностью и малыми потерями дорогостоящих полупроводниковых материалов. Круг АКВР представляет собой металлический кольцеобразный корпус толщиной 0,05-0,2 мм, на внутренней кромке которого закреплены алмазные зерна, осуществляющие резание. Корпус изготовляют из высококачественных коррозионно-стойких хромоникелевых сталей с упрочняющими легирующими добавками. В отечественной промышленности для корпусов используют сталь марки 12Х18Н10Т. Размер алмазных зерен, закрепленных на внутренней кромке, выбирают в зависимости от физико-механических свойств разрезаемого полупроводникового материала (твердости, хрупкости, способности к адгезии, т. е. прилипанию к режущей кромке). Как правило, для резки кремния целесообразно использовать алмазные зерна с размером основной фракции 40-60 мкм. Зерна должны быть достаточно прочными и иметь форму, близкую форме правильных кристаллов. Германий и сравнительно мягкие полупроводниковые соединения типа А 3 В 5 (арсенид галлия, арсенид индия, антимонид индия, фосфид галлия и др.) целесообразно резать алмазами, размер зерен основной фракции которых 28-40 мкм. Требования к прочности этих зерен не столь высоки, как при резке кремния. Монокристаллы сапфира, корунда, кварца, большинства гранатов разделяют высокопрочными кристаллическими алмазами размер зерен основной фракции которых 80-125 мкм.

Обязательным условием качественного разделения слитка на пластины является правильная установка и закрепление круга AКBP. Высокая прочность материала корпуса круга и его способность к значительному вытягиванию дают возможность натянуть круг на барабан с достаточной жесткостью. Жесткость круга непосредственно влияет на точность и качество поверхности пластин, на стойкость круга, т. е. срок его службы, и ширину пропила. Недостаточная жесткость приводит к возникновению дефектов геометрии пластин (неплоскостности, прогиба, разброса по толщине) и увеличению ширины пропила, а чрезмерная жесткость - к быстрому выходу круга из строя из-за разрыва корпуса.

Метод резки монокристаллов на пластины металлическим дис­ком с внутренней алмазной режущей кромкой (рис.1.2) в настоя­щее время практически вытеснил все ранее применявшиеся мето­ды резки: дисками с наружной алмазной режущей кромкой, полот­нами и проволокой с применением абразивной суспензии. Этот способ получил наибольшее распространение потому, что он обес­печивает более высокую производительность при меньшей ширине реза, в результате чего потери полупроводникового материала снижаются почти на 60 % по сравнению с резкой диском с наруж­ной режущей кромкой.

Режущим инструментом станка является тонкое (толщиной 0,1-0,15 мм) металлическое кольцо, на кромку 3 отверстия нанесены алмазные зерна размером 40-60 мкм. Круг 2 растягивают и закрепляют на барабане 1, который приводят во вращение вокруг своей оси. Слиток 4 вводят во внутреннее отверстие круга АКВР на расстояние, равное сумме заданной толщины пластины и ширины пропила. После этого производят прямолинейное перемещение слитка относительно вращающегося круга в результате чего отрезается пластина.

Отрезанная пластина 6 может падать в сборный лоток 7 или же удерживаться после полного прорезания слитка на оправке 5 клеящей мастикой. После сквозного прорезания слитка его отводят в исходное положение и круг выходит из образованной прорези. Затем слиток снова перемещают на заданный шаг во внутреннее отверстие круга и повторяют цикл отрезания пластины.

Инструмент крепят винтами на конце шпинделя вращающего­ся с частотой 3-5 тыс. об/мин, к барабану (рис.1.3) с помощью колец, имеющих сферический выступ на одном и соответствующую впадину на другом, чем обеспечивается необходимый предвари­тельный натяг диска. Окончательное натяжение диска обеспечива­ется при установке его на барабан /. Стягивающими винтами 7 уменьшают зазор между буртиком 2 барабана 1и зажимными

Рисунок 1.2 – Схема резки диском Рисунок 1.3 – Барабан для закрепле-

с внутренней кромкой ния алмазного диска

кольцами 5. Режущий диск 6при этом упирается в опорный вы­ступ 4 барабана и растягивается в радиальном направлении. Между зажимными кольцами и буртиком барабана устанавлива­ют регулирующие прокладки 3, которые ограничивают перемеще­ние колец 5 и предохраняют диск от разрыва из-за чрезмерного натяжения. Равномерного натяжения диска достигают последова­тельным постепенным затягиванием диаметрально расположен­ных винтов 7. На некоторых моделях машин, например «Алмаз-бМ», натяг диска обеспечивается закачкой жидкости (напри­мер глицерина) в полость между зажимными кольцами.

Все виды конструктивных компоновок выпускаемых в настоя­щее время станков для резки слитков полупроводниковых мате­риалов можно разделить на три группы:

С горизонтальным расположением шпинделя и суппортом, осу­ществляющим как дискретное перемещение слитка на.толщину отрезаемой пластины, так и подачу резания (рис. 1.4, а);

С вертикальным расположением шпинделя и суппортом, также осуществляющим и дискретное перемещение слитка на толщину отрезаемой пластины, и подачу резания (рис. 1.4, б);

С горизонтальным расположением шпинделя, осуществляющим подачу резания за счет качания его вокруг некоторой оси, и суп­портом, осуществляющим только дискретное перемещение слитка на толщину отрезаемой пластины (рис. 1.4, в).

Станки первого типа, к которым относятся модели 2405, «Алмаз-4», Т5-21 и Т5-23, появились в промышленности раньше других и являются наиболее распространенными. При та­кой компоновке горизонтально расположенный шпиндель враща­ется в подшипниках относительно малого диаметра, что позволяет сравнительно легко обеспечить необходимую частоту вращения, прецизионность и виброустойчивость узла. Недостатком такого ти­па компоновки станков является достаточно интенсивный износ направляющих суппорта и, как следствие этого, - потеря точ­ности.


Рисунок 1.4 – Схемы конструктивных компоновок станков для резки слитков алмазными кругами с внутренней режущей кромкой:

1 – клиноременная передача; 2 – вал шпинделя; 3 – подшипник; 4 – барабан;

5 – алмазный диск; 6 – слиток; 7 – державка; 8 – поворотный рычаг; 9 – ось

Для обеспечения необходимых геометрических размеров отрезанных полупроводниковых пластин, их плоскопараллельности и соответствия заданным размерам, а также уменьшения глубины нарушенного слоя пластины подвергаются шлифованию и полированию. Процесс шлифования представляет собой обработку пластин на твердых доводочных дисках - шлифовальниках (из чугуна, стекла, латуни и т. д.) абразивными микропорошками зернистостью от 28 до 3 мкм или алмазными шлифовальными кругами с зернистостью от 120 до 5 мкм. Погрешности формы пластин (неплоскостность, клиновидность и т. д.), возникшие в процессе резки слитка, исправляют в процессе шлифования. В результате шлифования получают пластины правильной геометрической формы с шероховатостью поверхности Н а 0,32-0,4 мкм.

На рис.1.5 приведена классификация шлифовальных станков.Шлифовальные станки полупроводниковых пластин и кристаллов состоят из следующих основных элементов. Hа шлифовальном круге, изготавливаемом, из стекла иди чугуна, имеются три круглых сепаратора - кассеты с отверстиями (гнездами) для загрузки полупроводниковых пластин. На круг в процессе шлифовки непрерывно подаётся абразивная суспензия. При вращении шлифовального круга сепараторы-кассеты вращаются вокруг своей оси с помощью роликов под действием силы, возникающей за счет различной окружной скорости по радиусу шлифовальника. Пластины загруженные в гнезда сепаратора-кассеты, совершают при шлифовке сложное движение, которое складывается из вращения шлифовального круга, вращения сепаратора-кассеты и вращения пластин внутри гнезда сепаратора.

Рисунок 1.5 – Классификация шлифовальных станков

Такое движение даёт возможность снимать слой материала равномерно со всей плоскости пластины с достаточной для полупроводниковых приборов плоскопараллельностью и точностью. Разброс по толщине на пластине составляет 0.005-0.008 мм., а разброс по плоскопараллельности - 0.003-0.004 мм. Сошлифовка проводникового материала зависит от прочности абразивных зёрен: так, при одинаковой величине зёрен более глубокие выколи дают абразивные материалы с большей микротвердостью. Поэтому в зависимости от свойств обрабатываемого материала, степени чистоты поверхности и целевого назначение необходимо выбирать абразив соответствующей дисперсности. Практически первоначальную шлифовку кристаллов полупроводникового материале осуществляют грубодисперсными порошками карбида бора, а затем - доводят до необходимых размеров и требуемой чистоты поверхности порошками электрокорунда или карбида кремния с зернистостью М14, М10, Ml5.При шлифовке микротвёрдость применяемого абразива должна быть в 2 - 3 раза выше микротвёрдости шлифуемого материала. Этому требованию удовлетворяют электрокорунд, карбид кремния зелёный, карбид бора, алмаз. Частота вращения верхних шпинделей с абразивными кругами 2400 об/мин, а шлифовальных столиков с закрепленными на них обрабатываемыми пластинами - 350 об/мин. Обычно на одной позиции производится предварительное шлифование, а на другой - чистовое. Подача круга осуществляется за счет массы шпинделя. На рис.1.4 представлена схема врезного шлифования.

1 -3 - шлифовальные круги; 4-6- обрабатываемые пластины; 7- стол

Рисунок 1.6 – Схема врезного шлифования

На рис.1.7 представлен внешний вид шлифовального круга с пластинами.

Для полирования пластин могут быть использованы те же станки, что и для шлифования. Для этого на шлифовальниках делают выборки и с помощью внешних и внутренних стальных колец 4 на них натягивают замшу. Для подачи абразивной суспензии в зону полирования в верхнем шлифовальнике и в замше имеются отверстия.

Полирование может быть:

– механическим, которое происходит главным образом за счет микрорезания зернами абразива, пластических деформаций и сглаживания;

– химико-механическим, при котором снятие материала с обрабатываемой поверхности происходит в основном за счет механического удаления образующихся в результате химических реакций мягких пленок. Для химико-механического полирования необходимо несколько большее усилие прижима обрабатываемого изделия к полировальнику, чем при механическом. Схема полуавтомата одностороннего полирования полупроводниковых пластин показана на рис.1.8. Стол 4, на котором размещен съемный полировальник 8, приводится во вращение с частотой 87±10 об/мин от электродвигателя 7 через клиноременную передачу 6 и двухступенчатый редуктор 5.

Рисунок 1.7 – Внешний вид шлифовального круга

Рисунок 1.8–Схема полуавтомата одностороннего полирования пластин.

На верхней части станины станка размещены четыре пневмоцилиндра, на штоках 2 которых шарнирно закреплены прижимные диски 3. Пневмоцилиндры осуществляют подъем, опускание и необходимый прижим пластин к полировальнику. Шарнирное крепление прижимных дисков с приклеенными к ним пластинами позволяет им плотно прилегать (самоустанавливаться) к полировальнику и вращаться вокруг собственных осей, обеспечивая сложное движение полируемых пластин. Станок позволяет обрабатывать пластины диаметром до 100 мм и обеспечивает получение шероховатости обработанной поверхности по четырнадцатому классу.

Снятие фасок с кромок полупроводниковых пластин производят для достижения нескольких целей. Во-первых, для удаление сколов на острых кромках пластин, возникающих при резке и шлифовании. Во-вторых, для предотвращения возможного образования сколов в процессе проведения операций, непосредственно связанных с формированием структур приборов. Сколы, как известно, могут служить источниками структурных дефектов в пластинах при проведении высокотемпературных обработок и лажен являться причиной разрушения пластин. В-третьих, для предотвращения образования на кромках пластин утолщения слоев технологических жидкостей (фоторезистов, лаков), которые после затвердевания нарушают плоскостность поверхности. Такие же утолщения на кромках пластин возникают при нанесении на их поверхность слоев полупроводниковых материалов и диэлектриков.

Формирование фасок производят механическим способом (шлифованием и полированием), химическим или плазмохимическим травлением. Плазмохимическое травление фасок основано на том, что острые кромки в плазме распыляются с большей скоростью, чем другие области пластин, ввиду того, что напряженность электрического поля на острых кромках существенно выше. Этим способом можно получить фаска с радиусом закругления не более 50-100 мкм. Химическое травление обеспечивает больший радиус фасок, однако и химическое, и плазмохимическое травление не позволяют изготовлять фаски различного профиля. Кроме того, травление является плохо управляемым и контролируемым процессом, что ограничивает его широкое промышленное применение. В производстве чаще всего используют способ формирования фасок профильным алмазным кругом. Этим способом могут быть изготовлены фаски разнообразной формы (рис. 1.9, а-в). На практике чаще всего формируют фаски, форма которых показана на рис. 1.9, а. В процессе обработки пластина закрепляется на вакуумном столике станка и вращается вокруг своей оси. Частота вращения пластины 10-20 об/мин, алмазного круга 4000-10000 об/мин. Алмазный круг прижимается к пластине с усилием 0,4-0,7 Н. Ось вращения круга перемещается относительно оси вращения вакуумного столика так, чтобы обработке полупроводниковые соединения шлифуют при давлении в 1,5-2,5 раза меньшем, чем кремний. В процессе шлифования пластины периодически подвергают визуальному осмотру и контролю по толщине.

Рисунок 1.9 – Разновидности фасок

После механической обработки кристаллическая решетка на поверхности полупроводниковых пластин разрушается, появляются трещины и риски в материале и различные загрязнения. Для удаления нарушенного поверхностного слоя полупроводникового материала применяют химическое травление, протекающее при контакте подложки с жидкой или газообразной средой.

Процесс химического травления - это химическая реакция жидкого травителя с материалом пластины с образованием растворимого соединения и последующим его удалением. В техноло­гии полупроводникового производства обычно химическую обработку называют травлением, а химико-динамическую - полирующим травлением. Химическое травление полупроводниковых материалов проводят для того, чтобы удалить нарушенный слой. Оно характеризуется повышенной скоростью травления в местах нарушения кристаллической структуры. При химико-динамическом травлении удаляют более тонкие слои, т. к. его назначение - создать на пластине гладкую поверхность высокого класса чистоты. Состав травителя подбирают так, чтобы полностью подавить его способность к селективному травлению. Процессы химической обработки сильно зависят от температуры, концентрации и чистоты реактивов. Поэтому при проектировании оборудования для химической обработки стремятся стабилизировать основные параметры процесса и этим гарантировать высокое качество травления.

Материалы, применяемые для изготовления рабочих камер, должны быть стойкими к используемым реактивам, а применяемые средства автоматизации - либо малочувствительными (например, пневмо- или гидроавтоматика), либо хорошо защищенными от воздействия паров агрессивных реактивов (в случае применения электроавтоматики).

Установка для химического травления пластин типа ПВХО-ГК60-1 показана на рис. 1.10, а схема устройства рабочих органов приведена на рис. 1.11.

Рисунок 1.10–Установка для химического травления пластин типа ПВХО-ГК60-1:

Рисунок 1.11 – Схема рабочих органов установки ПВХО-ГК60-1

На рабочем столе в пылезащитной камере смонтированы три рабочих ванны 1 -3. В ванне производится обработка кремниевых пластин погружением в холодные или горячие кислоты, или органические растворители. Крышка ванны в процессе обработки герметически закрыта. Обработка производится групповым методом в кассетах по 40-60 пластин в зависимости от их размеров. Из ванны кассеты 6 переносятся в ванну 2 для отмывки деионизованной водой. Степень отмывки контролируется прибором по разности сопротивления деионизованной воды на входе и выходе ванны. После этого в ванне 3 пластины по 10 шт. обрабатываются кистями 4 и сушатся на центрифуге 5.

Химико-динамическое, или полирующее травление производится с помощью устройства, схема которого приведена на рис.1.12. Сущность его заключается в активном перемешивании травителя непосредственно у поверхности обрабатываемой пластины. Благодаря этому обеспечивается быстрое удаление продуктов реакции, равномерное поступление новых порций травителя, неизменность его состава и постоянство теплового режима обработки.

Во фторопластовый барабан 2, вращающийся на оси, наклоненной относительно нормали на угол 15 – 45°, заливают порцию травителя 3. Обрабатываемые пластины 4наклеивают на фторопластовые диски 5, которые помещают на дно барабана пластинами вверх. Барабан приводится во вращение от электродвигателя через редуктор с частотой вращения 120 об/мин. При этом диски 5 перекатываются по его стенке, обеспечивая хорошее перемешивание травителя и создавая условия для равномерного травления.

Рисунок 1.12 – Схема установки полирующего травления

Для полирования кремния применяют также электрохимическое полирование, в основе которого лежит анодное окисление полупроводника, сопровождаемое механическими воздействиями на окисную пленку.

Качество поверхности обработанных пластин определяется шероховатостью и глубиной нарушенного слоя. После резки, шлифовки и полировки пластины отмывают. Состояние поверхности пластин контролируют визуально или под микроскопом. При этом проверяют наличие на поверхности царапин, рисок, сколов, загрязнений и следов воздействия химически активных веществ.

Во всех установках контроль осуществляется оператором с использованием, например, микроскопов типов МБС-1, МБС-2 (с увеличением 88 х) или МИМ-7 (с увеличением 1440 х). Микроскоп МБС-1 благодаря специальному устройству осветителя позволяет наблюдать поверхность в лучах света, падающих под разными углами. На микроскопе МИМ-7 можно наблюдать поверхность в светлом и темном полях. Оба микроскопа позволяют измерять размеры повреждения поверхности специально установленными окулярами. В установках для визуального контроля пластин автоматизируется подача пластин из кассеты на предметный столик под микроскоп и возвращение ее после контроля в соответствующую классификационную кассету. Иногда вместо оптического микроскопа применяют проекторы, позволяющие снизить утомляемость оператора.

Шероховатость поверхности в соответствии с ГОСТ 2789-73 оценивают средним арифметическим отклонением профиля R а или высотой микронеровностей R z . ГОСТ устанавливает 14 классов шероховатости поверхности. Для 6–12 классов шероховатости основной является шкала R а , а для 1–5-го и 13–14-го – шкала R z . Шероховатость измеряют в визуально определенном направлении, соответствующем наибольшим значениям R а и R z .

Для измерений используют стандартные профилографы–профилометры или с помощью сравнительного микроскопа поверхность обработанной пластины визуально сравнивают с эталоном. Современный профилограф-профилометр–универсальный высокочувствительный электромеханический ощупывающий прибор, предназначенный для измерения волнистости и шероховатости ме­таллических и неметаллических поверхностей. Принцип действия прибора состоит в том, что колебательные движения ощупывающей иглы с радиусом закругления 10 мкм вызывают изменения напряжения, которые регистрируются отсчетным устройством. Прибор имеет также записывающий механизм и может выдавать профилограмму поверхности. Для бесконтактного измерения применяют микроинтерферометры МИИ-4 и МИИ-11с пределами измерений R z – 0,005–1 мкм, а также атомно-силовые микроскопы.

Толщина слоя, в котором в результате механической обработки нарушена кристаллическая решетка полупроводника, является одним из критериев качества обработанной поверхности пластины. Толщина нарушенного слоя зависит от размера зерна абразивного порошка, примененного для обработки, и приближенно может быть определена по формуле:

H =K ∙d, (1.1)

где d - размер зерна; К - эмпирический коэффициент (K =1,7 для Si; K =2,2 для Ge).

Толщину нарушенного слоя определяют только в процессе отладки технологии механической обработки пластин. Наиболее простым и удобным методом определения толщины нарушенного слоя является визуальный контроль под микроскопом поверхности после селективного травления.

Для контроля толщины, неплоскостности, непараллельности и прогиба пластин используют стандартные измерительные средства, такие, как индикаторы часового типа или другие аналогичные им рычажно-механические приборы с ценой деления 0,001 мм. В последнее время для контроля геометрических параметров пластин все чаще начинают применять бесконтактные пневматические или емкостные датчики. С их помощью можно быстро производить измерения, не подвергая пластину риску загрязнения или механического повреждения.

СОЮЗ СОВЕТСКИХ ОЦИАЛИСТИЧЕСКИ СПУБЛИК(51)4 С 01 В 5(р) юъ ч Я БР САНИ К АВТОРСКОМ ТЕЛЬСТВ 11 31 и др, Методы слоев при мее монокристал 978объГОСУДАРСТВЕННЫЙ КОМИТЕТ СССРПЮ ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ(54) СПОСОБ А.Ф.НИКУЛИНА ОПРЕДЕЛЕНИЯ ГЛУБИНЫ НАРУШЕННОГО СЛОЯ ОВРАБОТАНН ПОВЕРХНОСТИ ОБЪЕКТА.(57)Способ определения глубины нару щенного слоя обработанной поверхности объекта, заключающийся в том, что делают секущий шлиф екта, проводят травление поверхности шлифа, находят граниду нарушен,ного слоя.и по ее положению определяют глубину нарушенного слоя,о тл и ч а ю щ и й с я тем, что, с целью повышения точности, перед получением шлифа записывают профило,грамму поверхности, перед травлением записывают профилограмму поверхности шлифа в направлении, кото рое является проекцией первой профилограммы на поверхность шлифа в той же системе координат, травление осуществляют изотропным травителем, после травления записывают профилограмму поверхности протравленного шлифа в том же направлении и в той же системе координат, что и предыдущие профилограммы, и находят на третьей профилограмме границу нарушенного слоя по точке, за которой вторая и третья профилограммы эквидистантны, 1174726Изобретение относится к техническим измерениям, а именно дляопределения глубины нарушенногослоя, возникающего на обработанной поверхности объекта и состоящего из переходящих, по мереудаления от поверхности, одна вдругую зон: рельефной, трещиноватой, пластических деформаций, упругих деформаций с повьшенной плот- . 1 Оностью дислокаций.Известен способ определения глубины нарушенного слоя обработаннойповерхности объекта, которыйзаключается в том, что делают 15секущий шлиф объекта, проводят травление поверхности шлифа, находятграницу нарушенного слоя и поее положению определяют глубину нарушенного слоя, 20В известном способе травлениеповерхности шлифа осуществляют селективно декодирующим травителемдо выявления структуры шпифа, аопрс:вселение границ между нарушенной 25и неповрежденной структурой производят визуально на протравленномшлифе. Глубину нарушенного слоя определяют с учетом угла наклона косогошлифа к обработанной поверхности Я.ЗНедостатком известного способаявляется низкая точность определения глубины нарушенного слоявследствие визуального определениярасположения на шлифе линии перехода от нарушенной в неповрежденнойструктуре,Целью изобретения является повы -шение точности,Поставленная цель достигается тем,40 что согласно способу определения глубины нарушенного слоя обработанной поверхности объекта, заключающемуся в том, что делают секущий шлиф объекта, проводят трав ление поверхности шлифа, находят границу нарушенного слоя и по ее положению определяют глубину нарушенного слоя, перед получениемшлифа записывают профилограмму 50 поверхности, перед травлениемзаписывают профилограмму поверхности шлифа в направлении, которое является проекцией первой профилограммы на поверхности шлифа в той же 55 системе координат, травление осуществляют изотропным травителем, после травления записывают профилограмму поверхности протравленного шлифа в том же направлении и в той же системе координат, что и в предыдущие профилограммы, и находят на третьей профилограмме границу нарушенного слоя по точке, за которой вторая и третья профилограммы эквидистантны.На фиг. дано изображение в изометрии части объекта, у которого определяется глубина нарушенного слоя обработанной поверхности с указанием поверхностей косого шлифа и поверхности шлифа после травления; на фиг,2 - сечение А-А на фиг,1,Способ осуществляется следующим образом.На обработанной поверхности 1 объекта, у которого определяют глубину нарушенного слоя, снимают профилограмму 2. Далее на объекте делают косой шлиф, поверхность 3 которого расположена под известным углом к обработанной поверхности 1,Шлиф получают методом щадящего полирования. Записывают профилограмму. 4 поверхности 3 шлифа в направлении, которое является проекцией профилограммы 2 на поверхность 3 шлифа в той же системе координат. При записи профилограммы 4 часть записи проводят по поверхности 1 так, чтобы она совпадала с записью профилограммы 2.Проводят. травление поверхности 3 шлифа изотропным травителем в течение интервала времени, не мень - шего, чем необходимо для стравливания споя, доступного для измерения.Свойство изотропного травления - равная скорость травления по всем направлениям (независимо от анизотропных свойств материала) изменяется лишь при стабилизированных условиях травления в зависимости от степени нарушения структуры стравливаемого материала. Скорость травления материала прямо пропорциональна степени нарушения его структуры, После травления получают поверхность 5, на которой записывают профилограмму 6 в том же направлении и в той же системе координат, что и предыдущие профи - лограммы 2 и 4 Участок поверхности 1, на котором происходит запись профилограмм 2,4 и 6, предохраняют от травления путем нанесения покрытия, котоРое удаляется передснятием профилограммы 6,Далее все три полученные про 3 филограммы 2,4 и 6 совмещают, иск пользуя при этом участок поверхности 1, идентичный во всех трех профилограммах 2,4 и 6, и по профилограмме 6 определяют точку а, которая лежит на границе 7 между нарушенным слоем и неповрежденной структурой. Точкой а является то74726 4место на профилограмме 6, послекоторого профилограммы 4 и 6 идутпо эквидистантным кривым. Измеряюткратчайшее расстояние от точки адо поверхности 1,которая обозначена профилограммой 2,и по этомурасстоянию с учетом масштаба записипрофилограммы определяют глубинунарушенного слоя.10 Предлагаемый способ позволяетповысить точность определения глубины нарушенного слоя обработаннойповерхности объекта,

Заявка

3696760, 28.10.1983

ПРЕДПРИЯТИЕ ПЯ Р-6028, КИЕВСКИЙ ОРДЕНА ЛЕНИНА ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ ИМ. 50-ЛЕТИЯ ВЕЛИКОЙ ОКТЯБРЬСКОЙ СОЦИАЛИСТИЧЕСКОЙ РЕВОЛЮЦИИ

НИКУЛИН АЛЕКСАНДР ФЕДОРОВИЧ

МПК / Метки

Код ссылки

Способ а. ф. никулина определения глубины нарушенного слоя обработанной поверхности объекта

Похожие патенты

В па, зах 2 стоек 1 и в свободном состоя ции опираются на ограничители 8. Опор-цые поверхности стоек 1 имеют два вы-пуклых участка 9 и 10 одинакового ра диуса, плавно сопряженных со сторонами паза 2. Выполнение опорных поверхностей стоек 1 в виде двух выпуклых участков 9 и 10 одинакового радиуса обеспечивает точную установку прибора как на плоской поверхности, так и на цилиндрической вдоль образующей цилиндра, а выполнение измерительного элемента в виде усеченного конуса с двумя цилиндрическими опорами обеспечивает бесступенчатое, и потому более точное измерение, а также 1 О позволяет размещать на поверхности конусанесколько разных отпечатков без смыва после каждого измерения, что сокращает время при измерениях. Формула изобретения...

И рег 2ламентируется технологической картой в зависимости от типа концентрата, заданной основности и типа флюсующих добавок, При существующих способах контроля невозможно получать объективную информацию о состоянии поверхности слоя в зоне обжига, что затрудняет ведение процесса в оптимальном режиме.Предлагаемый способ контроля состояния поверхности слоя окатышей в зоне обжига основан на одновременном измерении и сравнении температуры газов под слоем и радиационной температуры слоя, что повышает производительность установки и обеспечивает получение окатышей высокого качества.Истинная температура материала определяется по формуле457020 Тн=Т,+ЛТ,Составитель С. Беловодченко Техред Г. Дворина Корректор Т. Добровольская Редактор Л. Тюрина...

От по" верхности объекта 3 до нижних точек выступов 8 в ряду, примыкающем к боковой грани 9, а цифры на шкале 10 - расстояние от поверхности объек та до нижних точек выступов 8 в ряду, ближнем к боковой грани 7.Глубина 1 пазов 5 и 6 и минимальная ширина Ь крайнего поперечного паза 12, одна из сторон которого 45 проходит через ребро 13 двух смежных граней 7 и 9, выбираются иэ условия, чтобы исключалась возможность смачивания иэ-за поверхностного натяжения жидкости выступов 8,50 не касающихся ее при измерении.Интервал (шаг) между цифрами на шкалах 1 О и 11 определяется по геометрическим зависимостям где К, - интервал (шаг) между цифрами на продольной шкапе;К - интервал (шаг) между цифрами на поперечной шкале;а - расстояние между...

Полирование

Для улучшения качества обработки поверхности полупроводниковых пластин и уменьшения глубины механически нарушенного слоя проводят процесс полировки. Процесс полирования отличается от процесса шлифования технологическим режимом, размером зерна и видом абразива, а также материалом полировальника. Обработка происходит с использованием свободного абразива. Процесс полирования проводят на мягких полировальниках, которые представляют собой жесткие диски, обтянутые мягким материалом. В качестве абразива используют микропорошки синтетического алмаза, оксида алюминия, оксида хрома, диоксида кремния. Полировочный материал должен удерживать частицы абразивного материала в процессе обработки пластин. Процесс полирования пластин может происходить в несколько этапов. Для начала применяют микропорошки с более крупной зернистостью. На последующих этапах, после проведения операции очищения от следов предыдущей обработки, меняют материал полировальника и используют более мелкие микропорошки. Нагрузка на полупроводниковые пластины несколько увеличивается. Водная суспензия в течение всего процесса полирования тщательно перемешивается. Последний этап полирования имеет большое значение. Он дает возможность удалить фон частиц с поверхности пластин, возникающий на первых этапах полировки и значительно уменьшить глубину механически нарушенного слоя. Так же могут применяться химико-механические способы полирования, которые отличаются высокой химической активностью по отношению к обрабатываемому полупроводниковому материалу, .

Полирование пластины проводим в несколько этапов, с рабочей стороны:

· Предварительное полирование алмазной пастой АСМ-3 на мягкой ткани до глубины нарушенного слоя 6-9 мкм.

· Повторное полирование алмазной пастой АСМ-1 на мягкой ткани до глубины нарушенного слоя 4-6 мкм.

· Окончательное полирование алмазной пастой АСМ-0,5 на мягкой ткани до глубины нарушенного слоя 3-1 мкм., .

Химико-механическое полирование

Удаление с поверхности подложки остаточного механически нарушенного слоя необходимо для получения атомарно совершенной структуры поверхностного слоя, поэтому следующим технологическим процессом является химическая обработка пластин. Все виды загрязнений можно классифицировать по двум признакам: их физико-химическим свойствам (органические, неорганические, солевые, ионные, механические и др.) и характеру их взаимодействия (физически и химически адсорбированные) с полупроводниковыми материалами, на которых они находятся.

К физически адсорбированным загрязнениям относятся все виды механических частиц (пыль, волокна, абразив, металлические включения), а также все виды органических материалов, связанные с поверхностью подложки силами физической адсорбции. Удаление органических загрязнений требует более сложного процесса отмывки, так как при нагревании они разлагаются и выделяют газообразные вещества, ухудшающие последующие технологические процессы.

К химически адсорбированным загрязнениям относятся различные виды оксидных и сульфидных пленок на поверхности пластин, катионы и анионы химических веществ. Таким образом, для полной очистки подложки от загрязнений используют ряд последовательных операций, каждая из которых удаляет несколько видов загрязнений. Травление является обязательной технологической операцией, .

При травлении кремния роль окислителя выполняет азотная кислота.

Фтористоводородная (плавиковая) кислота, входящая в состав травителя, переводит окись кремния в тетрафторид кремния. Для травления, дающего зеркальную поверхность пластин, используют смесь указанных кислот в соотношении 3:1, температура травления 30...40°С, время травления около 15 с.

Химико-механическое полирование проводим в два этапа:

· Первичное полирование суспензией аэросила, SiO 2 (зерно 0,04 - 0,3 мкм), до глубины нарушенного слоя 2-1 мкм.

· Окончательное полирование суспензией цеолита, до глубины нарушенного слоя 1-0,5 мкм., .