Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы

Функция плотности распределения

Распределение Ма́ксвелла - распределение вероятности , встречающееся в физике и химии . Оно лежит в основании кинетической теории газов , которая объясняет многие фундаментальные свойства газов, включая давление и диффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нем обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и - постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма .

Распределение Максвелла

Распределение по вектору импульса

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом .

В случае идеального газа , состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где - квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где - статсумма , соответствующая знаменателю в уравнении (1), - молекулярная масса газа, - термодинамическая температура, и - постоянная Больцмана . Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C , определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости

Распределение Максвелла для вектора скорости - является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения . Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально , то будет иметь хи-квадрат распределение с тремя степенями свободы. Если - функция плотности вероятности для модуля скорости, то:

,

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость , среднюю скорость и среднеквадратичную скорость .

Наиболее вероятная скорость

наиболее вероятная скорость , - вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

Средняя скорость

Среднеквадратичная скорость

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл .
Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно , поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул).

Распределение Максвелла (распределение молекул газа по скоростям). В равновесном состоянии параметры газа (давле­ние, объем и температура) остаются неизменными, однако микро­состояния - взаимное расположение молекул, их скорости - не­прерывно изменяются. Из-за огромного количества молекул прак­тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу­чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности записывается следующим образом:

где т 0 - масса молекулы, Т - термодинамическая температура газа, k - постоянная Больцмана.

Аналогичные выражения могут быть получены для f ( у ) иf ( z ).

На основании формулы (2.15) можно записать вероятность то­го, что молекула имеет проекцию скорости, лежащую в интервалеот x до x + d х :

аналогично для других осей

Каждое из условий (2.29) и (2.30) отражает независимое событие. Поэтому вероятность того, что молекула имеет скорость, проекции которой одновременно удовлетворяют всем условиям, можно найти по теореме умножения вероятностей [см. (2.6)]:

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ­цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

и вероятность того, что скорость молекулы имеет значение, лежа­щее в интервале от до + d :

График функции (2.33) изображен на рисунке 2.5. Скорость, соответствующую максимуму кривой Максвелла, называют наивероятнейшей в. Ее можно определить, используя условие максимума функции:

Среднюю скорость молекулы (математическое ожидание) мож­но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до  (математические подробности опущены):

где М = т 0 N A - молярная масса газа, R = k N A - универсальная газовая постоянная, N A - число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекулпо видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле­кул, скорости которых лежат в определенном интервале. Полу­чим соответствующую формулу.

Так как общее число N молекул в газе обычно велико, то веро­ятность dP может быть выражена как отношение числа dN моле­кул, скорости которых заключены в некотором интервале d , к общему числу N молекул:

Из (2.34) и (2.37) следует, что

Формула (2.38) позволяет определить число молекул, скорости которых лежат в интервале от и: до i> 2 . Для этого нужно проинтег­рировать (2.38):

либо графически вычислить площадь криволинейной трапеции в пределах от 1 до 2 (рис. 2.7).

Если интервал скоростей d достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основаниемd .

На вопрос, сколько молекул имеют скорость, равную како­му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер­вал скоростей равен нулю(d = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан­ной. Это соответствует одному из положений теории вероятнос­тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны­ми опытами.

Распределение Максвелла можно рассматривать как распреде­ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана. Если молекулы находятся в ка­ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не­которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си­ ловых полях -гравитационном, электрическом и др. -называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высотыh над уровнем Земли или от потенциальной энер­гии молекулы mgh :

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.

Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо­положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическоедвижение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен­циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине­тической энергии молекулы к kT , во втором - отношение потен­циальной энергии к kT .

Для решения многих задач удобно пользоваться формулой Максвелла в форме, которая получается, если выразить скорости молекул не в обычных единицах, а в относительных, приняв за единицу скорости наивероятнейшую скорость молекул Относительная скорость и, следовательно, равна

Здесь заданная скорость молекул, наивероятнейшая скорость при данной температуре. Как мы только что выяснили,

В формулу Максвелла

дважды входит выражение Заменив в ней это выражение равным ему выражением и обозначив буквой и, можно уравнению Максвелла придать вид

Это уравнение - универсальное. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Подобное же уравнение можно составить и для функции распределения молекул по составляющим скорости по осям координат.

Если, например, идет речь о х-компоненте скорости, то, введя и здесь относительную скорость можно представить функцию распределения (12.5) в виде

Для решения различных задач, связанных с распределением молекул по скоростям, удобно пользоваться формулами распределения именно в форме (16.1) и (16.2). На рис. 19 представлена кривая распределения для относительных скоростей.

могут быть заранее вычислены для различных значений и и их и представлены в виде графиков, по которым и можно определять искомые величины. В табл. 1 представлены значения этих функций, вычисленные с достаточной для решения многих задач точностью.

Таблица 1 (см. скан)

Пусть, например, требуется найти долю частиц азота при комнатной температуре (300 К), скорости которых заключены между 275 и 276 м/с.

Прежде всего находим наивероятнейшую скорость:

Относительная скорость и равна:

Из выражения следует, что . В данном случае интервал скорости, равный достаточно мал и можно считать, что По графику, который каждый может построить по данным таблицы 1, находим, что относительной скорости соответствует значение функции

Значит, только 0,17% всех молекул обладают скоростями, лежащими в указанном в задаче интервале скоростей.

Одной из интересных задач, связанных с распределением молекул по скоростям, является определение доли всех молекул, скорости которых превышают заданную. Для решения таких задач также удобно пользоваться формулой Максвелла для относительных скоростей, т. е. формулой

Ясно, что если нужно найти долю молекул, скорости которых превышают некоторое заданное значение а значит и определенное и, то уравнение нужно проинтегрировать в пределах от заданного и до бесконечности, так что

где - это число молекул, относительные скорости которых больше заданного и. Следовательно, решение задачи сводится к вычислению стоящего здесь интеграла. В табл. 2 приведены его значения для различных значений и. Из таблицы видно, что число молекул, чьи скорости превышают наиболее вероятную, т. е. молекул составляет 57,24% всех молекул в газе - более половины.