Регулярные языки и конечные автоматы. Построение НКА по праволинейной грамматике


Настройки

Согласно теореме Клини любому регулярному выражению можно поставить в соответствие конечный автомат, который является формальной моделью алгоритма распознавания лексем, обозначаемых данным регулярным выражением. В наиболее общих терминах конечный автомат -распознаватель определяется конечным множеством характерных для него состояний входного потока и переходов между ними. Изменение состояния происходит при получении символов входного потока из заданного алфавита в соответствии с функцией переходов , которая определяет возможные последующие состояния по входному символу и текущему состоянию. Среди возможных состояний выделяется исходное (начальное) и заключительные (допускающие) состояния в которых конечный автомат-распознаватель может находиться, соответственно, при начале и завершении обработки лексем входного потока. Если входная последовательность символов может порождать последовательность переходов, которая может переводить конечный автомат из начального состояния в одно из заключительных, то она считается допускающей и принадлежит распознаваемому им регулярному множеству.


(00|11)*((01|10)(00|11)*(01|10)(00|11)*)*

Таблица 1

0 1
Q1 Q4 Q2
Q2 Q3 Q1
Q3 Q2 Q4
Q4 Q1 Q3

Столбцы таблицы переходов обозначают символы входного алфавита, а строки соответствуют текущим состояниям ДКА . Элементы каждой строки указывают состояния ДКА , в которые он должен переходить из текущего состояния при получении соответствующих символов входного алфавита. В частности, из первой строки данной таблицы переходов следует, что получение символов 0 и 1 в начальном состоянии Q1 переводит ДКА в состояния Q4 и Q2, соответственно.

При распознавании входной последовательности по таблице переходов легко проследить изменения состояния ДКА с целью определить достигается или нет одно из допускающих состояний. В частности, для бинарного вектора 01001000 с четным числом нулей и единиц рассмотренный ДКА порождает следующую последовательность переходов, где каждый переход помечен вызывающим его символом входного алфавита:


Q1 0 Q4 1 Q3 0 Q2 0 Q3 1 Q4 1 Q1 0 Q4 0 Q1


Эта последовательность переходов завершается допускающим состоянием Q1, следовательно, бинарный вектор 01001000 принадлежит регулярному множеству, распознаваемому рассмотренным ДКА и удовлетворяет приведенному выше регулярному выражению.

В заключение следует отметить, что рассмотренный неформальный способ конструирования

по общему количеству символов алфавита символов и знаков операций и скобок в записи r .

Базис . Автоматы для выражений длины 1: и показаны на следующем рисунке.


Рис. 5.1.

Заметим, что у каждого из этих трех автоматов множество заключительных состояний состоит из одного состояния.

Индукционный шаг . Предположим теперь, что для каждого регулярного выражения длины = 1 слово w можно разбить на k подслов: w=w 1 w 2 ... w k и все . Для каждого i= 1,... ,k слово w i переводит q 0 1 в q f 1 . Тогда для слова w в диаграмме M имеется путь

Следовательно, . Обратно, если некоторое слово переводит q 0 в q f , то либо оно есть либо его несет путь , который, перейдя из q 0 в q 0 1 и затем пройдя несколько раз по пути из q 0 1 в q f 1 и вернувшись из q f 1 в q 0 1 по -переходу, в конце концов из q f 1 по -переходу завершается в q f . Поэтому такое слово .

Из теорем 4.2 и 5.1 непосредственно получаем

Следствие 5.1 . Для каждого регулярного выражения можно эффективно построить детерминированный конечный автомат , который распознает язык, представляемый этим выражением.

Это утверждение - один из примеров теорем синтеза : по описанию задания (языка как регулярного выражения ) эффективно строится программа (ДКА), его выполняющая. Справедливо и обратное утверждение - теорема анализа .

Теорема 5.2 . По каждому детерминированному (или недетерминированному) конечному автомату можно построить регулярное выражение , которое представляет язык, распознаваемый этим автоматом.

Доказательство этой теоремы достаточно техническое и выходит за рамки нашего курса.

Таким образом, можно сделать вывод , что класс конечно автоматных языков совпадает с классом регулярных языков . Далее мы будем называть его просто классом автоматных языков .

Автомат M r , который строится в доказательстве теоремы 5.1


Для дальнейшего изучения свойств конечных автоматов и, в частности, для решения задачи синтеза важное значение имеет следующая теорема.


Теорема 7.7 (теорема о детерминизации). Для любого конечного автомата может быть построен эквивалентный ему детерминированный конечный автомат.


Для того чтобы доказать теорему, нужно, во-первых, описать алгоритм построения детерминированного конечного автомата по исходному; во-вторых, обосновать этот алгоритм, строго доказав, что он действительно дает конечный автомат, который является детерминированным и эквивалентным исходному. Здесь мы приведем только сам алгоритм построения детерминированного автомата.


Преобразование произвольного конечного автомата к эквивалентному детерминированному осуществляется в два этапа: сначала удаляются дуги с меткой \lambda , затем проводится собственно детерминизация.


1. Удаление λ-переходов (дуг с меткой \lambda ).


Чтобы перейти от исходного конечного автомата M=(V,Q,q_0,F,\delta) к эквивалентному конечному автомату M"=(V,Q",q_0,F",\delta") без λ-переходов, достаточно в исходном графе M проделать следующие преобразования.


а. Все состояния, кроме начального, в которые заходят только дуги с меткой \lambda , удаляются; тем самым определяется множество Q" конечного автомата M" . Понятно, что Q"\subseteq Q . При этом полагаем, что начальное состояние остается прежним.


б. Множество дуг конечного автомата M" и их меток (тем самым и функция переходов M" ) определяется так: для любых двух состояний p,r\in Q",~ p\to_{a}r имеет место тогда и только тогда, когда a\in V , а в графе M имеет место одно из двух: либо существует дуга из p в r , метка которой содержит символ a , либо существует такое состояние q , что p\Rightarrow_{\lambda}^{+}q и q\to_{a}r . При этом вершина q , вообще говоря, может и не принадлежать множеству Q" , т.е. она может и исчезнуть при переходе к автомату M" (рис. 7.11). Если же q\in Q" , то, естественно, в M" сохранится дуга (q,r) и символ a будет одним из символов, принадлежащих метке этой дуги (рис. 7.12).


Таким образом, в M" сохраняются все дуги M , метки которых отличны от \lambda и которые соединяют пару (вершин) состояний из множества Q" (не удаляемых согласно п. а). Кроме этого, для любой тройки состояний p,q,r (не обязательно различных!), такой, что p,r\in Q" и существует путь ненулевой длины из p в q , метка которого равна \lambda (т.е. путь по λ-переходам), а из q в r ведет дуга, метка которой содержит символ a входного алфавита, в M" строится дуга из p в r , метка которой содержит символ a (см. рис. 7.11).


в. Множество заключительных состояний F" конечного автомата M" содержит все состояния q\in Q" , т.е. состояния конечного автомата M , не удаляемые согласно п. а, для которых имеет место q\Rightarrow_{\lambda}^{\ast}q_f для некоторого q_f\in F (т.е. либо состояние q само является заключительным состоянием конечного автомата M , либо из него ведет путь ненулевой длины по дугам с меткой \lambda в одно из заключительных состояний конечного автомата M ) (рис. 7.13).


2. Собственно детерминизация.


Пусть M=(Q,V,q_0,F,\delta) - конечный автомат без λ-переходов. Построим эквивалентный M детерминированный конечный автомат M_1 .


Этот конечный автомат определяется таким образом, что его множество состояний есть множество всех подмножеств множества состояний конечного автомата M . Это значит, что каждое отдельное состояние конечного автомата M_1 определено как некоторое подмножество множества состояний конечного автомата M . При этом начальным состоянием нового конечного автомата (т.е. M_1 ) является одноэлементное подмножество, содержащее начальное состояние старого конечного автомата (т.е. M ), а заключительными состояниями нового конечного автомата являются все такие подмножества Q , которые содержат хотя бы одну заключительную вершину исходного конечного автомата M .


Впредь, допуская некоторую вольность речи, мы будем иногда называть состояния конечного автомата M_1 состояниями-множествами. Важно, однако, четко усвоить, что каждое такое состояние-множество есть отдельное состояние нового конечного автомата, но никак не множество его состояний. В то же время для исходного ("старого") конечного автомата M это именно множество его состояний. Образно говоря, каждое подмножество состояний старого конечного автомата "свертывается" в одно состояние нового конечного автомата*.


*Формально следовало бы определить множество Q_1 как множество, находящееся во взаимно однозначном соответствии с множеством 2^Q , но нам все-таки удобнее считать, что Q_1 совпадает с 2^Q , - ведь множеством состояний конечного автомата может быть любое непустое конечное множество.


Функция переходов нового конечного автомата определена так, что из состояния-множества S по входному символу а конечный автомат M_1 переходит в состояние-множество, представляющее собой объединение всех множеств состояний старого конечного автомата, в которые этот старый конечный автомат переходит по символу а из каждого состояния множества S . Таким образом, конечный автомат M_1 является детерминированным по построению.


Приведенное выше словесное описание можно перевести в формулы следующим образом: строим конечный автомат M_1 так, что


M_1=(Q_1,V,\{q_0\},F_1,\delta_1) , где


\begin{cases}Q_1=2^Q,\quad F_1=\{T\colon\, T\cap F\ne\varnothing,~T\in2^Q\},\\ (\forall S\subseteq Q)(\forall a\in V)\Bigl(\delta_1(S,a)= \bigcup\limits_{q\in S}\delta(q,a)\Bigr). \end{cases}


Обратим внимание на то, что среди состояний нового конечного автомата есть состояние \varnothing , причем, согласно (7.8), \delta_1(\varnothing,a)=\varnothing для любого входного символа a . Это значит, что, попав в такое состояние, конечный автомат M_1 уже его не покинет. Вообще же любое состояние q конечного автомата, такое, что для любого входного символа a имеем \delta(q,a)=q , называют поглощающим состоянием конечного автомата. Таким образом, состояние \varnothing детерминированного конечного автомата M_1 является поглощающим. Полезно заметить также, что \delta_1(S,a)=\varnothing тогда и только тогда, когда для каждого q\in S (состояния старого конечного автомата из множества состояний S ) \delta(q,a)=\varnothing , т.е. в графе M из каждого такого состояния q не выходит ни одна дуга, помеченная символом a .


Можно доказать, что полученный по такому алгоритму конечный автомат эквивалентен исходному.

Пример 7.9. Детерминизируем конечный автомат, изображенный на рис. 7.14.


Эквивалентный конечный автомат без λ-переходов изображен на рис. 7.15. Заметим, что вершина q_2 исчезает, так как в нее заходят только "пустые" дуги.



Чтобы детерминизировать полученный автомат, совершенно не обязательно выписывать все его 2^3=8 состояний, среди которых многие могут оказаться не достижимыми из начального состояния \{q_0\} . Чтобы получить достижимые из \{q_0\} состояния, и только их, воспользуемся так называемым методом вытягивания.


Этот метод в общем случае можно описать так.


В исходном конечном автомате (без пустых дуг) определяем все множества состояний, достижимых из начального, т.е. для каждого входного символа a находим множество \delta(q_0,a) . Каждое такое множество в новом автомате является состоянием, непосредственно достижимым из начального.


Для каждого из определенных состояний-множеств S и каждого входного символа a находим множество \textstyle{\mathop{\bigcup\limits_{q\in S} \delta(q,a)}\limits^{\phantom{A}^{.}}} . Все полученные на этом шаге состояния будут состояниями нового (детерминированного) автомата, достижимыми из начальной вершины по пути длины 2. Описанную процедуру повторяем до тех пор, пока не перестанут появляться новые состояния-множества (включая пустое!). Можно показать, что при этом получаются все такие состояния конечного автомата M_1 , которые достижимы из начального состояния \{q_0\} .


Для конечного автомата на рис. 7.15 имеем:


\begin{aligned}& \delta_1(\{q_0\},a)=\{q_1\};\qquad \delta_1(\{q_0\},b)=\{q_1,q_3\};\\ & \delta_1(\{q_1\},a)=\{q_1\};\qquad \delta_1(\{q_1\},b)=\{q_1\};\\ & \delta_1(\{q_1,q_3\},a)= \delta(q_1,a)\cup \delta(q_3,a)= \{q_1\}\cup\{q_1\}=\{q_1\};\\ & \delta_1(\{q_1,q_3\},b)= \delta(q_1,b)\cup \delta(q_3,b)= \{q_1\}\cup\{q_1\}=\{q_1\}. \end{aligned}


Так как новых состояний-множеств больше не появилось, процедура "вытягивания" на этом заканчивается, и мы получаем граф, изображенный на рис. 7.16.

Дополнение регулярного языка

Одним из важных теоретических следствий теоремы о детерминизации является следующая теорема.


Теорема 7.8. Дополнение регулярного языка есть регулярный язык.


Пусть L - регулярный язык в алфавите V . Тогда дополнение языка L (как множества слов) есть язык \overline{L}=V^{\ast}\setminus L .


Согласно теореме 7.7, для регулярного языка L может быть построен детерминированный конечный автомат M , допускающий L . Поскольку в детерминированном автомате из каждой вершины по каждому входному символу определен переход в точности в одну вершину, то, какова бы ни была цепочка x в алфавите V , для нее найдется единственный путь в M , начинающийся в начальном состоянии, на котором читается цепочка x . Ясно, что цепочка x допускается автоматом M , то есть x\in L(M) , тогда и только тогда, когда последнее состояние указанного пути является заключительным. Отсюда следует, что цепочка x\notin L(M) тогда и только тогда, когда последнее состояние указанного пути не заключительное. Но нам как раз и нужен конечный автомат M" , который допускает цепочку x тогда и только тогда, когда ее не допускает исходный конечный автомат M . Следовательно, превращая каждое заключительное состояние M в не заключительное и наоборот, получим детерминированный автомат, допускающий дополнение языка L .


Доказанная теорема позволяет строить конечный автомат, не допускающий определенное множество цепочек, следующим методом: строим сначала автомат, допускающий данное множество цепочек, затем детерминизируем его и переходим к автомату для дополнения так, как это указано в доказательстве теоремы 7.8.

Пример 7.10. а. Построим конечный автомат, допускающий все цепочки в алфавите \{0;1\} , кроме цепочки 101.


Сначала построим конечный автомат, допускающий единственную цепочку 101. Этот автомат приведен на рис. 7.17.



Этот автомат квазидетерминированный, но не детерминированный, так как он не полностью определен. Проведем его детерминизацию и получим детерминированный эквивалентный конечный автомат, изображенный на рис. 7.18.



И наконец, переходя к дополнению (и переименовывая состояния), получим автомат, изображенный на рис. 7.19.


Обратим внимание, что в полученном автомате все вершины, кроме вершины s_3 , являются заключительными.


Заметим также, что переход к дополнению, о котором идет речь в доказательстве теоремы 7.8, может быть проведен только в детерминированном автомате. Если бы мы поменяли ролями заключительные и незаключительные вершины в автомате, изображенном на рис. 7.17, то получили бы автомат, допускающий язык \{\lambda,1,10\} , который не является - как нетрудно сообразить - множеством всех цепочек, отличных от цепочки 101.


Отметим также, что конечный автомат на рис. 7.19 допускает все цепочки, содержащие вхождение цепочки 101, но не совпадающие с самой этой цепочкой. Вот, например, путь, несущий цепочку 1011: s_0,s_1,s_2,s_3,t .


б. Построим конечный автомат, допускающий все цепочки в алфавите \{0;1\} , кроме тех, которые содержат вхождение цепочки 101. Рассмотрим язык L , каждая цепочка которого содержит вхождение цепочки 101. Его можно задать так:


L=(0+1)^{\ast}101(0+1)^{\ast}.


Нам нужно построить автомат для дополнения языка L .


Непосредственно по регулярному выражению в этом случае легко построить конечный автомат, допускающий язык L (рис. 7.20).



Затем методом "вытягивания" проведем детерминизацию. Результат детерминизации представлен на рис. 7.21.



Для полного решения задачи осталось только на рис. 7.21 поменять ролями заключительные и не заключительные вершины (рис. 7.22).



в. Обсудим идею построения конечного автомата, допускающего те и только те цепочки в алфавите \{0;1\} , которые не начинаются цепочкой 01 и не заканчиваются цепочкой 11 (т.е. не разрешаются цепочки вида 01x и цепочки вида y11 , каковы бы ни были цепочки x,y\in\{0;1\} ).


В этом случае дополнением языка, для которого нужно построить конечный автомат, является множество всех таких цепочек нулей и единиц, которые начинаются цепочкой 01 или заканчиваются цепочкой 11. Допускающий это множество цепочек автомат строится как автомат для объединения 01(0+1)^{\ast}+(0+1)^{\ast}11 тем способом, который изложен при доказательстве теоремы Клини (см. теорему 7.6).

Из свойства замкнутости класса регулярных языков относительно дополнения (см. теорему 7.8) немедленно вытекает замкнутость этого класса относительно пересечения, теоретико-множественной и симметрической разности.


Следствие 7.3. Для любых двух регулярных языков L_1 и L_2 справедливы следующие утверждения:


1) пересечение L_1\cap L_2 регулярно;
2) разность L_1\setminus L_2 регулярна;
3) симметрическая разность L_1\vartriangle L_2 регулярна.


Справедливость утверждений вытекает из тождеств:


\begin{aligned} &{\scriptstyle{\mathsf{1)}}}\quad L_1\cap L_2= \overline{\overline{L_1} \cup\overline{L_2}}\,;\\ &{\scriptstyle{\mathsf{2)}}}\quad L_1\setminus L_2= L_1\cap \overline{L_2}\,;\\ &{\scriptstyle{\mathsf{3)}}}\quad L_1\,\triangle\,L_2 = (L_1\cup L_2)\setminus (L_1\cap L_2).\end{aligned}


Во-первых, полученные результаты позволяют утверждать, что класс регулярных языков относительно операций объединения, пересечения и дополнения является булевой алгеброй, в которой единицей служит универсальный язык, а нулем - пустой язык. Во-вторых, эти алгебраические свойства семейства регулярных языков позволяют решить важную проблему распознавания эквивалентности двух произвольных конечных автоматов.


Согласно определению 7.10, конечные автоматы эквивалентны, если допускаемые ими языки совпадают. Поэтому, чтобы убедиться в эквивалентности автоматов M_1 и M_2 , достаточно доказать, что симметрическая разность языков L(M_1) и L(M_2) пуста. Для этого, в свою очередь, достаточно построить автомат, допускающий эту разность, и убедиться в том, что допускаемый им язык пуст. В общем случае проблему распознавания того, что язык конечного автомата пуст, называют проблемой пустоты для конечного автомата. Чтобы решить эту проблему, достаточно найти множество заключительных состояний автомата, достижимых из начального состояния. Так как конечный автомат - это ориентированный граф, то решить такую проблему можно, например, с помощью, поиска в ширину. Язык, допускаемый конечным автоматом, пуст тогда и только тогда, когда множество заключительных состояний, достижимых из начального состояния, пусто. Практически эквивалентность конечных автоматов предпочтительнее распознавать, используя алгоритм минимизации, но сейчас нам важно подчеркнуть, что принципиальная возможность решить проблему эквивалентности вытекает из теоремы 7.7 и ее алгебраических следствий.

ДКА является частным случаем НКА. В нем:

    нет состояния с ε-переходами;

    для каждого состояния S и входного символа а существует не более одной дуги, исходящей из S и помеченной а.

ДКА имеет лишь максимум один переход для любого входного символа из каждого состояния. Если для представления функции переходов ДКА использовать таблицу, то в каждой записи будет содержаться лишь одно состояние. Таким образом, легко проверить, допускает ли данный ДКА некоторую строчку, так как есть лишь один путь из стартового состояния, который помечен этой строкой.

На рисунке 3 показан граф переходов ДКА, допускающий тот же язык (a|b) * a(a|b)(a|b), что и НКА на рисунке 1.

Рисунок 3. ДКА, допускающий строку (a|b) * a(a|b)(a|b).

Детерминированный конечный автомат M, допускающий данный язык:

M = {{1, 2, 3, 4, 5, 6, 7, 8}, {a, b}, D, 1, {3, 5, 6, 8}}

Функция переходов D определяется так:

Построение нка по регулярному выражению

1. Для ε НКА имеет следующий вид (0 – начальное состояние, 1 – конечное):

2. Для а, входящего в данный язык НКА:

3. Пусть N(s) и N(t) – НКА для регулярных выражений s и t.

Для регулярного выражения s|t составной НКА имеет следующий вид:

b. Для регулярного выражения st НКА:

с. Для выражения s* НКА имеет вид:

d. Для выражения в скобках (s) используется НКА N(s) как в пункте а.

Каждое новое состояние получает индивидуальное имя. Построение НКА N(r) имеет следующие свойства:

N(r) имеет количество состояний, которое не превышает количества символов более чем в 2 раза.

N(r) имеет ровно одно начальное и одно конечное состояние. Конечное состояние не имеет исходящих переходов.

Каждое состояние N(r) имеет либо 1 переход для символа из алфавита (), либо не более 2-й исходящих ε-переходов.

Преобразование нка в дка.

НКА на рисунке 1 имеет 2 перехода из состояния 0 для символа а: состояния 0 и 1. Такой переход неоднозначен, как и переход по ε. Моделирование таких НКА с помощью компьютерной программы значительно затрудняется. Определение допустимости утверждает, что должен существовать некоторый путь из начального состояния к конечному, но когда есть несколько путей для одной и той же входной строки, их надо рассматривать все, чтобы найти путь к заключительному состоянию или выяснить, что такого пути нет.

В таблице переходов НКА каждой записи соответствует множество состояний, а в таблице переходов ДКА – лишь одно. Суть преобразования состоит в том, что каждое состояние ДКА соответствует множеству состояний НКА. ДКА использует свои состояния для отслеживания всех возможных состояний, в которых НКА может находиться после чтения очередного входного символа. То есть после чтения входного потока ДКА находится в состоянии, которое представляет некоторое множество состояний НКА, достижимых из начального по пути, соответствующему входной строке. Количество таких состояний ДКА может значительно превышать количество состояний НКА (экспоненциальная зависимость), но на практике это встречается крайне редко, а порой в ДКА даже меньше состояний, чем в НКА.

Рассмотрим подобное преобразование на конкретном примере. На рисунке 4 изображен еще один НКА, который допускает язык (a|b) * a(a|b)(a|b) (как и на рисунках 1 и 3).

Рисунок 4. НКА, допускающий язык (a|b) * a(a|b)(a|b)

Изображенный на рисунке переход из состояния 13 в состояние 14 может быть представлен аналогично переходу из 8-го в 13-е состояние.

Построим ДКА для данного языка. Стартовое состояние эквивалентного ДКА представляет собой состояние A ={0, 1, 2, 4, 7}, то есть те состояния, в которые можно попасть из 0 по ε.

Алфавит входных символов представляет собой {a, b}. Из начального состояния А можно вычислить состояние, достижимое по а. Назовем это состояние В = {1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14}.

Среди состояний в А только состояние 4 имеет переход по b в состояние 5, так что ДКА имеет переход по b из А в состояние С = {1, 2, 4, 5, 6, 7}.

Если продолжить этот процесс с состояниями В и С, все множества состояний НКА будут помечены. Таким образом будем иметь множества состояний:

A = {0, 1, 2, 4, 7}

В = {1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14}

С = {1, 2, 4, 5, 6, 7}

D = {10, 12, 13, 14}

Состояние А – начальное, а состояния B, D, E – заключительные.

Полностью таблица переходов приведена ниже.

Ниже на рисунке 5 приведен сам ДКА для этого языка.

Рисунок 5. ДКА, допускающий язык (a|b) * a(a|b)(a|b)

Список использованной литературы:

Пентус А. Е., Пентус М. Р. – Теория формальных языков

А. Ахо, Р. Сети, Д, Ульман – Компиляторы: принципы, технологии, инструменты.

Регулярные выражения (РВ) - это очень удобная форма записи так называемых регулярных или автоматных языков. Поэтому РВ используются в качестве входного языка во многих системах, обрабатывающих цепочки. Рассмотрим примеры таких систем:

  • Команда grep операционной системы Unix или аналогичные команды для поиска цепочек, которые можно встретить в Web-броузерах или системах форматирования текста. В таких системах РВ используются для описания шаблонов, которые пользователь ищет в файле. Различные поисковые системы преобразуют РВ либо в детерминированный конечный автомат (ДКА), либо недетерминированный конечный автомат (НКА) и применяют этот автомат к файлу, в котором производится поиск.
  • Генераторы лексических анализаторов. Лексические анализаторы являются компонентом компилятора, они разбивают исходную программу на логические единицы (лексемы), которые могут состоять из одного или нескольких символов и имеют определенный смысл. Генератор лексических анализаторов получает формальные описания лексем, являющиеся по существу РВ, и создает ДКА, который распознает, какая из лексем появляется на его входе.
  • РВ в языках программирования.

В данной статье мы сначала ознакомимся с конечными автоматами и их видами (ДКА и НКА), и далее рассмотрим пример построения минимального ДКА по регулярному выражению.

Конечные автоматы Конечный автомат (КА) - это преобразователь, который позволяет сопоставить входу соответствующий выход, причем выход этот может зависеть не только от текущего входа, но и от того, что происходило раньше, от предыстории работы конечного автомата. Даже поведение человека, а не только искусственных систем можно описать с помощью КА. Например, ваша реакция на то что ваш сосед слушает громко музыку по ночам, будет одной после первого такого случая и совершенно другой после нескольких таких случаев. Таких предысторий может быть бесконечное число, возникает вопрос: какой памятью должен обладать КА, чтобы вести себя по разному для каждой предыстроии? Понятно, что хранить бесконечное число предысторий невозможно. Поэтому автомат как бы разбивает все возможные предыстории на классы эквивалентности. Две истории являются эквивалентными, если они одинаково влияют на поведение автомата в дальнейшем. Класс эквивалентности к которому автомат отнес свою текущую предысторию, называют еще внутренним состоянием автомата.

Рассмотрим пример работы примитивного КА:

Данный КА состоит из:

  • ленты, представленной входной цепочкой.
  • считывающее устройство.
  • блок управления, который содержит список правил переходов.

Считывающее устройство может двигаться в одном направлении, как правило слева на право, тем самым считывая символы входной цепочки. За каждое такое движение оно может считать один символ. Далее, считанный символ передается блоку управлений. Блок управления изменяет состояние автомата на основе правил переходов. Если список правил переходов не содержит правила для считанного символа, то автомат «умирает».

Теперь рассмотрим, какими способами можно задать КА. Они могут задаваться в виде графов или в виде управляющих таблиц. В виде графа КА задается следующим способом:

  • вершины графа, соответствуют состояниям КА.
  • направленные ребра, соответствуют функциям переходов (возле каждого такое ребра указывается символ, по которому выполняется переход).
  • вершина с входящим в него ребром, которое не выходит не из одного состояния, соответствует начальному состоянию.
  • конечные состояния КА помечаются жирным контуром.

В виде управляющей таблицы, так:

  • состояния КА располагаются в строках таблицы.
  • символы распознаваемого языка - в столбцах.
  • на пересечении указывается состояние в которое можно попасть из данного состояния по данному символу.

Пример КА в виде графа и в виде управляющей таблицы будет представлен ниже.

ДКА и НКА

Основное отличие ДКА и НКА состоит в том, что ДКА в процессе работы может находится только в одном состоянии, а НКА в нескольких состояниях одновременно. В качестве примера работы НКА можно привести идею американского физика Хью Эверетта от том, что любое событие разбивает мир на несколько миров, в каждом из которых это событие закончилось по-своему. Например, в одном мире Гитлер выиграл Вторую мировую войну, в другом – Ньютон вместо физики занялся бизнесом и открытие законов классической механики пришлось отложить лет на 50. Чтобы сделать какие-то выводы из работы автомата, следует изучить все «миры». После того как вся входная цепочка будет считана, мы полагаем, что НКА допускает данную цепочку, если он завершил работу в допускающем состоянии хотя бы в одном из множества «миров». Соответственно, автомат отвергает цепочку, если он завершил работу в недопускающем состоянии в каждом «мире». ДКА же принимает цепочку, это очевидно, если после считывания всей входной цепочки он оказывается в допускающем состоянии.

В большинстве случаев построить НКА гораздо проще чем ДКА. Но, не смотря на это использовать НКА для моделирования - не самая хорошая идея. К счастью, для каждого НКА можно построить ДКА, допускающий тот же входной язык. В данной статье мы не будем приводить алгоритм построения ДКА по НКА, а рассмотрим данный алгоритм на основе наглядного примера ниже.

Построение минимального ДКА по регулярному выражению

Для начала приведем список операций РВ используемый в данной статье, в порядке их приоритетности:

  • итерация (замыкание Клини), с помощью символа "*"
  • конкатенация задается с помощью пробела или пустой строки (например: ab)
  • объединение, с помощью символа "|"

Рассмотрим пример, дано регулярное выражение:

Xy* (x | y*) | ab (x | y*) | (x | a*) (x | y*)

Нужно построить минимальный ДКА по регулярному выражению и продемонстрировать распознавание корректной и некорректной цепочки.

Для начала упростим данное РВ, используя правосторонний дистрибутивный закон конкатенации относительно объединения получаем следующее РВ:

(xy* | ab | (x | a*)) (x | y*)

Теперь строим автомат по данному РВ:

По правилу преобразования конкатенации (не будем приводить правила преобразования РВ в КА, так как они довольно очевидные), получаем следующий автомат:

По правилу преобразования объединения:

По правилу преобразования конкатенации:

И в конце применяем правило преобразования замыкания и получаем εНКА. Здесь нужно оговорится, что εНКА - это НКА, который содержит ε-переходы. В свою очередь ε-переход - это переход, при котором автомат не учитывает входную цепочку или другими словами переход по пустому символу.

Избавляемся от ε-переходов («звездочкой» обозначены конечные состояния):

В данном НКА состояния s3 и s5 эквивалентны, так как δ(s3, x) = δ(s5, x) = s1 и δ(s3, y) = δ(s5, y) = s5, s7. Переименовываем состояния s6 -> s5 и s7 -> s6:

Строим ДКА по НКА:

В данном ДКА состояния p1 и p5 эквивалентны, так как
δ(p1, x) = δ(p5, x) = p4 и δ(p1, y) = δ(p5, y) = p5. Переименовываем состояния p6 -> p5 и p7 -> p6:

Данный автомат является минимальным ДКА.

Пускай δ - функция переходов, то расширенную функцию переходов, построенную по δ, обозначим δ’, и ω - входная цепочка.

Допустим на вход подается цепочка ω = aaax, мы ожидаем, что автомат окажется в одном из допускающих состояний.

δ’(p0, ε) = p0
δ’(p0, a) = δ(δ’(p0, ε), a) = δ(p0, a) = p3
δ’(p0, aa) = δ(δ’(p0, a), a) = δ(p3, a) = p5
δ’(p0, aaa) = δ(δ’(p0, aa), a) = δ(p5, a) = p5
δ’(p0, aaax) = δ(δ’(p0, aaa), x) = δ(p5, x) = p4

P4 - допустимое конечное состояние, таким образом цепочка aaax является корректной для данного автомата.

Теперь допустим, что ω = xyyb:

δ’(p0, ε) = p0
δ’(p0, x) = δ(δ’(p0, ε), x) = δ(p0, x) = p1
δ’(p0, xy) = δ(δ’(p0, x), y) = δ(p1, y) = p1
δ’(p0, xyy) = δ(δ’(p0, xy), y) = δ(p1, y) = p1
δ’(p0, xyyb) = δ(δ’(p0, xyy), b) = δ(p1, b) = ∅

Здесь мы видим, что если подать на вход автомату символ b, когда он находится в состоянии p1, то данный автомат умрет, следовательно цепочка xyyb - некорректна.

P. S. В данной статье был рассмотрен алгоритм построение ДКА по РВ, но существуют более удобные алгоритмы, в частности для программирования, но это уже тема для другой статьи…