Решение линейных уравнений с одной переменной. Уравнение с одной переменной

Лекция 26. Уравнения с одной переменной

1. Понятие уравнения с одной переменной

2. Равносильные уравнения. Теоремы о равносильности уравнений

3. Решение уравнений с одной переменной

Уравнения с одной переменной

Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х : если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Лекция 26. Уравнения с одной переменной

1. Понятие уравнения с одной переменной

2. Равносильные уравнения. Теоремы о равносильности уравнений

3. Решение уравнений с одной переменной

Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х : если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

§ 23. Линейное уравнение с одной переменной. Решение линейных уравнений с одной переменной и уравнений, сводящихся к ним

Мы зна емо, как решать уравнения 2х = -8; х - 5; 0,01 х -17.

Каждое из этих уравнений имеет вид ах = b , где х - переменная, а и b - некоторые числа.

Числа а и b называют коэффициентами уравнения.

Если а ≠ 0, то уравнение ах = b называют уравнением первой степени с одной переменной. Поделив обе части уравнения на а, получим х = , то есть являетсяединственным корнем этого уравнения является число

Если а - 0 и b - 0, то линейное уравнение имеет вид 0х - 0. Корнем такого уравнения является любое число, так как при любом значении х значение левой и правой частей уравнения равны и равны нулю. Поэтому уравнение 0х = 0 множество корней.

Если а - 0, а b ≠ 0, то линейное уравнение примет вид 0х - b . При этом не существует никакого значения переменной х, которое бы превращало левую и правую части уравнения на одно и то же число. Ведь значение левой части уравнения при любом значении х равен нулю, а значение правой части - числу b , отличном от нуля. Поэтому уравнение 0х = b при b ≠ 0 не имеет корней.

Систематизируем данные о решения линейного уравнения ах = b в виде схемы:

Пример 1. Решить уравнение:

Р а з в ’ я з а н н я.

1) 0,2 х = 7; х = 7: 0,2; х = 35.

Ответ: - 4.

3)0х = 7; уравнение не имеет корней.

Ответ: корней не имеет.

Процесс решения многих уравнений является сводом этих уравнений к лилейным путем равносильных преобразований по свойствам уравнений.

Пример 2. Решить уравнение:

1) 3(х + 1) - 2х = 6 - 4х;

Р а з в ’ я з а н н я.

1. Избавимся от знаменателей (если они есть):

1)3(х + 3) - 2х = 6 - 4х.

Умножим обе частили уравнения на 6 (6 - наименьший общий знаменатель дробей). Имеем:

3(х + 1) + 2(5 - х) = х + 13.

2. Раскроем скобки (если они есть):

3х + 9 - 2х = 6 - 4х;

3х + 3 + 10 - 2х = х + 13.

3. Перенесем слагаемые, содержащие переменную, в левую часть, а остальные - в правую, изменив знаки этих слагаемых на противоположные:

3х - 2х + 4х = 6 - 9;

3х - 2х - х = 13 - 3 - 10.

4. Сведем подобные слагаемые:

5. Решим полученное линейное уравнение:

Ответ: -0,6.

х - любое число.

Ответ: любое число.

Пример 3. Решить уравнение 5(х + г) = 3х - 7р в отношении х.

Р а з в ’ я з а н н я. Раскроем скобки в левой части уравнения: 5х + 5р - 3х - 7р. Перенесем слагаемое 3х в левую часть, а 5р - в правую. Имеем: 5х - 3х = -7р - 5р; 2х = -12р. Тогда х = (-12р) : 2; х = (-12: 2)г; х = -6р.

Ответ: -6р.

Какое уравнение называют линейным уравнением с одной переменной? Приведите примеры линейных уравнений. В каком случае уравнение ах - b имеет единственный корень? В любом случае корнем уравнения ах - b -любое число? В каком случае уравнение ах = b не имеет корней?

848. (Устно) Какое из уравнений является линейным:

5) х + 7 = х 2 ;

849. (Устно) Сколько корней имеет уравнение:

850. Выясните, какое из данных уравнений имеет только одно решение, не имеет решений, имеет бесконечное множество решений:

851. (Устно) Решите уравнение:

2) 0,5 х = -2,5;

3) -2,5 х = 7,5;

852. Решите уравнение:

6) -0,01 х = 0,17;

8)-1,2 х = -4,2;

853. Найдите корень уравнения:

6) 0,1 х = 0,18.

854. Определите, что должно быть записано справа в уравнении вместо пробелов, если известно его корень:

855. Найдите корень уравнения:

1) 7х + 14 = 0;

2) 0, 3х - 21 = 0,5 х - 23;

3) 1х + 3 = 6х - 13;

4) 5х + (3х - 7) = 9;

5) 47 = 10 - (9х + 2);

6) (3х + 2) - (8х + 6) = 14.

856. Решите уравнение:

2) 1,4 х - 12 = 0,9 х + 4;

3) 3х + 14 = 5х - 16;

4) 12 - (5х + 10) = -3;

5) 6 - (8х + 11) = -1;

6) (3х - 4) - (6 - 4х) = 4.

857. Какое из уравнений равносильно уравнению 5х = 10:

3) х + 2 = х + 1;

5) х = 8 - 3х;

6)1х - 7 = 4х?

858. Являются ли уравнения равносильными:

1) 4х - х = 17 3х = 17;

2) 5х - 9 = 3х и 6х = 21;

3) 2х = -12 и х + 6 = 0;

4) 12х = 0 15х = 15?

859.

1) 3х + 7 равен -2;

2) 4(х + 1) равно значению выражения 5х - 9?

860. При каком значении у:

1) значение выражения 5у - 13 равна -3;

2) значения выражений 3(в - 2) и 13у - 8 равны между собой?

861. Решите уравнение:

2) 2х - у = 1;

862. Найдите корень уравнения:

863. Составьте линейное уравнение, корнем которого является:

1) число -2;

2) число -0,2.

864. Составьте линейное уравнение:

1) не имеет корней;

2) корнем которого является любое число.

865. Составьте линейное уравнение, корнем которого было бы:

1) число -8;

2) любое число.

866. Найдите корень уравнения:

1)(4х - 2) + (5х - 4) - 9 - (5 - 11х);

2) (7 - 8х) - (9 - 12х) - (5х + 4) = -16;

3) 3(4х - 5) - 10(2х - 1) = 33;

4) 9(3(х + 1) 2х) = 7(х + 1).

867. Решите уравнение:

1) (9х - 4) + (15х - 5) = 18 - (25 - 22х);

2) (10х + 6) - (9 - 9х) + (8 - 11х) = -19;

3) 7(х - 1) - 3(2х + 1) = -х - 15;

4) 5(4(х - 1) - 3х) = 9х.

868.

1) 2х + а = х + а;

2) b + х = с - х;

3) 6х + 2m = х - 8m ;

4) 9а + х = 3b - 2х.

Р а з в ’ я з а н н я.

4) 9a - х = 3b - 2х; х + 2х = 3b - 9а; 3х = 3(b - 3a). Поделим обе части уравнения на 3. Получим: х = b - 3а.

Ответ: b - 3а.

869. Решите уравнение относительно х:

1) 7х + m = 2х + m ;

2) а + х = 2m - х;

3) 3х + b = 9b - х;

4) 5р + 2х = 10 - 3х.

870. Являются ли равносильными уравнения:

1) 2х - 4 = 2 и 5(х - 3) + 1 = 3х - 8;

2) 5х + 3 = 8 и 7(х - 2) + 20 = 4х + 3;

3) 5х = 0 и 0 х = 5;

4) 7х + 1 = 7х 2 и 5(х + 1) = 5х + 5;

5) 0: х = 7 и 0 ∙ х = 7;

6) 3(х - 2) = 3х - 6 и 2(х + 7) - 2(х + 1) + 12?

871. При каком значении у значение выражения:

1) 5у + 7 в три раза больше значения выражения у + 5;

2) 2у - 4 на 7,4 больше значения выражения 3 - 7у?

872. При каком значении х значение выражения:

1) 7х + 8 вдвое больше значения выражения х + 7;

2) 5х - 8 па 17,2 меньше значения выражения х + 2 ?

873. Составьте уравнение, которое было бы равносильно уравнению 7(2х - 8) = 5(7х - 8) - 15х.

874. При каком значении а уравнение:

1) 2ах = 16 имеет корень, равный 4;

2) 3х имеет корень, равный ;

3) 5(а + 1)х = 40 имеет корень, равный -1 ?

875. При каком значении b корнем уравнения:

1) 3b х = -24 является число -4;

2) (2а - 5)х = 45 с число 3?

876. Решите уравнение:

1) 4х + 7 = 3(х - 2) + х:

2) 2х + 5 - 2(х - 4) + 13;

3) 2х(1 - 3х) + 5х(3 - х) = 17х - 8х 2 ;

4) (7х - 3 + 2х 2 - 4х - 5) - (6х 3 - х 2 + 2х) = 3х 2 - (6х - х 3).

877. Найдите корень уравнения:

1) 3(х - 2) + 4х = 7(х -1) + 1;

2) 2(х + 1) + х = 6(х + 3);

3) 3х(2 + х) - 4 (1 - х 2) = 7х 2 + 6х;

4) (х 2 + 4х - 8) - (7х - 2х 2 - 5) = 3х 2 - (3х + 3).

878. Решите уравнение.

Равенство с переменной f(х) = g(х) называется уравнением с одной переменной х. Любое значение переменной, при котором f(х) и g(х) принимают равные числовые значения, называется корнем такого уравнения. Следовательно, решить уравнение – значит найти все корни уравнения или доказать, что их нет.

Уравнение x 2 + 1 = 0 не имеет действительных корней, но имеет корни мнимые: в данном случае это корни х 1 = i, х 2 = -i. В дальнейшем нас же будут интересовать лишь действительные корни уравнения.

Если уравнения имеют одинаковые корни, то они называются равносильными. Те уравнения, которые корней не имеют, относятся к равносильным.

Определим, равносильны ли уравнения:

а) х + 2 = 5 и х + 5 = 8

1. Решим первое уравнение

2. Решим второе уравнение

Корни уравнений совпадают, поэтому х + 2 = 5 и х + 5 = 8 равносильны.

б) x 2 + 1 = 0 и 2x 2 + 5 = 0

Оба данных уравнения не имеют действительных корней, поэтому являются равносильными.

в) х – 5 = 1 и x 2 = 36

1. Найдем корни первого уравнения

2. Найдем корни второго уравнения

х 1 = 6, х 2 = -6

Корни уравнений не совпадают, поэтому х – 5 = 1 и x 2 = 36 неравносильны.

При решении уравнения его стараются заменить равносильным, но более простым уравнением. Поэтому важно знать, в результате каких преобразований данное уравнение переходит в уравнений, равносильное ему.

Теорема 1. Если в уравнении из одной части в другую перенести какое-либо слагаемое, изменив при этом знак, то получится уравнение, равносильное данному.

Например, уравнение x 2 + 2 = 3х равносильно уравнению x 2 + 2 – 3х = 0.

Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число (не равное нулю), то получится уравнение, равносильное данному.

Например, уравнение (x 2 – 1)/3 = 2х равносильно уравнению x 2 – 1 = 6х. Обе части первого уравнения мы умножили на 3.

Линейным уравнением с одной переменной называется уравнение вида ах = b, где а и b – действительные числа, причем а называется коэффициентом при переменной, а b – свободным членом.

Рассмотрим три случая для линейного уравнения ах = b.

1. а ≠ 0. В таком случае х = b/а (т.к. а отлично от нуля).

2. а = 0, b = 0. Уравнение примет вид: 0 ∙ х = 0. Это уравнение верно при любом х, т.е. корень уравнения – любое действительное число.

3. а = 0, b ≠ 0. В данном случае уравнение не будет иметь корней, т.к. деление на нуль запрещено (0 ∙ х = b).

В результате преобразований многие уравнения сводятся к линейным.

Решим уравнения

а) (1/5)х + 2/15= 0

1. Перенесем компонент 2/15 из левой части уравнения в правую с противоположным знаком. Такое преобразование регламентируется теоремой 1. Итак, уравнение примет вид: (1/5)х = -2/15.

2. Чтобы избавиться от знаменателя, домножим обе части уравнения на 15. Сделать это позволяет нам теорема 2. Итак, уравнение примет вид:

(1/5)х ∙ 15= – 2/15 ∙ 15

Т.о., корень уравнения равен -2/3.

б) 2/3 + х/4 + (1 – х)/6 = 5х/12 – 1

1. Чтобы избавиться от знаменателя, домножим обе части уравнения на 12 (по теореме 2). Уравнение примет вид:

12(2/3 + х/4 + (1 – х)/6) = 12(5х/12 – 1)

8 + 3х + 2 – 2х = 5х – 12

10 + х = 5х – 12

2. Пользуясь теоремой 1, «соберем» все числа справа, а компоненты с х – слева. Уравнение примет вид:

10 +12 = 5х – х

Т.о., корень уравнения равен 5,5.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уравнение - это равенство, содержащее переменную, обозначенную буквой.

Корень уравнения (или решение уравнения) - это такое значение переменной, при котором уравнение превращается в верное равенство.

Пример: решим уравнение (то есть найдем корень уравнения): 4x - 15 = x + 15

Итак:

4х - х = 15 + 15

3х = 30

х = 30: 3

х = 10

Результат: уравнение имеет один корень - число 10.

Уравнение может иметь и два, три, четыре и более корней.
Например, уравнение (х - 4)(х - 5)(х - 6) = 0 имеет три корня: 4, 5 и 6.

Уравнение может вовсе не иметь корней.
Например, уравнение х + 2 = х не имеет корней, т.к. при любом значении х равенство невозможно.

Равносильность уравнений.

Два уравнения являются равносильными, если они имеют одинаковые корни либо если оба уравнения не имеют корней.

Пример1 :

Уравнения х + 3 = 5 и 3х - 1 = 5 равносильны, так как в обоих уравнениях х = 2.

Пример 2 :

Уравнения х 4 + 2 = 1 и х 2 + 5 = 0 равносильны, так как оба уравнения не имеют корней.

Целое уравнение с одной переменной - это уравнение, левая и правая части которого являются целыми выражениями (о целых выражениях см.раздел «Рациональные выражения»).

Уравнение с одной переменной может быть записано в виде P (x ) = 0, где P (x ) - многочлен стандартного вида.

Например:
y 2 + 3y - 6 = 0
(здесь P (x ) представлен в виде многочлена y 2 + 3y - 6).

В таком уравнении степень многочлена называют степенью уравнения .

В нашем примере представлено уравнение второй степени (так как в нем многочлен второй степени).

Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x - переменная, a и b - некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = - —
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x - переменная, a, b, c - некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x - переменная, a, b, c, d - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x - переменная, a, b, c, d, e - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;

2) уравнение n -й степени может иметь не более n корней.

Пример 1 : Решим уравнение

x 3 - 8x 2 - x + 8 = 0.

Мы видим, что это уравнение третьей степени. Значит, у него может быть от нуля до трех корней.
Найдем их и тем самым решим уравнение.
Разложим левую часть уравнения на множители:

x 2 (x - 8) - (x - 8) = 0.

Применим правило разложения многочлена способом группировки его членов. Для этого поставим перед вторыми скобками число 1:

x 2 (x - 8) - 1(x - 8) = 0.

Теперь сгруппируем многочлены x 2 и -1, являющиеся множителями многочлена x -8. Получим две группы многочленов: (x 2 -1) и (x - 8). Следовательно, наше уравнение примет новый вид:

(x - 8)(x 2 - 1) = 0.

Здесь выражение x 2 - 1 можно представить в виде x 2 - 1 2 . А значит, можем применить формулу сокращенного умножения: x 2 - 1 2 = (x - 1)(x + 1). Подставим в наше уравнение это выражение и получим:

(x - 8)(x - 1)(x + 1) = 0.

x - 8 = 0

x - 1 = 0

x + 1 = 0

Осталось найти корни нашего уравнения:

x 1 = 0 + 8 = 8

x 2 = 0 + 1 = 1

x 3 = 0 - 1 = -1.

Уравнение решено. Оно имеет три корня: 8, 1 и -1.

Пример 2 : Решим уравнение

(x 2 - 5x + 4)(x 2 - 5x +6) = 120

Это уравнение сложнее. Но его можно упростить оригинальным образом - методом введения новой переменной.
В нашем уравнении дважды встречается выражение x 2 - 5x .
Мы можем обозначить его переменной y . То есть представим, что x 2 - 5x = y .

Тогда наше уравнение обретает более простой вид:

(y + 4)(y + 6) = 120.

Раскроем скобки:

y 2 + 4y + 6y + 24 = 120

y 2 + 10y + 24 = 120

Приравняем уравнение к нулю:

y 2 + 10y + 24 - 120 = 0

y 2 + 10y - 96 = 0

Мы получили обычное квадратное уравнение. Найдем его корни. Нет необходимости производить расчеты: о том, как решать подобные уравнения, подробно написано в разделах «Квадратные уравнения» и «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу выведем результат. Квадратное уравнение y 2 + 10y - 96 = 0 имеет два корня:

y 1 = -16

y 2 = 6

Буквой y мы заменили выражение x 2 - 5x . А значит, мы уже можем подставить значения y и найти корни заданного уравнения, тем самым решив задачу:

1) Сначала применяем значение y 1 = -16:

x 2 - 5x = -16

Чтобы решить это уравнение, превращаем его в квадратное уравнение:

x 2 - 5x + 16 = 0

Решив его, мы обнаружим, что оно не имеет корней.

2) Теперь применяем значение y 2 = 6:

x 2 - 5x = 6

x 2 - 5x - 6 = 0

Решив это квадратное уравнение, мы увидим, что у него два корня:

x 1 = -1

x 2 = 6.

Уравнение решено. Оно имеет два корня: -1 и 6.

Метод введения новой переменной позволяет легко решать уравнения четвертой степени, которые являются квадратными относительно x 2 (такие уравнения называют биквадратными ).