Решение дробных функций. Математика и опыт

СУБАШСКАЯ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА” БАЛТАСИНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

РЕСПУБЛИКИ ТАТАРСТАН

Разработка урока - 9 класса

Тема: Дробно – линейная функ ция

квалификационной категории

Гарифуллин а Раил я Рифкатовна

201 4

Тема урока: Дробно – линейная функция.

Цель урока:

Образовательная: Познакомить учащихся с понятиями дробно – линейная функция и уравнение асимптот;

Развивающая: Формирование приемов логического мышления, развитие интереса к предмету; развить нахождение области определеиия, области значения дробно – линейной функции и формирование навыков построения её графика;

- мотивационная цель: воспитание математической культуры учащихся, внимательности, сохранение и развитие интереса к изучению предмета через применение различных форм овладения знаниями.

Оборудование и литература: Ноутбук, проектор, интерактивная доска, координатная полскость и график функции у= , карта рефлексии, мультимедийная презентация, Алгебра: учебник для 9 класса основной общеобразовательной школы/ Ю.Н. Макарычев, Н.Г.Мендюк, К.И.Нешков, С.Б.Суворова; под редакции С.А.Теляковского / М: “Просвещение”, 2004 с дополнениями.

Тип урока:

    урок совершенствования знаний, умений, навыков .

Ход урока.

I организационный момент:

Цель: - развитие устных вычислительных навыков;

    повторение теоретических материалов и определений необходимых для изучения новой темы.

Добрый день! Начинаем урок с проверки домашнего задания:

Внимание на экран (слайд 1-4):


Задание - 1.

Отвечайте, пожалуйста, по графику данной функции на 3 вопрос (найти наибольшее значение функции, ...)

( 24 )

Задание -2. Вычислите значение выражения:

- =

Задание -3: Найдите утроенную сумму корней квадратного уравнения:

Х 2 -671∙Х + 670= 0.

Сумма коэффициентов квадратного уравнения равна нулю:

1+(-671)+670 = 0. Значит, х 1 =1 и х 2 = Следовательно,

3∙(х 1 2 )=3∙671=2013

А теперь запишем последовательно ответы на все 3 задания через точки. (24.12.2013.)


Результат: Да, все верно! И так, тема сегоднешнего урока:

Дробно – линейная функция.

Прежде чем выезжать на дорогу, водитель должен знать правила дорожного движения: запрещающие и разрешающие знаки. Нам с вами сегодня тоже нужно вспомнить некоторые запрещающие и разрешающие знаки. Внимание на экран! (Слайд-6 )

Вывод:

Выражение не имеет смысла;

Верное выражение, ответ: -2;

    верное выражение, ответ: -0;

    нельзя разделить на ноль 0!

Обратите внимание, все ли верно записано? (слайд – 7)

1) ; 2) = ; 3) = a .

(1) верное равенство, 2) = - ; 3) = - a )

II. Изучение новой темы: (cлайд – 8).

Цель: Научить навыкам нахождения области определеиия и области значения дробно – линейной функции, построение её графика с использованием параллельного переноса графика функции по оси абсцисс и ординат.

Определите, график какой функции задан на координатной плоскости?

Задан график функции на координатной плоскости.

Вопрос

Ожидаемый ответ

Найти область определения функции, (D ( y )=?)

Х ≠0, или (-∞;0]UUU

    Перемещаем график функции с использованием параллельного переноса по оси Ох (абцисс) на 1 единицу направо;

График какой функции построили?

    Перемещаем график функции с использованием параллельного переноса по оси Оу (ординат) на 2 единицы вверх;

А теперь, график какой функции построили?

    Проводим прямые х=1 и у=2

Как вы думаете? Какие прямые мы с вами получили?

Это те прямые , к которой приближаются точки кривой графика функции по мере их удаления в бесконечность .

И они называются – асимптотами.

То есть одна асимптота гиперболы проходит параллельно оси y на расстоянии 2 единиц справа от нее, а вторая асимптота проходит параллельно оси x на расстоянии 1 единицы выше ее.

Молодцы! А теперь сделаем вывод:

Графиком дробно-линейной функции является гипербола, которую можно получить из гиперболы y = с помощью параллельных переносов вдоль координатных осей. Для этого формулу дробно-линейной функции надо представить в следующем виде: у=

где n – количество единиц, на которое гипербола смещается вправо или влево, m – количество единиц, на которое гипербола смещается вверх или вниз. При этом асимптоты гиперболы сдвигаются в прямые x = m, y = n.

Приведём примеры дробно – линейной функции:

; .

Дробно-линейная функция – это функция вида y = , где x – переменная, a, b, c, d – некоторые числа, причем c ≠ 0, ad – bc ≠ 0.

с≠0 и ad - bc ≠0, так как при с=0 функция превращается в линейную функцию.

Если ad - bc =0, получается сократимая дробь значение, которое приравняется (т.е. константа).

Свойства дробно-линейной функции:

1. При возрастании положительных значений аргумента значения функции убывают и стремятся к нулю, но остаются положительными.

2. При возрастании положительных значений функции значения аргумента убывают и стремятся к нулю, но остаются положительными.

III – закрепление пройденного материала.

Цель: - развивать навыки и умения представления формул дробно-линейной функции к виду:

    Закрепить умений составления уравнений асимптота и построения графика дробно – линейной функции.

Пример -1:

Решение: Используя преобразования данную функцию представляем в виде .

= (слайд-10)

Физкультминутка:

(разминку ведет - дежурный)

Цель: - снятие умственной нагрузки и укрепление состояние здоровья учащихся.

Работа с учебником: №184.

Решение: Используя преобразования данную функцию представляем в виде у=k/(х-m)+n .

= де х≠0.

Запишем уравнение асимптота: х=2 и у=3.

Значит, график функции перемещается по оси Ох на расстоянии 2 единиц справа от нее и по оси Оу на расстоянии 3 единицы выше ее.

Групповая работа:

Цель: - формирование умений выслушать других и в то же время конкретно высказать свое мнение;

    воспитание личности, способной лидерству;

    воспитание у учащихся культуры математичекой речи.

Вариант № 1

Дана функция:

.

.

Вариант № 2

Дана функция

1. Приведите дробно-линейную функцию к стандартному виду и запишите уравнение асимптот.

2. Найдите область определения функции

3. Найдите множество значений функции

1. Приведите дробно-линейную функцию к стандартному виду и запишите уравнение асимптот.

2. Найдите область определения функции.

3. Найдите множество значений функции.

(Та группа, которая закончила работу первым, готовится для защиты групповой работы у доски. Проводится анализ работ.)

IV. Подведение итогов урока.

Цель: - анализ теоретической и практической деятельности на уроке;

Формирование навыков самооценки у учащихся;

Рефлексия, самооценка активности и сознательности учащихся.

И так, дорогие мои ученики! Урок подходит к концу. Вам предстоит заполнить карту рефлекции. Аккуратно и разборчиво пишите свои мнения

Фамилия и имя ________________________________________

Этапы урока

Определение уровня слож-ности этапов урока

Ваше нас-троение

Оценка вашей деятельности на уроке, 1-5 балл

легкий

ср.тяж.

трудный

Организационный этап

Изучение нового материала

Формирование навы-ков умения построе-ния графика дробно – линейной функции

Работа в группах

Общее мнение об уроке

Домашнее задание:

Цель: - поверка уровня освоения данной темы.

[п.10* , №180(а), 181(б).]

Подготовка к ГИА: (Работа на “ Виртуальном факультативе” )

Задание из серии ГИА (№23 -максимальный балл):

Постройте график функции У= и определите, при каких значениях с прямая у=с имеет с графиком ровно одну общую точку.

Вопросы и задания опубликуется с 14.00 до 14.30 ч.

Дробно-линейная функция изучается в 9 классе после того, как изучены некоторые другие виды функций. Именно об этом говорится в начале урока. Здесь речь идет о функции y=k/x, где k>0. По словам автора, дана функция рассматривалась школьниками ранее. Поэтому с ее свойствами они знакомы. Но одно свойство с указанием особенностей графика этой функции автор предлагает вспомнить и рассмотреть подробно на этом уроке. Это свойство отражает прямую зависимость значения функции от значения переменной. А именно, при положительном x, стремящемся к бесконечности, значение функции также положительно и стремится к 0. При отрицательном x, стремящемся к минус бесконечности, значение y - отрицательно и стремится к 0.

Далее автор отмечает, как это свойство проявляется на графике. Так постепенно обучающиеся знакомятся с понятием асимптоты. После общего ознакомления с этим понятием следует его четкое определение, которое выделено яркой рамкой.

После того, как введено понятие асимптоты и после его определения автор обращает внимание на то, что гиперболы y=k/xпри k>0 имеет две асимптоты: это оси xи y. Точно такая же ситуация и с функцией y=k/xпри k<0: функция имеет две асимптоты.

Когда основные моменты подготовлены, знания актуализированы, автор предлагает перейти к непосредственному изучению нового вида функций: к изучению дробно-линейной функции. Для начала предлагается рассмотреть примеры дробно-линейной функции. На одном таком примере автор демонстрирует, что в качестве числителя и знаменателя выступают линейные выражения или, другими словами, многочлены первой степени. В случае числителя может выступать не только многочлен первой степени, но и любое число, отличное от нуля.

Далее автор переходит к демонстрации общего вида дробно-линейной функции. При этом он подробно расписывает каждый компонент записанной функции. Также поясняется, какие коэффициенты не могут быть равны 0. Эти ограничения автор расписывает и показывает, что может произойти, если эти коэффициенты окажутся нулевыми.

После этого автор повторяет, как получается график функции y=f(x)+nиз графика функции y=f(x). Урок на данную тему можно также найти в нашей базе. Здесь же отмечается то, как построить из этого же графика функции y=f(x) график функции y=f(x+m).

Все это демонстрируется на конкретном примере. Здесь предлагается построить график определенной функции. Все построение идет поэтапно. Для начала предлагается выделить из данной алгебраической дроби целую часть. Выполнив необходимые преобразования, автор получает целое число, которое прибавляется к дроби с числителем, равным числу. Так график функции, которая представляет собой дробь, можно построить из функции y=5/xпосредством двойного параллельного переноса. Здесь же автор отмечает, как переместятся асимптоты. После этого строится система координат, переносятся асимптоты на новое местоположение. Затем строятся две таблица значений для переменной x>0 и для переменной x<0. Согласно полученным в таблицах точкам, на экране ведется построение графика функции.

Далее рассматривается еще один пример, где перед алгебраической дробью в записи функции присутствует минус. Но это ничем не отличается от предыдущего примера. Все действия проводятся аналогичным образом: функция преобразовывается к виду, где выделяется целая часть. Затем переносятся асимптоты, и строится график функции.

На этом объяснение материала заканчивается. Длится этот процесс 7:28 минут. Примерно столько времени требуется учителю на обычном уроке для объяснения нового материала. Но для этого необходимо заранее хорошенько подготовится. Но если взять за основу данный видеоурок, то подготовка к уроку займет минимум времени и сил, а обучающимся понравится новый метод обучения, предлагающий просмотр видеоурока.

Рассмотрим вопросы методики изучения такой темы, как «построение графика дробной линейной функции». К сожалению, ее изучение удалено из базовой программы и репетитор по математике на своих занятиях не так часто ее затрагивает, как хотелось бы. Однако, математические классы еще никто не отменял, вторую часть ГИА тоже. Да и в ЕГЭ существует вероятность ее проникновения в тело задачи С5 (через параметры). Поэтому придется засучить рукава и поработать над методикой ее объяснения на уроке со средним или в меру сильным учеником. Как правило, репетитор по математике вырабатывает приемы объяснений по основным разделам школьной программы в течение первых 5 -7 лет работы. За это время через глаза и руки репетитора успевают пройти десятки учеников самых разных категорий. От запущенных и слабых от природы детей, лодырей и прогульщиков до целеустремленных талантов.

Со временем к репетитору по математике приходит мастерство объяснений сложных понятий простым языком не в ущерб математической полноте и точности. Вырабатывается индивидуальный стиль подачи материала, речи, визуального сопровождения и оформления записей. Любой опытный репетитор расскажет урок с закрытыми глазами, ибо наперед знает, какие проблемы возникают с пониманием материала и что нужно для их разрешения. Важно подобрать правильные слова и записи, примеры для начала урока, для середины и конца, а также грамотно составить упражнения для домашнего задания.

О некоторых частных приемах работы с темой пойдет речь в данной статье.

С построения каких графиков начинает репетитор по математике?

Нужно начать с определения изучаемого понятия. Напоминаю, что дробной линейной функцией называют функцию вида . Ее построение сводится к построению самой обычной гиперболы путем известных несложных приемов преобразования графиков. На практике, несложными они оказываются только для cамого репетитора. Даже если к преподавателю приходит сильный ученик, с достаточной скоростью вычислений и преобразований, ему все равно приходится рассказывать эти приемы отдельно. Почему? В школе в 9 классе строят графики только путем сдвига и не используют методов добавления числовых множителей (методов сжатия и растяжения). Какой график используется репетитором по математике? С чего лучше начать? Вся подготовка проводится на примере самой удобной, на мой взгляд, функции . А что еще использовать? Тригонометрию в 9 классе изучают без графиков (а в переделанных учебниках под условия проведения ГИА по математике и вовсе не проходят). Квадратичная функция не имеет в данной теме такого же «методического веса», какой имеет корень. Почему? В 9 классе квадратный трехчлен изучается досконально и ученик вполне способен решать задачи на построение и без сдвигов. Форма мгновенно вызывает рефлекс к раскрытию скобок, после которого можно применить правило стандартного построения графика через вершину параболы и таблицу значений. С такой маневр выполнить не удастся и репетитору по математике будет легче мотивировать ученика на изучение общих приемов преобразований. Использование модуля y=|x| тоже не оправдывает себя, ибо он не изучается так же плотно, как корень и школьники панически его боятся. К тому же, сам модуль (точнее его «навешивание») входит в число изучаемых преобразований.

Итак, репетитору не остается ничего более удобного и эффективного, как провести подготовку к преобразованиям с помощью квадратного корня. Нужна практика построений графиков примерно такого вида . Будем считать, что эта подготовка удалась на славу. Ребенок умеет сдвигать и даже сжимать/растягивать графики. Что дальше?

Следующий этап – обучение выделению целой части. Пожалуй, это основная задача репетитора по математике, ибо после того, как целая часть будет выделенаона принимает на себя львиную долю всей вычислительной нагрузки на тему. Чрезвычайно важно подготовить функцию к виду, вписывающемуся в одну из стандартных схем построения. Также важно описать логику преобразований доступным понятным, а с другой стороны математически точно и стройно.

Напомню, что для построения графика необходимо преобразовать дробь к виду . Именно к такому, а не к
, сохраняя знаменатель. Почему? Сложно выполнять преобразования того графика, который не только состоит из кусочков, но еще и имеет асимптоты. Непрерывность используется для того, чтобы соединить две-три более-менее понятно передвинутые точки одной линией. В случае разрывной функции не сразу разберешь, какие именно точки соединять. Поэтому сжимать или растягивать гиперболу – крайне неудобно. Репетитор по математике просто обязан научить школьника обходиться одними сдвигами.

Для этого помимо выделения целой части нужно еще удалить в знаменателе коэффициент c .

Выделение целой части у дроби

Как научить выделению целой части? Репетиторы по математике не всегда адекватно оценивают уровень знаний школьника и, несмотря на отсутствие в программе подробного изучения теоремы о делении многочленов с остатком, применяют правило деления уголком. Если преподаватель берется за уголочное деление, то придется потратить на его объяснение (если конечно все аккуратно обосновывать) почти половину занятия. К сожалению, не всегда это время у репетитора имеется в наличии. Лучше вообще не вспоминать ни о каких уголках.

Существует две формы работы с учеником:
1) Репетитор показывает ему готовый алгоритм на каком-нибудь примере дробной функции.
2) Преподаватель создает условия для логического поиска этого алгоритма.

Реализация второго пути мне представляется наиболее интересной для репетиторской практики и чрезвычайно полезной для развития мышления ученика . С помощью определенных намеков и указаний часто удается подвести к обнаружению некой последовательности верных шагов. В отличие от машинального выполнения кем-то составленного плана, школьник 9 класса учится самостоятельно его искать. Естественно, что все пояснения необходимо проводить на примерах. Возьмем для этого функцию и рассмотрим комментарии репетитора к логике поиска алгоритма. Репетитор по математике спрашивает: «Что мешает нам выполнить стандартное преобразование графика , при помощи сдвига вдоль осей? Конечно же, одновременное присутствие икса и в числителе и в знаменателе. Значит необходимо удалить его из числителя. Как это сделать при помощи тождественных преобразований? Путь один – сократить дробь. Но у нас нет равных множителей (скобок). Значит нужно попытаться создать их искусственно. Но как? Не заменишь же числитель на знаменатель без всякого тождественного перехода. Попробуем преобразовать числитель, чтобы в него включалась скобка, равная знаменателю. Поставим ее туда принудительно и «обложим» коэффициентами так, чтобы при их «воздействии» на скобку, то есть при ее раскрытии и сложении подобных слагаемых, получался бы линейный многочлен 2x+3.

Репетитор по математике вставляет пропуски для коэффициентов в виде пустых прямоугольников (как это часто используют пособия для 5 – 6 классов) и ставит задачу — заполнить их числами. Подбор следует вести слева направо , начиная с первого пропуска. Ученик должен представить себе, как он будет раскрывать скобку. Так как ее раскрытия получится только одно слагаемое с иксом, то именно его коэффициент должен быть равным старшему коэффициенту в старом числителе 2х+3. Поэтому, очевидно, что в первом квадратике оказывается число 2. Он заполнен. Репетитору по математике следует взять достаточно простую дробную линейную функцию, у которой с=1. Только после этого можно переходить к разбору примеров с неприятным видом числителя и знаменателя (в том числе и с дробными коэффициентами).

Идем дальше. Преподаватель раскрывает скобку и подписывает результат прямо над ней.
Можно заштриховать соответствующую пару множителей. К «раскрытому слагаемому», необходимо добавить такое число из второго пропуска, чтобы получить свободный коэффициент старого числителя. Очевидно, что это 7.


Далее дробь разбивается на сумму отдельных дробей (обычно я обвожу дроби облачком, сравнивая их расположение с крылышками бабочки). И говорю: «Разобьем дробь бабочкой». Школьники хорошо запоминают эту фразу.

Репетитор по математике показывает весь процесс выделения целой части до вида, к которому уже можно применить алгоритм сдвига гиперболы :

Если знаменатель имеет не равный единице старший коэффициент, то ни в коем случае не нужно его там оставлять. Это принесет и репетитору и ученику лишнюю головную боль, связанную с необходимостью проведения дополнительного преобразования, Причем самого сложного: сжатия — растяжения. Для схематического построения графика прямой пропорциональности не важен вид числителя. Главное знать его знак. Тогда к нему лучше перебросить старший коэффициент знаменателя. Например, если мы работаем с функцией , то просто вынесем 3 за скобку и «поднимем» ее в числитель, конструируя в нем дробь . Получим значительно более удобное выражение для построения: Останется сдвинуть на вправо и на 2 вверх.

Если между целой частью 2 и оставшейся дробью возникает «минус», его тоже лучше занести в числитель. Иначе на определенном этапе построения придется дополнительно отображать гиперболу относительно оси Oy. Это только усложнит процесс.

Золотое правило репетитора по математике:
все неудобные коэффициенты, приводящие к симметриям, к сжатиям или растяжениям графика нужно перебросить в числитель.

Трудно описывать приемы работы с любой темой. Всегда остается ощущение некоторой недосказанности. Насколько удалось рассказать о дробной линейной функции — судить Вам. Присылайте Ваши комментарии и отзывы к статье (их можно написать в окошке, которое Вы видите внизу страницы). Я обязательно их опубликую.

Колпаков А.Н. Репетитор по математике Москва. Строгино. Методики для репетиторов.

В данном уроке мы рассмотрим дробно-линейную функцию, решим задачи с использованием дробно-линейной функции, модуля, параметра.

Тема: Повторение

Урок: Дробно-линейная функция

Определение:

Дробно-линейной называется функция вида:

Например:

Докажем, что графиком данной дробно-линейной функции является гипербола.

Вынесем в числителе двойку за скобки, получим:

Имеем х и в числителе, и в знаменателе. Теперь преобразуем так, чтобы в числителе появилось выражение :

Теперь почленно сократим дробь:

Очевидно, что графиком данной функции является гипербола.

Можно предложить второй способ доказательства, а именно разделить в столбик числитель на знаменатель:

Получили:

Важно уметь легко строить график дробно-линейной функции, в частности находить центр симметрии гиперболы. Решим задачу.

Пример 1 - построить эскиз графика функции:

Мы уже преобразовали данную функцию и получили:

Для построения данного графика мы не будем сдвигать оси или саму гиперболу. Мы используем стандартный метод построения графиков функции, использующий наличие интервалов знакопостоянства.

Действуем согласно алгоритму. Сначала исследуем заданную функцию.

Таким образом, имеем три интервала знакопостоянства: на крайнем правом () функция имеет знак плюс, далее знаки чередуются, так как все корни имеют первую степень. Так, на интервале функция отрицательна, на интервале функция положительна.

Строим эскиз графика в окрестностях корней и точек разрыва ОДЗ. Имеем: поскольку в точке знак функции меняется с плюса на минус, то кривая сначала находится над осью, потом проходит через ноль и далее расположена под осью х. Когда знаменатель дроби практически равен нулю, значит, когда значение аргумента стремится тройке, значение дроби стремится к бесконечности. В данном случае, когда аргумент подходит к тройке слева функция отрицательна и стремится к минус бесконечности, справа функция положительна и выходит из плюс бесконечности.

Теперь строим эскиз графика функции в окрестностях бесконечно удаленных точек, т.е. когда аргумент стремится к плюс или минус бесконечности. Постоянными слагаемыми при этом можно пренебречь. Имеем:

Таким образом, имеем горизонтальную асимптоту и вертикальную , центр гиперболы точка (3;2). Проиллюстрируем:

Рис. 1. График гиперболы к примеру 1

Задачи с дробно-линейной функцией могут быть осложнены наличием модуля или параметра. Чтобы построить, например, график функции , необходимо следовать следующему алгоритму:

Рис. 2. Иллюстрация к алгоритму

В полученном графике есть ветви, которые находятся над осью х и под осью х.

1. Наложить заданный модуль. При этом части графика, находящиеся над осью х, остаются без изменений, а те, которые находятся под осью - зеркально отображаются относительно оси х. Получим:

Рис. 3. Иллюстрация к алгоритму

Пример 2 - построить график функции:

Рис. 4. График функции к примеру 2

Рассмотрим следующую задачу - построить график функции . Для этого необходимо следовать следующему алгоритму:

1. Построить график подмодульной функции

Предположим, получен следующий график:

Рис. 5. Иллюстрация к алгоритму

1. Наложить заданный модуль. Чтобы понять, как это сделать, раскроем модуль.

Таким образом, для значений функции при неотрицательных значениях аргумента изменений не произойдет. Касательно второго уравнения мы знаем, что оно получается путем симметричного отображения относительно оси у. имеем график функции:

Рис. 6. Иллюстрация к алгоритму

Пример 3 - построить график функции:

Согласно алгоритму, сначала нужно построить график подмодульной функции, мы его уже построили (см. рисунок 1)

Рис. 7. График функции к примеру 3

Пример 4 - найти число корней уравнения с параметром:

Напомним, что решить уравнение с параметром означает перебрать все значения параметра и для каждого из них указать ответ. Действуем согласно методике. Сначала строим график функции, это мы уже сделали в предыдущем примере (см. рисунок 7). Далее необходимо рассечь график семейством прямых при различных а, найти точки пересечения и выписать ответ.

Глядя на график, выписываем ответ: при и уравнение имеет два решения; при уравнение имеет одно решение; при уравнение не имеет решений.

Здесь коэффициенты при х и свободные члены в числителе и знаменателе - заданные действительные числа. Графиком дробно-линейной функции в общем случае является гипербола.

Наиболее простая дробно-линейная функция у = - вы-

ражает обратную пропорциональную зависимость ; представляющая ее гипербола хорошо известна из курса средней школы (рис. 5.5).

Рис. 5.5

Пример. 5.3

Построить график дробно-линейной функции:

  • 1. Так как эта дробь не имеет смысла при х = 3 , то область определения функции X состоит из двух бесконечных интервалов:
  • 3) и (3; +°°).

2. Для того чтобы изучить поведение функции на границе области определения (т.е. при х -»3 и при х -> ±°°), полезно преобразовать данное выражение в сумму двух слагаемых следующим образом:

Поскольку первое слагаемое - постоянное, то поведение функции на границе фактически определяется вторым, переменным слагаемым. Изучив процесс его изменения, при х ->3 и х ->±°°, делаем следующие выводы относительно заданной функции:

  • а) при х->3 справа (т.е. при *>3) значение функции неограниченно возрастает: у -> +°°: при х->3 слева (т.е. при х у-Таким образом, искомая гипербола неограниченно приближается к прямой с уравнением х = 3 (слева снизу и справа сверху) и тем самым эта прямая является вертикальной асимптотой гиперболы;
  • б) при х -> ±°° второе слагаемое неограниченно убывает, поэтому значение функции неограниченно приближается к первому, постоянному слагаемому, т.е. к значению у = 2. При этом график функции неограниченно приближается (слева снизу и справа сверху ) к прямой, задаваемой уравнением у = 2; тем самым эта прямая является горизонтальной асимптотой гиперболы.

Замечание. Полученные в этом пункте сведения являются важнейшими для характеристики поведения графика функции в удаленной части плоскости (фигурально выражаясь, на бесконечности).

  • 3. Полагая л =0, находим у = ~. Поэтому искомая ги-

пербола пересекает ось Оу в точке М х = (0;-^).

  • 4. Нуль функции (у = 0) будет при х = -2; следовательно, эта гипербола пересекает ось Ох в точке М 2 (-2; 0).
  • 5. Дробь положительна, если числитель и знаменатель одного и того же знака, и отрицательна, если они разных знаков. Решая соответствующие системы неравенств, находим, что функция имеет два интервала положительности: (-°°; -2) и (3; +°°) и один интервал отрицательности: (-2; 3).
  • 6. Представление функции в виде суммы двух слагаемых (см. н. 2) позволяет достаточно легко обнаружить два интервала убывания: (-°°; 3) и (3; +°°).
  • 7. Очевидно, что экстремумов у данной функции нет.
  • 8. Множество У значений этой функции: (-°°; 2) и (2; +°°).
  • 9. Четности, нечетности, периодичности также нет. Собранной информации достаточно, чтобы схематично

изобразить гиперболу, графически отражающую свойства данной функции (рис. 5.6).


Рис. 5.6

Функции, рассмотренные до этого момента, носят названия алгебраических. Перейдем теперь к рассмотрению трансцендентных функций.