Решение рациональных и иррациональных неравенств. Некоторые рекомендации к решению иррациональных неравенств

В данном уроке мы рассмотрим решение иррациональных неравенств, приведем различные примеры.

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Иррациональные неравенства

При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.

Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.

Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.

Рассмотрим неравенство вида:

Подкоренное выражение должно быть неотрицательным. Функция может принимать любые значения, необходимо рассмотреть два случая.

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.

Итак, имеем следующую схему решения:

В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.

Пример 1 - решить неравенство:

Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:

Проиллюстрируем:

Рис. 1 - иллюстрация решения примера 1

Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:

В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.

Рассмотрим неравенство вида:

Аналогично предыдущему неравенству, рассматриваем два случая:

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.

Имеем эквивалентную систему:

Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.

Пример 2 - решить неравенства графически:

а)

б)

Первое неравенство мы уже решали и знаем ответ.

Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.

Рис. 2. Графики функций и

Для построения графика функции необходимо преобразовать параболу в параболу (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.

График функции - это прямая, ее легко построить. Точка пересечения с осью у - (0;-1).

Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .

Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.

Имеем ответ:

Эффективным методом решения иррациональных неравенств является метод интервалов.

Пример 3 - решить неравенства методом интервалов:

а)

б)

согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:

теперь необходимо изучить полученную функцию.

ОДЗ:

Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.

Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:

Рис. 3. Интервалы знакопостоянства к примеру 3

Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.

Проверим значение в граничной точке:

Очевиден ответ:

Рассмотрим следующий тип неравенств:

Сначала запишем ОДЗ:

Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:

Получили эквивалентную систему:

Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем::

Пример 4 - решить неравенство:

Действуем по схеме - получаем эквивалентную систему.

В данном уроке мы рассмотрим решение иррациональных неравенств, приведем различные примеры.

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Иррациональные неравенства

При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.

Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.

Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.

Рассмотрим неравенство вида:

Подкоренное выражение должно быть неотрицательным. Функция может принимать любые значения, необходимо рассмотреть два случая.

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.

Итак, имеем следующую схему решения:

В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.

Пример 1 - решить неравенство:

Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:

Проиллюстрируем:

Рис. 1 - иллюстрация решения примера 1

Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:

В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.

Рассмотрим неравенство вида:

Аналогично предыдущему неравенству, рассматриваем два случая:

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.

Имеем эквивалентную систему:

Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.

Пример 2 - решить неравенства графически:

а)

б)

Первое неравенство мы уже решали и знаем ответ.

Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.

Рис. 2. Графики функций и

Для построения графика функции необходимо преобразовать параболу в параболу (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.

График функции - это прямая, ее легко построить. Точка пересечения с осью у - (0;-1).

Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .

Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.

Имеем ответ:

Эффективным методом решения иррациональных неравенств является метод интервалов.

Пример 3 - решить неравенства методом интервалов:

а)

б)

согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:

теперь необходимо изучить полученную функцию.

ОДЗ:

Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.

Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:

Рис. 3. Интервалы знакопостоянства к примеру 3

Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.

Проверим значение в граничной точке:

Очевиден ответ:

Рассмотрим следующий тип неравенств:

Сначала запишем ОДЗ:

Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:

Получили эквивалентную систему:

Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем::

Пример 4 - решить неравенство:

Действуем по схеме - получаем эквивалентную систему.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Всякое неравенство, в состав которого входит функция, стоящая под корнем, называется иррациональным . Существует два типа таких неравенств:

В первом случае корень меньше функции g (x ), во втором - больше. Если g (x ) - константа , неравенство резко упрощается. Обратите внимание: внешне эти неравенства очень похожи, но схемы решения у них принципиально различаются.

Сегодня научимся решать иррациональные неравенства первого типа - они самые простые и понятные. Знак неравенства может быть строгим или нестрогим. Для них верно следующее утверждение:

Теорема. Всякое иррациональное неравенство вида

Равносильно системе неравенств:

Неслабо? Давайте рассмотрим, откуда берется такая система:

  1. f (x ) ≤ g 2 (x ) - тут все понятно. Это исходное неравенство, возведенное в квадрат;
  2. f (x ) ≥ 0 - это ОДЗ корня. Напомню: арифметический квадратный корень существует только из неотрицательного числа;
  3. g (x ) ≥ 0 - это область значений корня. Возводя неравенство в квадрат, мы сжигаем минусы. В результате могут возникнуть лишние корни. Неравенство g (x ) ≥ 0 отсекает их.

Многие ученики «зацикливаются» на первом неравенстве системы: f (x ) ≤ g 2 (x ) - и напрочь забывают два других. Результат предсказуем: неправильное решение, потерянные баллы.

Поскольку иррациональные неравенства - достаточно сложная тема, разберем сразу 4 примера. От элементарных до действительно сложных. Все задачи взяты из вступительных экзаменов МГУ им. М. В. Ломоносова.

Примеры решения задач

Задача. Решите неравенство:

Перед нами классическое иррациональное неравенство : f (x ) = 2x + 3; g (x ) = 2 - константа. Имеем:

Из трех неравенств к концу решения осталось только два. Потому что неравенство 2 ≥ 0 выполняется всегда. Пересечем оставшиеся неравенства:

Итак, x ∈ [−1,5; 0,5]. Все точки закрашены, поскольку неравенства нестрогие .

Задача. Решите неравенство:

Применяем теорему:

Решаем первое неравенство. Для этого раскроем квадрат разности. Имеем:

2x 2 − 18x + 16 < (x − 4) 2 ;
2x 2 − 18x + 16 < x 2 − 8x + 16:
x 2 − 10x < 0;
x (x − 10) < 0;
x ∈ (0; 10).

Теперь решим второе неравенство. Там тоже квадратный трехчлен :

2x 2 − 18x + 16 ≥ 0;
x 2 − 9x + 8 ≥ 0;
(x − 8)(x − 1) ≥ 0;
x ∈ (−∞; 1]∪∪∪∪}