Работа выхода из металлов. Вопрос

Высокая электропроводность металлов обусловлена наличием в них большого числа свободных электронов, оторвавшихся от атомов. Эти электроны - электроны проводимости - в металле образуют так называемый электронный газ. Свободные электроны совершают тепловое движение и обладают кинетической энергией, но удерживаются внутри металла вследствие их кулоновского взаимодействия с положительно заряженной кристаллической решеткой. Для выхода электрона из металла необходимо совершить работу против этих сил, которая называется работой выхода электронов.

Существует две причины, приводящие к возникновению работы выхода. Первая заключается в следующем. При попытке электрона покинуть металл на его поверхности появляется индуцированный положительный заряд (так называемое электростатическое зеркало). В результате между электроном и металлом возникает сила притяжения, направленная к металлу, препятствующая выходу электрона и проявляющаяся вне тела (рис.1). Работа против силы притяжения к положительно заряженному телу и составляет основную часть работы выхода . Данная часть работы выхода аналогична энергии ионизации атомов или молекул.

Кроме того, имеется вклад в работу выхода, связанный с наличием в приповерхностной области любого тела двойного электрического слоя (рис.2). Он возникает даже на идеально правильной и чистой поверхности кристалла. Отдельные электроны все время покидают поверхность металла, удаляются от него на несколько межатомных расстояний, а затем останавливаются под действием некомпенсированного заряда положительно заряженных ионов и поворачивают обратно. В результате металл оказывается окруженным тонким облаком электронов (рис.2).

Толщина двойного слоя составляет порядка нескольких межатомных расстояний (10 -10 ч10 -9 м). За счет электрического поля двойного слоя на электроны действует сила, направленная внутрь кристалла. Работа по преодолению силы, действующей за счет электрического поля двойного слоя на границе тела, является второй составляющей работы выхода . За областью двойного слоя вне кристалла на электроны действует только кулоновская сила, о которой говорилось выше.

При переходе через поверхность в вакуум потенциал электрона возрастает по сравнению с потенциалом внутри металла на некоторую величину ц , которую называют поверхностной разностью потенциалов. Она связана с работой выхода следующим соотношением:

где е - модуль заряда электрона. Обычно работу выхода выражают в электронвольтах (эВ):

1 эВ = 1,6·10-19 Джоуля.

Для удаления электрона из объёма металла за его пределы кинетическая энергия электрона должна превышать работу выхода.

где m - масса электрона, v - его скорость. При выполнении условия (2) наблюдается явление электронной эмиссии, т.е. испускание электронов с поверхности метала. Для наблюдения электронной эмиссии необходимо сообщить электронам энергию.

В зависимости от способа сообщения энергии различают четыре вида эмиссии:

  • 1. Термоэлектронная эмиссия - испускание электронов нагретыми металлами. С повышением температуры резко увеличивается число электронов, кинетическая энергия теплового движения которых больше работы выхода и явление термоэлектронной эмиссии становится более заметным.
  • 2. Фотоэлектронная эмиссия. Эмиссия электронов из металла под действием излучения. В этом случае электрон получает дополнительную энергию за счет энергии фотона:

где h , - постоянная Планка, н - частота падающего излучения.

  • 3, Вторичная электронная эмиссия - испускание электронов при бомбардировке поверхности извне пучком электронов или других частиц.
  • 4. Автоэлектронная эмиссия - эмиссия электронов из поверхности металла под действием сильного внешнего электрического поля.

В различных электронных приборах применяются все виды эмиссии, но чаще всего используется наиболее управляемая термоэлектронная эмиссия.

Работа выхода является характеристикой поверхности тела. Грани одного и того же кристалла, образованные различными кристаллографическими плоскостями или покрытые различными веществами, имеют различную работу выхода. Например, для снижения работы выхода поверхность вольфрама покрывают тонким слоем тория, цезия, бария или окислов некоторых металлов (активированные катоды). Толщина слоя составляет несколько десятков тысяч межатомных расстояний.

Электроны проводимости не покидают самопроизвольно металл в заметном количестве. Это объясняется тем, что металл представляет для них потенциальную яму. Покинуть металл удается только тем электронам, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Силы, обусловливающие этот барьер, имеют следующее происхождение. Случайное удаление электрона от наружного слоя положительных ионов решетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда.

Кулоновское взаимодействие с этим зарядом заставляет электрон, скорость которого не очень велика, вернуться обратно. Таким образом, отдельные электроны все время покидают поверхность металла, удаляются от нее на несколько межатомных расстояний и затем поворачивают обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако образует совместно с наружным слоем ионов двойной электрический слой (рис. 60.1; кружки - ионы, черные точки - электроны). Силы, действующие на электрон в таком слое, направлены внутрь металла.

Работа, совершаемая против этих сил при переводе электрона из металла наружу, ндет на увеличение потенциальной энергии электрона

Таким образом, потенциальная энергия валентных электронов внутри металла меньше, чем вне металла, на величину, равную глубине потенциальной ямы (рис. 60.2). Изменение энергии происходит на длине порядка нескольких межатомных расстояний, поэтому стенки ямы можно считать вертикальными.

Потенциальная энергия электрона и потенциал той точки, в которой находится электрон, имеют противоположные знаки. Отсюда следует, что потенциал внутри металла больше, чем потенциал в непосредственной близости к его поверхности (мы будем для краткости говорить просто «на поверхности»), на величину

Сообщение металлу избыточного положительного заряда увеличивает потенциал как на поверхности, так и внутри металла. Потенциальная энергия электрона соответственно уменьшается (рис. 60.3, а).

Напомним, что за начало отсчета приняты значения потенциала и потенциальной энергии на бесконечности. Сообщение отрицательного заряда понижает потенциал внутри и вне металла. Соответственно потенциальная энергия электрона возрастает (рис. 60.3, б).

Полная энергия электрона в металле слагается из потенциальной и кинетической энергий. В § 51 было выяснено, что при абсолютном нуле значения кинетической энергии электронов проводимости заключены в пределах от нуля до совпадающей с уровнем Ферми энергии Етах. На рис. 60.4 энергетические уровни зоны проводимости вписаны в потенциальную яму (пунктиром изображены незанятые при уровни). Для удаления за пределы металла разным электронам нужно сообщить не одинаковую энергию.

Так, электрону, находящемуся на самом нижнем уровне зоны проводимости, необходимо сообщить энергию для электрона, находящегося на уровне Ферми, достаточна энергия

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода. Работу выхода принято обозначать через где Ф - величина, называемая потенциалом выхода.

В соответствии со сказанным выше, работа выхода электрона из металла определяется выражением

Мы получили это выражение в предположении, что температура металла равна 0 К. При других температурах работу выхода также определяют как разность глубины потенциальной ямы и уровня Ферми, т. е. распространяют определение (60.1) на любые температуры. Это же определение применяется и для полупроводников.

Уровень Ферми зависит от температуры (см. формулу (52.10)). Кроме того, из-за обусловленного тепловым расширением изменения средних расстояний между атомами слегка изменяется глубина потенциальной ямы Это приводит к тому, что работа выхода немного зависит от температуры.

Работа выхода очень чувствительна к состоянию поверхности металла, в частности к ее чистоте. Подобрав надлежащим образом покрытие поверхности, можно сильно снизить работу выхода. Так, например, нанесение на поверхность вольфрама слоя окисла щелочноземельного металла (Са, Sr, Ва) снижает работу выхода с 4,5 эВ (для чистого W) до 1,5-2.

Проводимости в кристалле находятся в потенциальной яме. Выход из нее требует совершения работы по преодолению силы, действующей на электрон со стороны кристалла. Найдем эту силу. Обладая энергией теплового движения, электроны могут выскакивать из кристалла на расстояние в несколько периодов. Вышедший из кристалла и находящийся у его поверхности на расстоянии х электрон индуцирует в металле заряд е + (рис.97). Этот наведенный заряд действует на вышедший электрон так, как если бы он был сосредоточен под поверхностью металла на глубине х в точке, симметричной той, в которой находится электрон (см. Эл-во §5). Индуцированный заряд е + называется электрическим изображением заряда е - . Оба точечные заряда притягиваются друг к другу с силой Кулона . (14.1)

Но это и есть сила притяжения металлом вышедшего из него электрона. Под действием этой силы электрон втягивается обратно в металл. Чтобы удалить электрон из металла, надо совершить работу по преодолению этой силы, перемещая электроны на бесконечность из точки, расположенной на расстоянии х 0 от поверхности металла. В качестве х 0 можно взять межатомное расстояние.

На рис.98 показана зависимость потенциальной энергии электрона от расстояния х до атомной плоскости - стенки металла. Энергетическое расстояние еj от уровня Ферми до нулевого уровня называют термодинамической работой выхода электрона , величину j - потенциалом выхода . Уровень Е с обозначает дно зоны проводимости, где Е = 0. У металлов работа выхода еj заключена в пределах 1,8 ¸ 5,3 эВ. Меньше всего она у щелочных металлов, больше - у золота, серебра, платины (табл. 14.1).

Большое влияние на работу выхода оказывают мономолекулярные адсорбированные слои . Например, слой атомов цезия Cs на вольфраме W (рис.99). Цезий щелочной металл. Его внешний, валентный электрон связан с ядром значительно слабее, чем валентные электроны в вольфраме. Поэтому атомы цезия отдают вольфраму свои валентные электроны и превращаются в положительные ионы. Между этими ионами и их электрическими изображениями в вольфраме возникает сила притяжения, удерживающая ионы цезия на поверхности вольфрама . Поле этого двойного электрического слоя помогает выходу электронов из вольфрама. По этому в присутствии слоя цезия работа выхода электрона из вольфрама уменьшается с 4,54 эВ до 1,38 эВ. Подобно цезию действуют одноатомные слои бария Ba, церия Cе, тория Th и др.


2. Термоэлектронная эмиссия .

С повышением температуры металла поверхность Ферми разрыхляется, энергия электронов увеличивается, и они поднимаются на более высокие уровни (рис.100). Соответственно уменьшается работа выхода электронов. Поэтому концентрация вылетевших из кристалла электронов в пристеночном слое растет. Процесс испускания электронов нагретым металлом называется термоэлектронной эмиссией .

Формально термоэлектронная эмиссия есть всегда, когда Т > 0 К. Но заметной она становится при температурах Т > 800 К.

Облако термоэлектронов находится в динамическом равновесии. Число вылетевших из металла электронов в каждый промежуток времени примерно равно числу электронов, втянутых в металл. Поэтому суммарный ток эмиссии равен нулю.

На основе термоэлектронной эмиссии построен ламповый вакуумный диод (рис.101). Здесь К - катод, обычно нагреваемая вольфрамовая спираль, А - анод, холодная металлическая пластина обычно цилиндрической формы. По оси этого цилиндра натягивается спираль катода. Оба электрода помещаются в стеклянный сосуд с высоким вакуумом.

Если между катодом и анодом создавать электрическое поле с напряжением U , как показано на рис.101, то термоэлектроны под действием этого поля будут перемещаться от катода к аноду. Возникает электрический ток в вакууме . Вольтамперная характеристика вакуумного диода показана на рис.102. С повышением анодного напряжения U ток I через анод растет почти пропорционально U . Но при достижении некоторого значенья I нас перестает увеличиваться. Это предельное значение I нас называют ток насыщением . Он возникает тогда, когда все электроны, вылетевшие из нагретого катода, захватываются полем и переносятся к аноду.

С повышением температуры катода ток насыщения увеличивается. Разделив ток насыщения на поверхность S катода, получаем плотность тока насыщения j нас = i нас çS . В 1901г. Оуэн Ричардсон , исходя из классических представлений, теоретически нашел зависимость плотности тока насыщения от температуры поверхности катода. Уточненная Дешманом в 1923г. с учетом квантовых представлений, зависимость j нас (Т ) имеет вид: . Формула Ричардсона-Дэшмана (14.2)

Здесь еj - работа выхода, А - константа, имеющая разное значение у разных металлов и колеблющаяся около теоретического значения А = 1,2·10 6 Аç (м 2 К 2).

3. Контактная разность потенциалов .

Рассмотрим процессы, происходящие при контакте двух разных металлов. Допустим, до электрического контакта металл 1 (на рис.103 слева) имеет работу выхода еj 1 , а работа выхода металла 2 больше, j 2 > j 1 .

Приведем металлы в состояние электрического контакта , то есть сблизим их до такого расстояния, при котором возможен эффективный обмен электронами . Поскольку работа выхода электронов из металла 2 больше, то уровень Ферми в металле 2 ниже, чем в металле 1. В результате электроны проводимости с уровня Ферми металла 1 начинают переходить на уровень Ферми металла 2.

В результате такого перехода электронов металл 2 заряжается отрицательно, энергия электронов и, соответственно, уровень Ферми в нем повышаются. Металл 1 заряжается положительно, энергия электронов и уровень Ферми в нем понижаются. Между металлами возникает контактная разность потенциалов j 12 .

Суммарное перетекание зарядов прекратится, когда уровни Ферми сравняются, а разность потенциалов между проводниками будет равна разности потенциалов выхода , j 12 = j 2 - j 1 , и встречные потоки электронов сравняются n 21 =-n 12 (рис.103 справа). Контактная разность потенциалов между проводниками создает для электронов, переходящих в проводник с большей работой выхода, потенциальный барьер высотой еj 12 .

Оценим количество электронов, перетекающих из одного металла в другой при возникновении контактной разности потенциалов j 12 . Будем считать, что между контактирующими металлами остается зазор шириной d , а заряды концентрируются на контактирующих поверхностях. Тогда заряд Q на каждой из поверхностей, необходимый для создания напряжения j 12 , найдется из формулы плоского конденсатора, . (14.3)

Как видно из таблицы 14.1, контактная разность потенциалов В. Расстояние d между металлами не может быть меньше параметра решетки а » 0,3 нм. Полагая j 12 =1 В и d = 0,3 нм, получаем максимальную плотность заряда на контактирующих поверхностях.

.

Разделив на заряд электрона получаем, что на 1 м 2 поверхности приходится 2·10 17 электронов. Если диаметр атомов взять равным постоянной решетки а = 0,3 нм, то на 1 м 2 поверхности в одноатомном слое металла размещается атомов. Если атомы металла содержат по одному валентному электрону, то для создания контактной разности потенциалов 1 В потребовалось всего лишь (2×10 17 ç 10 19)´100% = 2% электронов проводимости одноатомного поверхностного слоя.

4. Закон Вольта .

Контактную разность потенциалов открыл в девяностых годах XVIII века итальянец Александр Вольта . В серии экспериментов 1792-1794 годов он установил, что в цепочке из ряда последовательно соединенных металлов контактная разность потенциалов зависит лишь от крайних металлов . Этот опытный факт называется законом Вольта . Действительно, пусть имеется цепочка из металлов 1,2,3,4 (рис.104). Работа выхода металлов еj 1 , еj 2 , еj 3 , еj 4 . На границе каждой пары возникает контактная разность:

(14.4)

Просуммировав левые и правые части, получаем: . (14.5)

Сумма всех контактных ЭДС (левой части равенства) равна контактной ЭДС крайних металлов в цепочке (правая часть равенства). Если концы цепи замкнуть, то независимо от количества звенев сумма контактных разностей потенциалов равна нулю. Тока в цепи нет.

5. Термо-ЭДС .

Сумма контактных разностей потенциалов в замкнутой цепи равна нулю лишь при условии, что температуры всех контактов одинаковы. В 1821 г. Томас Зеебек , сжимая концы висмутовой и медной пластинок теплыми пальцами обнаружил, что если цепь замкнута, то в ней протекает ток. Это явление возникновения ЭДС в цепи из разных металлов при перепаде температур между спаями называют эффектом Зеебека или термоэлектричеством . В рамках классической электронной теории можно дать простое толкование явлению Зеебека и получить зависимость термо-ЭДС от перепада температур.

Пусть имеется замкнутая цепь из двух металлов 1 и 2 со спаями A и B (рис.105). Полагаем, что электроны проводимости на верхних уровнях зоны проводимости распределяются в силовом поле решетки по закону Больцмана.

(14.6), (14.7)

Здесь n 01 и n 02 - концентрация электронов проводимости на уровнях Ферми. В силу полной заполняемости этих уровней будем полагать n 01 = n 02 ; U 1 и U 2 - потенциальная энергия электронов в металлах 1 и 2. Она может изменяться от нуля на уровне Ферми до еj (работа выхода) на нулевом уровне. Разделим первое уравнение на второе.

Разделив разность U 1 -U 2 на заряд электрона е , получаем концентрационную разность потенциалов между металлами 1 и 2. . (14.9)

Если температуры спаев Т А и Т B одинаковы, то концентрационная ЭДС в замкнутой цепи, так же, как контактная разность потенциалов, равна нулю. Тока в цепи нет. Если же температуры спаев разные, Т А ¹ Т B , то в цепи возникает термо-ЭДС (рис.106). Концентрационные перепады потенциалов в контактах А и B разные.

. (14.10)

Концентрация свободных электронов слабо зависит от температуры. Поэтому можно полагать, что n 1 A = n 1В = n 1 , n 2 A = n 2В = n 2 . ЭДС, возникающая в цепи, равна . (14.11)

Учитывая грубость классических приближений, обычно выделяют лишь температурную зависимость, которая хорошо подтверждается опытом при малых перепадах температур, . (14.12)

Коэффициент а называют дифференциальной термо-ЭДС пары металлов . В таблице 14.2 приведены значения а для наиболее употребительных металлов в паре с платиной. Чтобы определить величину а пары металлов без платины, надо найти разность значений а в таблице. Например, для пары Bi - Sb, а = -65,0 - 47,0 = -112,0 мкВç К. Для пары медь - константан а = +7,4 - (-34,4) = 48,8 мкВç К.

Термо-ЭДС, возникающая в цепи из разных металлов, широко применяется для измерения температур в диапазоне от 0 К до » 1000°С. Соответствующее устройство из двух разных металлов называется термопарой . Один спай термопары поддерживается при постоянной температуре, например при 0 о С в сосуде с тающим льдом, другой помещают в ту среду, температуру которой хотят измерить. О величине температуры можно судить как по величине термотока, измеряемого гальванометром, так и более точно по величине термо-ЭДС, измеряемой методом компенсации. С помощью термопар можно измерять температуру с точностью до сотых долей градуса.

6. Эффект Пельтье,1834 г .

Он обратен эффекту Зеебека и состоит в том, что при пропускании тока по цепи из разных металлов один контакт у металла нагревается, другой охлаждается .

Пусть в цепи из двух разных металлов действует источник тока - батарея Б. В результате в цепи идет постоянный ток I (рис.107). Проходя спай B , электроны, идущие по цепи на рисунке против часовой стрелки, дополнительно ускоряются полем контактного потенциала. Их скорость дрейфа увеличивается, поэтому при столкновении с узлами электроны передают им большую, по сравнению со средней, энергию. Спай В нагревается больше, чем рядом расположенные участки проводников.

В спае А электроны тормозятся контактным полем, их скорость дрейфа уменьшается, поэтому спай А нагревается меньше, чем рядом расположенные участки проводов. Кроме того, для установления равновесия этих электронов с электронным газом им необходимо приобрести еще энергию. Эту энергию они черпают из решетки. В результате спай А охлаждается больше, чем нагревается. В итоге теплота в спае А поглощается.

Выделяющаяся или поглощающаяся теплота Пельтье Q П в контакте пропорциональна заряду It , прошедшему через контакт. . (14.13)

Здесь П - коэффициент Пельтье связан с дифференциальной термо-ЭДС соотношением: П = а DT .(14.14)

Где DТ - разность температур между контактами.

Эффект Пельтье позволяет создавать малогабаритные холодильные устройства . Их особенность в том, что изменяя направление тока в цепи, можно один и тот же контакт заставить как поглощать тепло (холодильник), так и выделять его (нагреватель).

7. Эффект Томсона.

В 1853 - 54 г.г. Рудольф Клаузиус и Уильям Томсон независимо друг от друга применили к явлениям термоэлектричества принципы термодинамики. В процессе построения термодинамической теории термоэлектричества Томсон установил, что неравномерно нагретый проводник должен вести себя как система находящихся в контакте физически разнородных участков. На этом основании Томсон пришёл к заключению и подтвердил его экспериментально, что в однородном неравномерно нагретом проводнике должно выделяться или поглощаться тепло Пельтье (тепло Томсона). Само явление назвали эффектом Томсона.

Принципиальная схема экспериментальной установки изображена на рис.108

Концы двух одинаковых проводящих стержней помещены в два термостата с разными температурами Т 1 и Т 2 . Допустим, Т 1 > Т 2 . Тогда градиент температуры в верхнем стержне направлен по току I , а в нижнем - против тока. В результате в одном стержне выделяется тепло Томсона (его температура выше), а в другом - поглощается.

Знак эффекта у разных проводников разный. В висмуте и цинке, например, тепло выделяется, если поток тепла и электрический ток совпадают по направлению (на рисунке нижний проводник). А в Fe, Pt, Sb при тех же условиях тепло поглощается. С изменением направления тока знак эффекта во всех проводниках меняется.

Тепло Томсона Q, выделяющееся в проводнике, пропорционально перепаду температур ΔТ , току I , протекающему по проводнику, и времени t Q = σ ΔTIt.

Здесь σ - коэффициент Томсона. Он зависит от материала провода и от его температуры. Коэффициент σ невелик. У металлов он порядка 10 -5 Вç К. За положительное направление тока принимают направление градиента температур, то есть направление от холодного конца проводника к горячему. Если тепло при этих условиях выделяется (проводник нагревается), эффект Томсона считается положительным.

Количественно эффект Томсона исследовал в 1867 г. Франсуа Леру . В установке, собранной по схеме рис. 108, к поверхности стержней он присоединял спаи термопар. Пока тока через стержни не было, термоЭДС в цепи термопар была равна нулю. При включении тока через стержни появлялась термоЭДС, величина и знак которой позволяли определить коэффициент Томсона σ.

8. Закон Джоуля - Ленца в замкнутой цепи всегда выполняется. Суммарный эффект Пельтье и Томсона в замкнутой цепи равен нулю, поскольку наряду с участками цепи, где тепло Пельтье и Томсона выделяется, всегда есть участки, где такое же тепло поглощается.

Цель работы : построение и изучение вольтамперной характеристики двухэлектродной лампы (диода); исследование зависимости плотности тока насыщения термоэлектронной эмиссии от температуры катода и определение работы выхода электрона из вольфрама методом прямых Ричардсона.

Теоретическое введение

В этой лабораторной работе рассмотрим, как простые модели металла могут быть использованы для объяснения термоэлектронной эмиссии электронов.

Многие физические свойства металлов можно объяснить, основываясь на модели свободных электронов. В этой модели валентные электроны атомов металла считаются полностью свободными в пространстве, ограниченном поверхностью. Именно валентные электроны обуславливают электропроводность металла, и по этой причине их называют электронами проводимости и отличают от электронов, заполняющих оболочки ионных остовов.

Следующее доказательство правильности представления о свободных электронах в металлах мы обнаруживаем в явлениях термоэлектронной эмиссии. Известно (Ричардсон, 1903 г.), что электроны самопроизвольно выделяются из раскаленных металлов и что в отсутствие внешнего электрического поля они образуют электронное облако вокруг нагретого тела. Число таких электронов можно определить, измерив ток, возникающий при включении внешнего электрического поля.

Теоретически явление термоэлектронной эмиссии можно объяснить, используя модель свободных электронов. В металле электроны проводимости могут двигаться свободно, участвуя в тепловом движении. Так как они удерживаются внутри металла, то значит, вблизи поверхности металла существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла . Так как электрон – заряженная частица, то существование работы выхода показывает, что в поверхностном слое металла существует электрическое поле, а следовательно, электрический потенциал при переходе через этот поверхностный слой меняется на некоторую величину φ , которая, так же как и работа выхода, является характеристикой металла. Эта поверхностная разность потенциала связана с работой выхода очевидным соотношением:

где e – заряд электрона.

Изменение потенциала внутри металла в отсутствие тока можно наглядно представить при помощи диаграммы (рис.13.1). По вертикальной оси отложена потенциальная энергия электрона E p , то есть , причём значение потенциала вне металла принято равным нулю. Потенциальная энергия электрона вне металла постоянна; в поверхностном слое она быстро изменяется, а именно уменьшается на величину работы выхода, а внутри металла опять становится постоянной. Так что распределение потенциальной энергии электрона внутри металла представляется в виде потенциальной ямы (ящика).

Можно указать две причины возникновения работы выхода . Одна заключается в индукционном действии удаляемого электрона из металла . Такой электрон вызывает на поверхности металла положительный индуцированный заряд, отчего между электронами и металлом возникает сила притяжения, препятствующая удалению электрона. Вторая заключается в том, что вылетевшие из металла электроны образуют электронное облако . В результате у поверхности металла возникает тонкий двойной электрический слой, электрическое поле которого препятствует вылету электронов из металла.

Если электрон внутри металла имеет кинетическую энергию E к1 меньшую, чем глубина потенциального ящика (рис.13.1): , то такой электрон не сможет покинуть металл. Если же его кинетическая энергия , то электрон вылетает из металла. Условия вылета электрона из металла:

где m – масса электрона, v – его скорость.

Работа выхода для металлов имеет порядок нескольких электрон-вольт (1 эВ=1.6 . 10 -19 Дж). Величина энергии теплового движения равна , и при комнатной температуре Т =300 К она равна 0.02 эВ (то есть ). Поэтому при комнатной температуре подавляющее большинство электронов проводимости находится внутри металла.

Зависимость плотности тока насыщения j н () от температуры катода Т известна в литературе под названием формулы Ричардсона-Дэшмена:

, (13.3)

где k – постоянная Больцмана, равная 1.38 . 10 -23 Дж/К; В – постоянная, величина которой для многих чистых металлов лежит в пределах: (0.6÷162)А/(м 2. К 2).

Рассмотрим, как классическая статистическая физика объясняет эту зависимость. Термоэлектронная эмиссия заключается в том, что быстрые электроны металла, обладающие кинетической энергией теплового движения, большей, чем работа выхода, встречая поверхность металла, преодолевают потенциальный барьер на поверхности и выходят за пределы металла. Для этого надо найти число электронов, ударяющихся за секунду о единицу поверхности металла и причем таких, у которых кинетическая энергия перпендикулярной к поверхности составляющей скорости движения, например по оси ОХ , достаточна для преодоления потенциального барьера. Если обозначим через n 1 число таких электронов, то

Далее, используя закон распределения Максвелла по скоростям, нужно найти число электронов, для которых . Число электронов n в единице объема, скорость которых лежит в интервале скоростей между v и (v+dv), равно (распределение Максвелла)

. (13.5)

Аналогично число электронов в единице объема с компонентой скорости между v x и (v x +dv x) равно

, (13.6)

поскольку , .

Электроны в атоме.

В соответствии с электронной теорией все окружающие нас вещества состоят из мельчайших частиц – атомов.

Атом, в свою очередь состоим из более мелких частиц, основными из которых являются протоны , нейтроны и электроны .

Протоны имеют положительный электрический заряд,

электроны – отрицательный, равный по величине заряду протона,

нейтроны электрически нейтральны, их заряд равен нулю.

Протоны и нейтроны образуют ядро, в котором сосредоточена практически вся масса атома. Вокруг ядра под влиянием его притяжения движутся по определенным замкнутым орбитам отрицательно заряженные электроны.

В нормальном состоянии атом содержит одинаковое количество протонов и электронов и поэтому электрически нейтрален .

Количество протонов, нейтронов и электронов в атоме зависит от типа химического элемента составной частью, которого он является. Например, в атоме водорода вокруг ядра вращается только один электрон, в атоме меди – 29 , в атоме золота – 79 .

Число электронов вращающихся вокруг ядра, всегда равно порядковому номеру элемента в периодической системе элементов Д.И.Менделеева. Например, атом 92 -го элемента таблицы (урана ) имеет 92 электрона, вращающихся вокруг ядра по многочисленным орбитам.

Вращающиеся в атоме электроны, которые расположены на внешних орбитах, связаны с ядром слабее, чем электроны, находящиеся на внутренних, близких к ядру орбитах. Поэтому под действием соседних атомов или вследствие других причин внешние электроны могут покинуть свою орбиту, что повлечет за собой изменение электрического состояния атома.

Электроны, расположенные на внешних орбитах атомов, называются валентными электронами. Они определяют химическую активность вещества, т.е. участвуют в создании химической связи между атомами.

Электроны, освободившиеся от внутриатомных связей, получили название свободных электронов. Они перемещаются внутри вещества между атомами в различных направлениях и с различными скоростями.

При наличии внешнего электрического поля беспорядочное движение свободных электронов становится упорядоченным, направленным . В результате − возникает электрический ток.



Чем больше свободных электронов имеет вещество, тем выше его электропроводность. Этим и объясняется хорошая проводимость металлов, а также деление твердых тел по способности их проводить электрический ток на проводники, полупроводники и диэлектрики.

Теряя или приобретая электроны, нейтральный в электрическом отношении атом становится заряженным. Такой атом называется ионом. Процесс отрыва электронов от атома или присоединения к атому лишнего электрона в результате, которого образуется положительный или отрицательный ион, носит название ионизации атома. Ионы, имеющие разноименные заряды, притягиваясь, друг к другу, образуют молекулы.

Работа выхода электронов

Дляработы электронных приборов необходимы свободные электроны. Только в этом случае они смогут выполнять функции электрического тока. Как получить такие электроны? Задача заключается лишь в том, чтобы оторвать их от ядра и при необходимости извлечь из вещества. Но оказывается это возможно лишь при выполнении определенных условий, речь о которых и пойдет ниже.

При температуре абсолютного нуля (Т = 0 К) и отсутствии других источников возбуждения электроны в атомах любого вещества занимают уровни с наименьшей энергией. В проводниках, обладающих высокой концентрацией электронов в зоне проводимости, распределение электронов по величинам энергии можно изобразить графиком, названным распределением Ферми . По оси абсцисс отложено значение энергии, а по оси ординат – количество электронов. Из графика рис, 1.4 , (кривая 1) видно, что при температуре абсолютного нуля нет электронов, обладающих энергией, большей W F (уровень Ферми).

Величина W F зависит от физических свойств материала и определяется выражением

где h постоянная планка; m e - масса электрона; N – число свободных электронов в 1 кубическом см проводника.

В металлах N ≈ 10 22 …10 23 . Максимальная энергия W F электронов внутри металла достигает десятков электрон-вольт. Однако выход электронов за поверхность металла при температуре абсолютного нуля и отсутствии внешних воздействий (освещение поверхности проводника, бомбардировка пучком электронов и т.п.) не наблюдается. Это объясняется двумя причинами.


Во-первых , те немногие электроны, которые выходят за пределы проводника, теряют большую часть своей энергии и накапливаются на поверхности металла. Между этими электронами и положительными ионами, находящимися внутри металла у его поверхности, образуется электрическое поле, направленное от проводника к слою электронов. Совокупность положительных ионов у поверхности металла и электронов, появляющихся над поверхностью, называется двойным электрическим слоем.

Действие двойного электрического слоя на электроны, стремящиеся покинуть пределы металла, является тормозящим, так как этим электронам приходится лететь по направлению электрических силовых линий и отдавать свою энергию полю.

Во-вторых , если некоторое количество электронов все же выйдет за пределы металла, то металл будет обратно их притягивать. Объясняется это тем, что металл, лишенный части электронов, заряжается положительно и, следовательно, между ним и вылетевшими электронами возникает электрическое поле, препятствующее выходу новых электронов.

Таким образом, для отрыва от поверхности проводника электроны должны затратить работу против электрических сил, возвращающих их обратно, т.е. некоторую полную энергию

W a = W F + W 0 1.8

Величина W 0 называется работой выхода. Работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона e на пройденную разность потенциалов φ o . Поэтому

W 0 = Wa - W F = e φ 0 . 1.9

Эта работа измеряется в электрон-вольтах.

Величина работы выхода твердых тел зависит от их структуры и является физической характеристикой тела.

Чем меньше у данного проводника работа выхода, тем меньше должна быть затрата энергии для получения свободных электронов вне этого проводника.

Выход возможен также из полупроводников и диэлектриков. Однако при этом работа затрачивается не только на преодоление тормозящих электрических сил, но и на возбуждение электронов, переходящих из валентной зоны в зону проводимости.

Полная работа выхода полупроводников

eφ = eφ i + 0 1.10

Где еφ i - работа, затрачиваемая на перевод электронов из валентной зоны в зону проводимости;

еφ 0 - работа, необходимая для выхода электронов проводимости за поверхность полупроводника.

Энергетическая диаграмма, иллюстрирующая процесс выхода электронов из полупроводника приведена на рис. 1.7. У некоторых примесных полупроводников работа выхода может быть очень малой – порядка 1 эВ.

Таким образом, если электронам металлов или полупроводников сообщается извне дополнительная энергия, то выход электронов из тела оказывается возможным – происходит электронная эмиссия .

Поток свободных электронов в электровакуумных и ионных (газоразрядных) приборах возникает из металлического или полупроводникового электрода – катода. Чтобы электроны могли выйти за пределы катода, необходимо сообщить им извне некоторую энергию, достаточную для преодоления противодействующих сил. В зависимости от способа сообщения электронам добавочной энергии различают такие виды электронной эмиссии:

термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;

фотоэлектронную, при которой на поверхность катода воздействует электромагнитное излучение;

вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;

электростатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.