Решу егэ стереометрия. Конус и пирамида

Это целых три задачи. Для начала надо выучить формулы. Все они есть в наших таблицах :

  • Куб, параллелепипед, призма, пирамида. Объем и площадь поверхности

Часто в задачах ЕГЭ, посвященных стереометрии, требуется посчитать объем тела или площадь его поверхности. Или как-то использовать эти данные. Поэтому заглянем в толковый словарь русского языка и уточним понятия.

Объем - величина чего-нибудь в длину, ширину и высоту, измеряемая в кубических единицах.
Другими словами, чем больше объем, тем больше места тело занимает в трехмерном пространстве.

Площадь - величина чего-нибудь в длину и ширину, измеряемая в квадратных единицах.
Представьте себе, что вам нужно оклеить всю поверхность объемного тела. Сколько квадратных сантиметров (или метров) вы бы обклеили? Это и есть его площадь поверхности.

Объемные тела - это многогранники (куб, параллелепипед, призма, пирамида) и тела вращения (цилиндр, конус, шар).
Если в задаче по стереометрии речь идет о многограннике, вам встретятся термины «вершины» «грани» и «ребра». Вот они, на картинке.

Чтобы найти площадь поверхности многогранника, сложите площади всех его граней.

Вам могут также встретиться понятия «прямая призма, правильная призма, правильная пирамида».

Прямой называется призма, боковые ребра которой перпендикулярны основанию.
Если призма - прямая и в ее основании лежит правильный многоугольник, призма будет называться правильной .
А правильная пирамида - такая, в основании которой лежит правильный многоугольник, а вершина проецируется в центр основания.

Перейдем к практике.

Одна из распространенных задач в части 1 - такая, где надо посчитать объем или площадь поверхности многогранника, из которого какая-нибудь часть вырезана . Например, такого:

Что тут нарисовано? Очевидно, это большой параллелепипед, из которого вырезан «кирпичик», так что получилась «полочка». Если вы увидели на рисунке что-то другое - обратите внимание на сплошные и штриховые линии. Сплошные линии - видимы. Штриховыми линиями показываются те ребра, которые мы не видим, потому что они находятся сзади.

Объем найти просто. Из объема большого «кирпича» вычитаем объем маленького. Получаем:

А как быть с площадью поверхности? Почему-то многие школьники пытаются посчитать ее по аналогии с объемом, как разность площадей большого и малого «кирпичей». В ответ на такое «решение» я обычно предлагаю детскую задачу - если у четырехугольного стола отпилить один угол, сколько углов у него останется? :-)

На самом деле нам нужно посчитать сумму площадей всех граней - верхней, нижней, передней, задней, правой, левой, а также сумму площадей трех маленьких прямоугольников, которые образуют «полочку». Можно сделать это «в лоб», напрямую. Но есть и способ попроще.

Прежде всего, если бы из большого параллелепипеда ничего не вырезали, его площадь поверхности была бы равна . А как повлияет на него вырезанная «полочка»?
Давайте посчитаем сначала площадь всех горизонтальных участков, то есть «дна», «крыши» и нижней поверхности «полочки». С дном - все понятно, оно прямоугольное, его площадь равна .


А вот сумма площадей «крыши» и горизонтальной грани «полочки» тоже равна ! Посмотрите на них сверху.
…В этот момент и наступает понимание. Кому-то проще нарисовать вид сверху. Кому-то - представить, что мы передвигаем дно и стенки полочки и получаем целый большой параллелепипед, площадь поверхности которого равна . Каким бы способом вы ни решали, результат один - площадь поверхности будет такой же, как и у целого параллелепипеда, из которого ничего не вырезали.

Ответ: .

Следующую задачу, попроще, вы теперь решите без труда. Здесь тоже надо найти площадь поверхности многогранника :

. Из площади поверхности «целого кирпича» вычитаем площади двух квадратиков со стороной - на верхней и нижней гранях.

А здесь нарисована прямоугольная плитка с «окошком». Задание то же самое - надо найти площадь поверхности .

Сначала посчитайте сумму площадей всех граней. Представьте, что вы дизайнер, а эта штучка - украшение. И вам надо оклеить эту штуку чем-то ценным, например, бриллиантами Сваровски. И вы их покупаете на свои деньги. (Я не знаю почему, но эта фраза мгновенно повышает вероятность правильного ответа!) Оклеивайте все грани плитки. Но только из площадей передней и задней граней вычтите площадь «окошка». А затем - само «окошко». Оклеивайте всю его «раму».
Правильный ответ: .

Следующий тип задач - когда одно объемное тело вписано в другое.


Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны . Найдите объем параллелепипеда.

Прежде всего, заметим, что высота цилиндра равна высоте параллелепипеда. Нарисуйте вид сверху, то есть круг, вписанный в прямоугольник. Тут сразу и увидите, что этот прямоугольник - на самом деле квадрат, а сторона его в два раза больше, чем радиус вписанной в него окружности. Итак, площадь основания параллелепипеда равна , высота равна , объем равен .

. В основании прямой призмы лежит прямоугольный треугольник с катетами и . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы. В ответ запишите .

Очевидно, высота цилиндра равна боковому ребру призмы, то есть . Осталось найти радиус его основания.
Рисуем вид сверху. Прямоугольный треугольник вписан в окружность. Где будет находиться радиус этой окружности? Правильно, посередине гипотенузы. Гипотенузу находим по теореме Пифагора, она равна . Тогда радиус основания цилиндра равен пяти. Находим объем цилиндра по формуле и записываем ответ: .


. В прямоугольный параллелепипед вписан шар радиуса . Найдите объем параллелепипеда.

Эта задача тоже проста. Нарисуйте вид сверху. Или сбоку. Или спереди. В любом случае вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом. Можно даже ничего не рисовать, а просто представить себе шарик, который положили в коробочку так, что он касается всех стенок, дна и крышки. Ясно, что такая коробочка будет кубической формы. Длина, ширина и высота этого куба в два раза больше, чем радиус шара.

Ответ: .

Следующий тип задач - такие, в которых увеличили или уменьшили какой-либо линейный размер (или размеры) объемного тела. А узнать нужно, как изменится объем или площадь поверхности.

. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в раза больше, чем у первого? Ответ выразите в сантиметрах.

Слова «другой такой же сосуд» означают, что другой сосуд тоже имеет форму правильной треугольной призмы. То есть в его основании - правильный треугольник, у которого все стороны в два раза больше, чем у первого. Мы уже говорили о том, что площадь этого треугольника будет больше в раза. Объем воды остался неизменным. Следовательно, в раза уменьшится высота.
Ответ: .

. Одна цилиндрическая кружка вдвое выше второй, зато вторая в два раза шире. Найдите отношение объема второй кружки к объему первой.

Давайте вспомним, как мы решали стандартные задачи , на движение и работу. Мы рисовали таблицу, верно? И здесь тоже нарисуем таблицу. Мы помним, что объем цилиндра равен .

Высота Радиус Объем
Первая кружка
Вторая кружка

Считаем объем второй кружки. Он равен . Получается, что он в два раза больше, чем объем первой.

Главная

Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор

Как показывают результаты профильного экзамена по математике, задачи по геометрии - в числе самых сложных для выпускников. Тем не менее, решить их, хотя бы частично, а значит заработать дополнительные баллы к общему результату возможно. Для этого необходимо, конечно, знать достаточно много о «поведении» геометрических фигур и уметь применять эти знания для решения задач. Здесь мы постараемся дать некоторые рекомендации, как подготовиться к решению задачи по стереометрии.

Что нужно знать о задаче по стереометрии № 14 варианта КИМ ЕГЭ

Эта задача обычно состоит из двух частей:

  • доказательной , в которой вас попросят доказать некоторое утверждение для заданной конфигурации геометрических тел;
  • вычислительной , в которой нужно найти некоторую величину, опираясь на то утверждение, которое вы доказали в первой части задачи.

    За решение данной задачи на экзамене по математике в 2018 году можно получить максимум два первичных балла . Допускается решить только «доказательную» или только «вычислительную» часть задачи и заработать в этом случае один первичный балл.

    Многие школьники на экзамене даже не приступают к решению задачи №14, хотя она значительно проще, например, задачи № 16 - по планиметрии.

    В задачу № 14 традиционно включается лишь несколько вопросов из всех возможных для стереометрических задач:

  • нахождение расстояний в пространстве;
  • нахождение углов в пространстве;
  • построение сечения многогранников плоскостью;
  • нахождение площади этого сечения или объемов многогранников, на которые эта плоскость поделила исходный многогранник.
    В соответствии с этими вопросами строится и подготовка к решению задачи .

    Сначала, разумеется, нужно выучить все необходимые аксиомы и теоремы , которые понадобятся для доказательной части задачи. Помимо того, что знание аксиом и теорем поможет вам на экзамене непосредственно при решении задачи, их повторение позволит систематизировать и обобщить ваши знания по стереометрии вообще, то есть создать из этих знаний некую целостную картину.

    Итак, что же нужно выучить?

  • Способы задания плоскости в пространстве , взаимное расположение прямых и плоскостей в пространстве.
  • параллельных прямых и плоскостей в пространстве.
  • Определения, признаки и свойства перпендикулярных прямых и плоскостей в пространстве.

    После того как вы повторили теорию, можно приступать к рассмотрению методов решения задач. В курсе «1C:Репетитор» представлены : видеолекции с теорией, тренажеры с пошаговым решением задач, тесты для самопроверки, интерактивные модели, позволяющие ученикам 10-х и 11-х классов наглядно рассмотреть методы решения задач по стереометрии, в том числе на примерах задач ЕГЭ 2017 года.

    Мы рекомендуем решать задачи в такой последовательности:
    1. Углы в пространстве (между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями);
    2. Расстояния в пространстве (между двумя точками, между точкой и прямой, между точкой и плоскостью, между скрещивающимися прямыми);
    3. Решение многогранников, то есть нахождение углов между ребрами и гранями, расстояний между ребрами, площадей поверхностей, объемов по заданным в условии задачи элементам;
    4. Сечения многогранников - методы построения сечений (например, метод следов) и нахождения площадей сечений и объемов получившихся после построения сечения многогранников (например, использование свойств перпендикулярной проекции и метод объемов).
    Для всех указанных типов задач существуют различные методы решения:
  • классический (основанный на определениях и признаках);
  • метод проекций;
  • метод замены точки;
  • метод объемов.
  • Эти методы нужно знать и уметь применять, так как есть задачи, которые довольно сложно решаются одним методом и гораздо проще - другим.

    При решении стереометрических задач более эффективным по сравнению с классическим методом нередко оказывается векторно-координатный. Классический метод решения задач требует отличного знания аксиом и теорем стереометрии, умения применять их на практике, строить чертежи пространственных тел и сводить стереометрическую задачу к цепочке планиметрических . Классический метод, как правило, быстрее приводит к искомому результату, чем векторно-координатный, но требует определенной гибкости мышления. Векторно-координатный метод представляет собой набор готовых формул и алгоритмов, но при этом требует более длительных расчетов; тем не менее, для некоторых задач, например, для нахождения углов в пространстве , он предпочтительнее классического.

    Многим абитуриентам не позволяет справиться со стереометрической задачей неразвитое пространственное воображение . В этом случае мы рекомендуем использовать для самоподготовки интерактивные тренажеры с динамическими моделями пространственных тел. на портале «1С:Репетитор» (для перехода к их использованию необходимо зарегистрироваться): работая с ними, вы не только сможете «выстроить» решение задачи «по шагам», но и на объемной модели увидеть все этапы построения чертежа в различных ракурсах.

    С помощью таких же динамических чертежей мы рекомендуем учиться строить сечения многогранников. Кроме того, что модель автоматически проверит правильность вашего построения, вы сами сможете, рассматривая сечение с разных сторон, убедиться, верно или неверно оно построено, и если неправильно, то в чем именно ошибка. Построение сечения на бумаге, с помощью карандаша и линейки, конечно, таких возможностей не дает. Посмотрите пример построения сечения пирамиды плоскостью с использованием такой модели (Нажмите на картинку, что бы перейти к тренажеру):

    Последний вопрос, на который надо обратить внимание, - это нахождение площадей сечений или объемов , получившихся после построения сечения многогранников. Здесь также существуют подходы и теоремы, которые позволяют в общем случае существенно сократить трудозатраты на поиск решения и получение ответа. В курсе «1С:Репетитор» мы знакомим вас с этими приемами.

    Если вы следовали нашим советам, разобрались со всеми вопросами, которые здесь затронуты, и решили достаточное количество задач, то велика вероятность, что вы практически готовы к решению задачи по стереометрии на профильном ЕГЭ по математике в 2018 году. Дальше необходимо только поддерживать себя «в форме» до самого экзамена, то есть решать, решать и решать задачи, совершенствуя свое умение применять изученные приемы и методы в разных ситуациях. Удачи!

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно .
    Вы можете:

    • заниматься самостоятельно и бесплатно , используя учебные материалы, включающие комплекс видеоуроков, пошаговых тренажеров и онлайн-тестов по каждой теме ЕГЭ;
    • воспользоваться более эффективным (с учетом особенностей восприятия учащихся) средством: пройти, , на которых будут детально разбираться теория и способы решения задач ЕГЭ по математике.

    В 2017 году мы провели серию вебинаров, посвященный рациональным уравнениям и неравенствам. Записи вебинаров будут доступны пользователям, оформившим подписку на весь курс 9900₽ 7900₽ . Для пробы можете купить доступ на один месяц за 990 ₽

    Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
    Как решать задание 14 на экзамене ЕГЭ, задачи по геометрии, решение задач, по стереометрии, методы решения задач, тренажеры, видео, КИМ ЕГЭ 2017, подготовка к ЕГЭ, профиль математика, математика профильного уровня, решение задачи по наклонной треугольной призме, грани, взаимно перпендикулярно, общее ребро, плоскости, точки, ребро равно, боковая поверхность, решение задач на сечение многогранника, перпендикулярное сечение, вычислить объем фигуры, в основании прямой треугольной призмы лежит, признаки равенства и подобия треугольников, примеры решения задач ЕГЭ по геометрии, вычисление сечения, задачи по математике профильного уровня, применение методов сечения, решение задач на площадь, задачи ЕГЭ 2017 по стереометрии, подготовка к ЕГЭ, выпускникам 11 класса, в 2018 году, поступающим в технический вуз.


    \({\color{red}{\textbf{Факт 1. Про параллельность прямых}}}\)
    \(\bullet\) Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
    \(\bullet\) Через две параллельные прямые проходит плоскость, и притом только одна.
    \(\bullet\) Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
    \(\bullet\) Если прямая \(a\) параллельна прямой \(b\) , а та в свою очередь параллельна прямой \(c\) , то \(a\parallel c\) .
    \(\bullet\) Пусть плоскость \(\alpha\) и \(\beta\) пересекаются по прямой \(a\) , плоскости \(\beta\) и \(\pi\) пересекаются по прямой \(b\) , плоскости \(\pi\) и \(\alpha\) пересекаются по прямой \(p\) . Тогда если \(a\parallel b\) , то \(p\parallel a\) (или \(p\parallel b\) ):

    \({\color{red}{\textbf{Факт 2. Про параллельность прямой и плоскости}}}\)
    \(\bullet\) Существует три вида взаимного расположения прямой и плоскости:
    1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости);
    2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость);
    3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
    \(\bullet\) Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.

    \(\bullet\) Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) - прямая \(m\) - параллельна прямой \(p\) .


    \({\color{red}{\textbf{Факт 3. Про параллельность плоскостей}}}\)
    \(\bullet\) Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
    \(\bullet\) Если две пересекающиеся прямые из одной плоскости соответственно параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

    \(\bullet\) Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны: \[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

    \(\bullet\) Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны: \[\alpha\parallel \beta, \ a\parallel b \Longrightarrow A_1B_1=A_2B_2\]


    \({\color{red}{\textbf{Факт 4. Про скрещивающиеся прямые}}}\)
    \(\bullet\) Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.
    \(\bullet\) Признак:
    Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.

    \(\bullet\) алгоритм нахождения угла между скрещивающимися прямыми \(a\) и \(b\) :

    Шаг 2. В плоскости \(\pi\) найти угол между прямыми \(a\) и \(p\) (\(p\parallel b\) ). Угол между ними будет равен углу между скрещивающимися прямыми \(a\) и \(b\) .


    \({\color{red}{\textbf{Факт 5. Про перпендикулярность прямой и плоскости}}}\)
    \(\bullet\) Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
    \(\bullet\) Если две прямые перпендикулярны плоскости, то они параллельны.
    \(\bullet\) Признак: если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.


    \({\color{red}{\textbf{Факт 6. Про расстояния}}}\)
    \(\bullet\) Для того, чтобы найти расстояние между параллельными прямыми, нужно из любой точки одной прямой опустить перпендикуляр на другую прямую. Длина перпендикуляра и есть расстояние между этими прямыми.
    \(\bullet\) Для того, чтобы найти расстояние между плоскостью и параллельной ей прямой, нужно из любой точки прямой опустить перпендикуляр на эту плоскость. Длина перпендикуляра и есть расстояние между этими прямой и плоскостью.
    \(\bullet\) Для того, чтобы найти расстояние между параллельными плоскостями, нужно из любой точки одной плоскости опустить перпендикуляр к другой плоскости. Длина этого перпендикуляра и есть расстояние между параллельными плоскостями.
    \(\bullet\) алгоритм нахождения расстояния между скрещивающимися прямыми \(a\) и \(b\) :
    Шаг 1. Через одну из двух скрещивающихся прямых \(a\) провести плоскость \(\pi\) параллельно другой прямой \(b\) . Как это сделать: проведем плоскость \(\beta\) через прямую \(b\) так, чтобы она пересекала прямую \(a\) в точке \(P\) ; через точку \(P\) проведем прямую \(p\parallel b\) ; тогда плоскость, проходящая через \(a\) и \(p\) , и есть плоскость \(\pi\) .
    Шаг 2. Найдите расстояние от любой точки прямой \(b\) до плоскости \(\pi\) . Это расстояние и есть расстояние между скрещивающимися прямыми \(a\) и \(b\) .

    \({\color{red}{\textbf{Факт 7. Про теорему о трех перпендикулярах (ТТП)}}}\)
    \(\bullet\) Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции: \[\begin{aligned} &1. AH\perp \beta, \ AB\perp x\quad \Rightarrow\quad BH\perp x\\ &2. AH\perp \beta, \ BH\perp x\quad\Rightarrow\quad AB\perp x\end{aligned}\]

    Заметим, что прямая \(x\) необязательно должна проходить через точку \(B\) . Если она не проходит через точку \(B\) , то строится прямая \(x"\) , проходящая через точку \(B\) и параллельная \(x\) . Если, например, \(x"\perp BH\) , то и \(x\perp BH\) .

    \({\color{red}{\textbf{Факт 8. Про угол между прямой и плоскостью, а также угол между плоскостями}}}\)
    \(\bullet\) Угол между наклонной прямой и плоскостью - это угол между этой прямой и ее проекцией на данную плоскость. Таким образом, данный угол принимает значения из промежутка \((0^\circ;90^\circ)\) .
    Если прямая лежит в плоскости, то угол между ними считается равным \(0^\circ\) . Если прямая перпендикулярна плоскости, то, исходя из определения, угол между ними равен \(90^\circ\) .
    \(\bullet\) Чтобы найти угол между наклонной прямой и плоскостью, необходимо отметить некоторую точку \(A\) на этой прямой и провести перпендикуляр \(AH\) к плоскости. Если \(B\) – точка пересечения прямой с плоскостью, то \(\angle ABH\) и есть искомый угол.

    \(\bullet\) Для того, чтобы найти угол между плоскостями \(\alpha\) и \(\beta\) , можно действовать по следующему алгоритму:
    Отметить произвольную точку \(A\) в плоскости \(\alpha\) .
    Провести \(AH\perp h\) , где \(h\) - линия пересечения плоскостей.
    Провести \(AB\) перпендикулярно плоскости \(\beta\) .
    Тогда \(AB\) – перпендикуляр к плоскости \(\beta\) , \(AH\) – наклонная, следовательно, \(HB\) – проекция. Тогда по ТТП \(HB\perp h\) .
    Следовательно, \(\angle AHB\) - линейный угол двугранного угла между плоскостями. Градусная мера этого угла и есть градусная мера угла между плоскостями.

    Заметим, что мы получили прямоугольный треугольник \(\triangle AHB\) (\(\angle B=90^\circ\) ). Как правило, находить \(\angle AHB\) удобно из него.

    \({\color{red}{\textbf{Факт 9. Про перпендикулярность плоскостей}}}\)
    \(\bullet\) Признак: если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости. \

    \(\bullet\) Заметим, что так как через прямую \(a\) можно провести бесконечное множество плоскостей, то существует бесконечное множество плоскостей, перпендикулярных \(\beta\) (и проходящих через \(a\) ).

    Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

    Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

    1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
    2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

    Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

    Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

    Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

    Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

    Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

    Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.