Решение системы из 4 уравнений. Примеры систем линейных уравнений: метод решения

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

А 21 х 1 + а 22 х 2 +...+ а 2п х п = b 2 ,

........................................

а s 1 х 1 + а s 2 х 2 +...+ а s п х п = b s .

Будем производить над ней элементарные преобразования. Для этого выпишем матрицу из коэффициентов при неизвестных системы (1) с добавлением столбца свободных членов, другими словами расширенную матрицу Ā для системы (1):

Предположим, что с помощью таких преобразований удалось привести матрицу Ā к виду:

b 22 x 2 +...+b 2 r x r +...+b 2 n x n =c 2 ,

......................................

b rr x r +...+b rn x n =c r ,

которая получается из системы (1) с помощью некоторого числа элементарных преобразований и, следовательно, равносильна системе (1). Если в системе (4) r=n , то из последнего уравнения, имеющего вид b nn x n =c n (где b nn ≠ 0), находим единственное значение x n , из предпоследнего уравнения – значение x n-1 (поскольку x n уже известно) и т.д., наконец, из первого уравнения – значение x 1 . Итак, в случае) r=n система имеет единственное решение. Если же r, то система (4) легко приводится к системе вида:

Х 1 =a 1 , r +1 х r +1 +...+a 1n х n +b 1 ,

r
(5),
х 2 =a 2 , r +1 х r +1 +...+a 2n х n +b 2 ,

............................................

х r =a r , r +1 х r +1 +...+a r n х n +b r .

которая и является по существу общим решением системы (1).

Неизвестные х r+1, ..., х n называются свободными. Из системы (5) можно будет найти значения х1,..., х r.

Приведение матрицы Ā к виду (3) возможно только в том случае, когда исходная система уравнений (1) совместна. Если же система (1) несовместна, то такое приведение невозможно. Это обстоятельство выражается в том, что в процессе преобразований матрицы Ā в ней появляется строка, в которой все элементы равны нулю, кроме последнего. Такая строка соответствует уравнению вида:

0*х 1 +0*х 2 +...+0*х n =b ,

которому не удовлетворяют никакие значения неизвестных, так как b ≠0. В этом случае система несовместна.

В процессе приведения системы (1) к ступенчатому виду могут получаться уравнения вида 0=0. Их можно отбрасывать, так как это приводит к системе уравнений, эквивалентных прежней.

При решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя все преобразования над её строками. Последовательно получающиеся в ходе преобразований матрицы обычно соединяют знаком эквивалентности.

Решим следующую систему уравнений с 4-мя неизвестными:

2х 1 +5х 2 +4х 3 +х 4 =20,

х 1 +3х 2 +2х 3 +х 4 =11,

2х 1 +10х 2 +9х 3 +7х 4 =40,

3х 1 +8х 2 +9х 3 +2х 4 =37.

Выпишем расширенную матрицу из коэффициентов при неизвестных с добавлением столбца свободных членов.

Произведём анализ строк расширенной матрицы:

К элементам 2-ой строки прибавим элементы 1-ой, делённые на (-2);

Из 3-ей строки вычтем 1-ю строку;

К 4-ой строке прибавим 1-ю, умноженную на (-3/2).

В качестве вычислительного средства воспользуемся инструментами программы Excel– 97 .

1. Включите компьютер.

2. Подождите пока загрузится операционная система Windows , после чего откройте окно MicrosoftExcel .

3. Заполните ячейки таблицы значениями расширенной матрицы (рис. 11.1)

Рис. 11.1 Рис. 11.2

4. Для выполнения выбранного словесного алгоритма производим следующие действия.

· Активизируйте ячейку А5 и с клавиатуры занесите в неё формулу вида =А2+А1/(-2), после чего автозаполнением занесите численные результаты в ячейки В5¸Е5;

· В ячейке А6 разместим результат вычитания 1-ой строки из 3-ей, и снова, пользуясь автозаполнением , заполним ячейки В6¸Е6;

· в ячейке А7 запишем формулу вида =А4+А1*(-3/2) и автозаполнением занесём численные результаты в ячейки В7¸Е7.

5. Снова произведём анализ строк получившихся в результате элементарных преобразований матрицы, чтобы привести её к треугольному виду.

·К 6-ой строке прибавим 5-ю, умноженную на число (-10);

·из 7-ой строки вычтем 5-ю.

Записанный алгоритм реализуем в ячейках А8, А9, после чего скроем 6 и 7 – строки (см. рис. 11.3).

Рис. 11.3 Рис. 11.4

6. И последнее, что нужно сделать, чтобы привести матрицу к треугольному виду – это к 9-ой строке прибавить 8-ю, умноженную на (-3/5), после чего скрыть 9-ю строку (рис. 11.4).

Как вы можете видеть, элементы получившейся матрицы находятся в 1, 5, 8 и 10 строках, при этом ранг получившейся матрицы r = 4, следовательно, данная система уравнений имеет единственное решение. Выпишем получившуюся систему:

2х 1 +5х 2 +4х 3 + х 4 =20,

0,5х 2 + 0,5х 4 =1,

5х 3 +х 4 =10,

Из последнего уравнения легко находим х 4 =0; из 3-го уравнения находим х 3 =2; из 2-го – х 2 =2 и из 1-го – х 1 =1 соответственно.

Задания для самостоятельной работы.

Методом Гаусса решите системы уравнений:



Лабораторная работа № 15. Нахождение корней уравнения f(x)=0

Методы решения линейных и квадратных уравнений были известны еще древним грекам. Решение уравнений третьей и четвертой степеней были получены усилиями итальянских математиков Ш. Ферро, Н. Тартальи, Дж. Картано, Л. Феррари в эпоху Возрождения. Затем наступила пора поиска формул для нахождения корней уравнений пятой и более высоких степеней. Настойчивые, но безрезультатные попытки продолжались около 300 лет и завершились в 20-х годах ХХ1Х века благодаря работам норвежского математика Н. Абеля. Он доказал, что общее уравне6ие пятой и более высоких степеней неразрешимы в радикалах. Решение общего уравнения n-ой степени

a 0 x n +a 1 x n -1 +…+a n -1 x+a n =0, a 0 ¹0 (1)

при n³5 нельзя выразить через коэффициенты с помощью действий сложения, вычитания, умножения, деления, возведения в степень и извлечения корня.

Для неалгебраических уравнений типа

х–cos(x)=0 (2)

задача еще более усложняется. В этом случае найти для корней явные выражения, за редким случаем не удается.

В условиях, когда формулы «не работают», когда рассчитывать на них можно только в самых простейших случаях, особое значение приобретают универсальные вычислительные алгоритмы. Известен целый ряд алгоритмов, позволяющих решить рассматриваемую задачу.

Случай, когда число уравнений m больше числа переменныхn , путем последовательного исключения неизвестных из уравнений приводится к случаюm = n илиm n . Первый случай рассмотрен ранее.

Во втором случае, когда число уравнений меньше числа неизвестных m n и уравнения независимы, выделяютсяm основных переменных и (n - m )неосновных переменных . Основными являются переменные удовлетворяющие условию: определитель, составленный из коэффициентов при этих переменных, не равен нулю. Основными могут быть различные группы переменных. Общее количество таких групп N равно числу сочетаний изn элементов поm :

Если система имеет хотя бы одну группу основных переменных, то эта система является неопределенной , то есть имеет множество решений.

Если система не имеет ни одной группы основных переменных, то система является несовместной , то есть не имеет ни одного решения.

В том случае, когда система имеет множество решений, среди них выделяют базисное решение.

Базисным решением называют такое решение, в котором неосновные переменные равны нулю. У системы имеется не более чембазисных решений.

Решения системы делятся на допустимые инедопустимые .

Допустимыми называют такие решения, у которых значения всех переменных неотрицательны.

Если хотя бы одно значение переменной отрицательно, то решение называют недопустимым .

Пример 4.5

Найти базисные решения системы уравнений

Найдем число базисных решений

.

Итак, среди множества решений системы есть не более трех базисных. Выделим две основные переменные среди трех. Предположим, что это х 1 их 2 . Проверим определитель из коэффициентов при них

.

Так как этот определитель не равен нулю, то переменные х 1 ,х 2 являются основными.

Теперь положим, что х 3 =0. Тогда получим систему в виде

Решим ее по формулам Крамера:

,
.

Итак, первое базисное решение имеет вид

х 1 =1,х 2 =0,х 3 =0 .

Проверим теперь на принадлежность к основным переменные х 1 их 3 .

.

Получим, что х 1 их 3 - вторая группа основных переменных. Положимх 2 =0 и решим систему

,
.

Второе базисное решение имеет вид

х 1 =1,х 2 =0,х 3 =0.

Теперь проверим на принадлежность к основным переменные х 2 их 3 .

то есть переменные х 2 их 3 неосновные. Итак, всего у данной системы оказалось два базисных решения. Оба эти решения допустимые.

Условие совместности системы mлинейных уравненийcnпеременными дается с помощью понятия ранг матрицы.

Ранг матрицы – это число равное наибольшему порядку минора отличного от нуля.

Для матрицы А

минором k -ого порядка служит определитель, составленный из элементов любыхk строк иk столбцов.

Например,

Пример 2

Найти ранг матрицы

Вычислим определитель матрицы

Для этого первую строку умножим на (-4) и сложим со второй строкой, затем первую строку умножим на (-7) и сложим с третей строкой, в результате получим определитель

Т.к. строки полученного определителя пропорциональны, то
.

Отсюда видно, что минор 3-его порядка равен 0, а минор 2-ого порядка не равен 0.

Следовательно ранг матрицы r=2.

Расширенная матрица системы имеет вид

Теорема Кронекера - Капелли

Для того, чтобы линейная система была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу основной матрицы
.

Если
, то система несовместна.

Для совместной системы линейных уравнений возможны три случая:

1)Если
, то система ЛУ имеет (m-r) линейно зависимых уравнений, их можно исключить из системы;

2) Если
, то система ЛУ имеет единственное решение;

3) Если
, то система ЛУ имеет множество решений

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Уравнения с четырьмя неизвестными может иметь множество вариантов решения. В математике довольно часто приходится сталкиваться с уравнениями такого вида. Чтобы правильно решить такие уравнения необходимо пользоваться всеми особенностями уравнений с целью упрощения и сокращения его решения.

Разберем решение следующего примера:

Выполнив сложение первого и второго уравнения по частям, можно получить весьма простое уравнение:

\ или \

Выполним аналогичные действия со 2 и 3 уравнением:

\ или \

Решаем полученные уравнения \ и \

Получаем \ и \

Полученные числа подставляем в 1 и 3 уравнение:

\ или \

\ или \

Замена этих чисел по второму и четвертому уравнениям даст точно такие же уравнения.

Но это еще не все, поскольку осталось решить 2 равнения с 2 неизвестными. Решение данного типа уравнений вы можете посмотреть в статьях здесь.

Где можно решить уравнение с четырьмя неизвестными онлайн?

Решить уравнение с неизвестными онлайн вы можете на сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.