Проведение нервного импульса. Строение синапса

Структура нервного волокна. Проведение нервных импульсов является специализированной функцией нервных волокон, т.е. отростков нервных клеток.

Нервные волокна разделяют намякотные, или миелинизированные, и безмякотные, или немиелинизированные . Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.

Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем их соотношение в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80-95%. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.

Как показали электронно-микроскопические исследования, мие- линовая оболочка создается в результате того, что миелоцит (шван- новская клетка) многократно обертывает осевой цилиндр (рис. 2.27"), слои ее сливаются, образуя плотный жировой футляр - миелиновую оболочку. Миелиновая оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов Ранвье.

Рис. 2.27. Роль миелоцита (шванновской клетки) в образовании миелиновой оболочки в мякотных нервных волокнах: последовательные стадии спиралеобразного закручивания миелоцита вокруг аксона (I); взаимное расположение миелоцитов и аксонов в безмякотных нервных волокнах (II)

Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах диаметром 10-20 мкм длина промежутка между перехватами составляет 1-2 мм. В наиболее тонких волокнах (диаметром

1-2 мкм) эти участки имеют длину около 0,2 мм.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друг только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякот- ное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон.

Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофическую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякот- ных нервных волокнах возможно не на всем протяжении осевого цилиндра, а только в ограниченных участках - перехватах Ранвье. Это имеет важное значение для распространения нервного импульса вдоль волокна.

Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.

Проведение возбуждения в немиелинизированных и миелинизирован- ных нервных волокнах. В безмякотных нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны, от одного возбужденного участка к другому, расположенному рядом. В отличие от этого в миелинизированных волокнах потенциал действия может распространяться только скачкообразно, «перепрыгивая» через участки волокна, покрытые изолирующей миелиновой оболочкой. Такое проведение называется салыпаторным.

Прямые электрофизиологические исследования, проведенные Като (1924), а затем Тасаки (1953) на одиночных миелинизированных нервных волокнах лягушки, показали, что потенциалы действия в этих волокнах возникают только в перехватах, а участки между перехватами, покрытые миелином, являются практически невозбудимыми.

Плотность натриевых каналов в перехватах очень велика: на 1 мкм 2 мембраны насчитывается около 10 000 натриевых каналов, что в 200 раз превышает плотность их в мембране гигантского аксона кальмара. Высокая плотность натриевых каналов является важнейшим условием сальтаторного проведения возбуждения. На рис. 2.28 показано, каким образом происходит «перепрыгивание» нервного импульса с одного перехвата на другой.

В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. Разности потенциалов между соседними перехватами не существует. В момент возбуждения поверхность мембраны перехвата С становится заряженной электроотрицательно по отношению к поверхности мембраны соседнего перехвата D. Это приводит к возникновению местного (ло

Рис. 2.28.

А - немиелинизированное волокно; В - миелинизированное волокно. Стрелками показано направление тока

кального) электрического тока, который идет через окружающую волокно межтканевую жидкость, мембрану и аксоплазму в направлении, показанном на рисунке стрелкой. Выходящий через перехват D ток возбуждает его, вызывая перезарядку мембраны. В перехвате С возбуждение еще продолжается, и он на время становится рефрактерным. Поэтому перехват D способен привести в состояние возбуждения только следующий перехват и т.д.

«Перепрыгивание» потенциала действия через межперехватный участок оказывается возможным только потому, что амплитуда потенциала действия в каждом перехвате в 5-6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. При определенных условиях потенциал действия может «перепрыгнуть» не только через один, но и через два межперехватных участка - в частности, в том случае, если возбудимость соседнего перехвата снижена каким-либо фармакологическим агентом, например новокаином, кокаином и др.

Предположение о скачкообразном распространении возбуждения в нервных волокнах впервые было высказано Б.Ф. Вериго (1899). Такой способ проведения имеет ряд преимуществ по сравнению с непрерывным проведением в безмякотных волокнах: во-первых, «перепрыгивая» через сравнительно большие участки волокна, возбуждение может распространяться со значительно большей скоростью, чем при непрерывном проведении по безмякотному волокну того же диаметра; во-вторых скачкообразное распространение является энергетически более экономным, поскольку в состояние активности приходит не вся мембрана, а только ее небольшие участки в области перехватов, имеющие ширину менее 1 мкм. Потери ионов (в расчете на единицу длины волокна), сопровождающие возникновение потенциала действия в таких ограниченных участках мембраны, очень невелики, а следовательно, малы и энергетические затраты на работу натрий-калиевого насоса, необходимые для восстановления измененных ионных соотношений между внутренним содержимым нервного волокна и тканевой жидкостью.

  • См.: Физиология человека / Под ред. А. Косицкого.

Синапсы – это струтуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Сингапсы обеспечивают поляризацию проведения импульса по цепи нейронов. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротони­ческими).

Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ - нейромедиаторов, находя­щихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго ней­рона, или другой иннервируемой клетки, с которой она контактирует, - постсинаптическую часть. Область синаптического кон­такта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Электрические, или электротонические, синапсы в нервной системе мле­копитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями (кон­тактами), обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток.

Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как тол­стые миелиновые - со скоростью 5-120 м/с.

В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтатор-ное проведение возбуждения, т.е. прыжками. Между перехватами идет элек­трический ток, скорость которого выше, чем прохождение волны деполя­ризации по аксолемме.

№ 36 Сравнительная характеристика структурной организации рефлекторных дуг соматической и вегетативной нервной системы.

Рефлекторная дуга - это цепь нервных клеток, обязатель­но включающая первый - чувствительный и последний - дви­гательный (или секреторный) нейроны. Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сег­мента спинного мозга. В трехнейронной рефлекторной дуге пер­вый нейрон представлен чувствительной клеткой, который движется вначале по периферическому отростку, а затем по центральному, направляясь к одному из ядер заднего рога спинного мозга. Здесь импульс передается следующему нейрону, отросток кото­рого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот нейрон выполняет провод­никовую (кондукторную) функцию. Он передает импульс от чув­ствительного (афферентного) нейрона к двигательному (эффе­рентному). Тело третьего нейрона (эфферентного, эффекторного, двига­тельного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышца).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многоней­ронные сложные рефлекторные дуги , в построении и функциях которых участвуют нервные клетки, расположенные в вышележа­щих сегментах спинного мозга, в ядрах мозгового ствола, полу­шарий и даже в коре большого мозга. Отростки нервных кле­ток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки, fasciculi.

  • 73. Назвать основные положения биоэнергетики. Сходство и различия в использовании энергии ауто- и гетеротрофами, связь между теми и другими.
  • 74. Сформулировать понятие макроэргическая связь, макроэргическое соединение. Виды работ совершаемые живыми организмами. Связь с окислительно-восстановительными процессами.
  • 75 Особенности биологического окисления, его виды.
  • 76. Тканевое дыхание. Ферменты тканевого дыхания, их особенности, компартментализация.
  • 81)Определить понятие «Разобщение тканевого дыхания и окислительного фосфорилирования». Разобщающие факторы.
  • 82)Субстратное фосфорилирование. Биологическое значение, примеры.
  • 88) Что называют макроэргом.
  • 91. Определить поняти биологическое ок-е
  • 96) Назвать главные составные компоненты мембран, охарактеризовать липидный бислой.
  • 97)Типы черезмембранного переноса вещества, простая и облегчённая диффузия.
  • 98)Активный транспорт веществ через клетку.
  • 102.Превращения глюкозы в тканях
  • Реакции цикла Кребса
  • 105.Гликогенолиз
  • 106.Регуляция содержания глюкозы в крови
  • 107. Инсулин.
  • 112. Биохимические сдвиги сахарный диабет
  • 113. Кетоновые тела.
  • 114. Глюконеогенез
  • 121. Биологическая роль липидов.
  • 122. Механизмы эмульгирования липидов, значение процесса для их усвоения.
  • 123. Липолитические ферменты пищеварительного тракта, условия их функционирования.
  • 124. Роль желчных кислот в переваривании и всасывании липидов.
  • 125. Всасывание продуктов переваривания липидов, их превращения в слизистой кишечника и транспорт.
  • 126. Транспортные формы липидов, места их образования.
  • 127. Образование и транспорт триглицеридов в организме.
  • 130. Важнейшие фосфолипиды, биосинтез, биологическая роль. Сурфактант.
  • 131. Регуляция обмена липидов.
  • 132. Механизм влияния инсулина на содержание липидов.
  • 136.Стеаторея: определение, формы, различающиеся по происхождению. Дифференциация патогенной и панкреатической стеаторей.
  • 137. Дифференциация энтерогенной и других видов стеаторей.
  • 138. Биохимические признаки стеатореи.
  • 139. Типы гиперлипопротеинемии по данным биохитмического исследования сыворотки крови, мочи. Молекулярные дефекты.
  • 140. Типы гиполипопротеинемий (синдром Базен-Корнцвейга, болезнь Тэнжи, болезнь Норума)
  • 212. Какие биологически активные соединения можно назвать гормонами.
  • 213. В какой последовательности взаимодействуют гомоны в управлении метаболизмом.
  • 214. Назовите нейрогормоны гипофиза, и их органы мишени.
  • 216. Как регулируется актг.
  • 217. Назовите гонадотропные гормоны.
  • 219. Как регулируется продукция поратгормонаи кальцитонина.
  • 220. Охарактеризуйте природу гормонов надпочечников.
  • 221. Опишите гормональную регуляцию овогенеза.
  • 222. Раскажите об эксекреторной и инкреторной функции семенников.
  • 223. Расскажите о биологическом значении поджелудочной железы.
  • 290-291 Назвать 6 основных патологических состояний/назвать причины и лабораторные показатели…
  • 314. Механизм сокращения мышцы
  • 315. Соединительная ткань и структурой и свойствами ее основных компонентов.
  • 317. Состав нервной ткани
  • 318.Метаболизм нервной ткани
  • 319.Проведение нервного импульса
  • 319.Проведение нервного импульса

    Нервный импульс - волна возбуждения, распространяющаяся по нервному волокну, возникает при раздражении нейрона и несет сигнал о происшедшем изменении в среде (центростремительный импульс) или сигнал-команду в ответ на происшедшее изменение (центробежный импульс).

    Потенциал покоя. Возникновение и проведение импульса связано с изме­нением состояния некоторых структурных элементов нейрона. К этим струк­турам относятся натриевый насос, включающий Ыа^ 1^-АТФазу, и два типа ионопроводящих каналов - натриевый и калиевый. Их взаимодействие дает в состоянии Покоя разность потенциалов по разные стороны плазматической мембраны аксонов (потенциал покоя). Существование разницы потенциалов связано" 1) с высокой концентрацией ионов калия в клетке (в 20-50 раз выше, чем в окружении); 2) с тем, что внутриклеточные анионы (белки и нуклеиновые кислоты) не могут выходить из клетки; 3) с тем, что проницаемость мембраны для ионов натрия в 20 раз ниже, чем для ионов калия. Потенциал существует в конечном счете потому, что ионы калия стремятся выйти из клетки, чтобы уравнять внешнюю и внутреннюю концентрации. Но покинуть клетку ионы калия не могут, и это приводит к возникновению отрицательного заряда, который тормозит дальнейшее выравнивание концентраций ионов калия. Ионы хлора должны оставаться снаружи, чтобы компенсировать заряд плохо проникающего натрия, но стремяться покинуть клетку по градиенту концен­трации.

    Для поддержания мембранного потенциала (около 75 мВ) необходимо сохранять разницу концентраций ионов натрия и калия, чтобы ионы натрия, проникающие в клетку, выводились бы из нее обратно в обмен на ионы калия. " Это достигается за счет действия мембранной Nа + , г^-АТФазы, которая за счет энергии АТФ переносит ионы натрия из клетки в обмен на два иона калия, забираемого в клетку. При ненормально высокой концентрации ионов натрия во внешней среде насос увеличивает отношение Nа + /К + . Таким образом, в состоянии покоя ионы калия перемещаются по градиенту кнаружи. Одновре­менно некоторое количество калия возвращается путем диффузии Разница между этими процессами компенсируется за счет действия К" 1 ", N8"""-насоса. Ионы натрия входят внутрь по градиенту со скоростью, ограничиваемой проницаемостью мембраны для них. Одновременно ионы натрия выкачивают­ся насосом против градиента концентрации за счет энергии АТФ.

    Потенциал действия - последовательность процессов, вызываемых в нерве раздражителем. Раздражение нерва влечет за собой местную деполяризацию мембраны, снижение мембранного потенциала. Это происходит из-за вхожде­ния в клетку некоторого количества ионов натрия. Когда разница потенциалов падает до порогового уровня (около 50 мВ), проницаемость мембраны для натрия увеличивается примерно в 100 раз. Натрий устремляется по градиенту в клетку, гася отрицательный заряд на внутренней поверхности мембраны. Величина потенциала может измениться от -75 в покое до +50. Произойдет не только гашение отрицательного заряда на внутренней поверхности мембраны, но появится положительный заряд (инверсия полярности). Этот заряд препят­ствует дальнейшему поступлению натрия в клетку, и проводимость для натрия падает. Насос же восстанавливает исходное состояние. О непосредственной причине этих трансформаций сказано ниже.

    Длительность потенциала действия составляет менее 1 мс и охватывает (в отличие от потенциала покоя) лишь небольшой участок аксона. В миелинизи-рованных волокнах это участок между соседними перехватами Раньве. Если потенциал покоя изменился в степени, не достигающей пороговой, то потенци­ал действия не возникает, если же пороговое значение достигнуто, то в каждом случае развивается одинаковый потенциал действия (опять «все или ничего»).

    Движение потенциала в немиелинизированных аксонах осущес­твляется следующим образом. Диффузия ионов из участка с инверти­рованной полярностью в соседние вызывает в них развитие потенциала действия. В связи с этим, возникнув в одном месте, потенциал распространяется по всей длине аксона.

    Движение потенциала действия представляет собой нервный импульс, или распространяющуюся волну возбуждения, или проведение.

    С движением потенциала действия, с его проведением, возможно, связаны изменения концентрации ионов кальция внутри аксонов. Весь внутриклеточ­ный кальций, кроме небольшой фракции, связан с белком (концентрация свободного кальция составляет около 0,3 мМ), в то время как вокруг клетки его концентрация достигает 2 мМ. Следовательно, имеется градиент, который стремится направить ионы кальция в клетку. Природа насоса, выталкивающе­го кальций, неясна. Известно, однако, что каждый ион кальция обменивается на 3 иона натрия, которые проникают в клетку в момент нарастания потенциала действия.

    Структура натриевого канала изучена недостаточно, хотя и известен ряд фактов: 1) существенный структурный элемент канала -интегральный мембранный белок; 2) на каждый квадратный микрометр поверхности пере­хвата Ранвье приходится около 500 каналов; 3) в период восходящей фазы потенциала действия через канал проходит примерно 50 000 ионов натрия; 4) быстрое удаление ионов возможно благодаря тому, что на каждый канал в мембране имеется от 5 до 10 молекул Nа + , \ К^-АТФазы.

    Каждая молекула АТФазы должна вытолкнуть из клетки 5-10 тыс, ионов натрия для того, чтобы мог начаться следующий цикл возбуждения.

    Сопоставление скорости прохождения разных по размерам молекул позволило установить диаметр каналов - примерно 0,5 нм. Диаметр может увеличиваться на 0,1 нм. Скорость прохождения ионов натрия через канал в реальных условиях в 500 раз выше скорости прохождения ионов калия и остается выше в 12 раз даже при одинаковых концентрациях этих ионов.

    Спонтанный выход калия из клетки происходит через самостоятельные каналы, диаметр которых около

    Пороговый уровень мембранного потенциала, при котором растет его проницаемость для натрия, зависит от концентрации кальция вне клетки, ее снижение при гипокальциемии вызывает судороги.

    Возникновение потенциала действия и распространение импульса в немиелинизированном нерве происходит за счет открывания натриевого канала. Канал образован молекулами интегрального белка, его конформа-ция изменяется в ответ на рост положительного заряда окружающей среды. Рост заряда связан с входом натрия через соседний канал.

    Деполяризация, вызванная открытием канала, эффективно воздействует на соседний канал

    В миелинизированном нерве натриевые каналы сосредоточены в немиелини-зированных перехватах Ранвье (более десятка тысяч на 1 мкм) В связи с этим в зоне перехвата поток натрия оказывается в 10-100 раз большим, чем на проводящей поверхности немиелинизированного нерва. Молекулы На^ К^-АТФазы в большом количестве находятся на соседних участках нерва. Депо­ляризация одного из перехватов вызывает градиент потенциала между пере­хватами, поэтому ток быстро протекает через аксоплазму к соседнему перехва­ту, снижая там разницу потенциалов до порогового уровня. Этим обеспечива­ется высокая скорость проведения импульса по нерву - не менее чем в 2 раза быстрее, чем по немиелинизированному (до 50 м/с в немиелинизированном и до 100 м/с в миелинизированном).

    320.Передача нервных импульсов , т.е. распространение его на другую клетку, осуществляется с помощью специальных структур - синапсов , соединяющих нервное окончание и соседнюю клеткуСинаптическая щель разделяет клетки. Если ширина щели ниже 2 нм, передача сигнала происходит путем распространения тока, как вдоль аксона В большинстве синапсов ширина щели приближается к 20 нм В этих синапсах приход потенциала действия приводит к освобождению из пресинаптической мембраны медиаторного вещества, которое диффундирует через синаптическую щель и связывается со специфическим рецептором на постсинаптической мембра­не, передавая ему сигнал.

    Медиаторные вещества (нейромедиаторы) - соединения, которые находят­ся в пресинаптической структуре в достаточной концентрации, освобождаются при передаче импульса, вызывают после связывания с постсинаптической мембраной электрический импульс. Существенный признак нейромедиатора - наличие системы транспорта для его удаления из синапса Причем эта транспортная система должна отличаться высоким сродством к медиатору.

    В зависимости от характера медиатора, обеспечивающего синаптическую передачу, различают синапсы и холинэргические (медиатор - ацетилхолин), и адренэргические (медиаторы - катехоламиньг норадреналин, дофамин и, возможно, адреналин)

    Лекция № 3Проведение
    нервного
    импульса
    Строение синапса

    Нервные волокна

    Мякотные
    (миелинизированные)
    Безмякотные
    (немиелизированные)
    Чувствительные и двигательные
    волокна.
    Принадлежат в основном
    симпатической н.с.
    ПД распространяется скачкообразно
    (сальтаторное проведение).
    ПД распространяется непрерывно.
    при наличии даже слабой миелинизации
    при том же диаметре волокна - 1520 м/с. Чаще при большем диаметре 120
    м/сек.
    При диаметре волокна около 2 µм и
    отсутствии миелиновой оболочки
    скорость проведения будет составлять
    ~1 м/с

    I – немиелинизированное волокно II – миелинизированное волокно

    По скорости проведения все нервные волокна подразделяются:

    Волокна типа А – α, β, γ, δ.
    Миелинизированные. Наиболее толстые α.
    Скорость проведения возбуждения 70-120м/сек
    Проводят возбуждение к скелетным мышцам.
    Волокна β, γ, δ. Имеют меньший диаметр, меньшую
    скорость, более длительный ПД. Преимущественно
    чувствительные волокна тактильных, болевых
    температурных рецепторов, рецепторов внутренних
    органов.

    Волокна типа В – покрыты миелиновой
    оболочкой. Скорость от 3 –18 м/сек
    - преимущественно преганглионарное
    волокно вегетативной нервной системы.
    Волокна типа С – безмякотные. Очень
    малого диаметра. Скорость проведения
    возбуждения от 0-3 м/сек. Это
    постганглионарные волокна
    симпатической нервной системы и
    чувствительные волокна некоторых
    рецепторов.

    Законы проведения возбуждения в нервах.

    1) Закон анатомической и
    физиологической непрерывности
    волокна. При любом повреждении нерва
    (перерезка) или его блокады
    (новокаином), возбуждение по нерву не
    проводится.

    2) Закон 2-х стороннего проведения.
    Возбуждение проводится по нерву от
    места нанесения раздражения в обе
    стороны одинаково.
    3) Закон изолированного проведения
    возбуждения. В периферическом нерве
    импульсы распространяются по каждому
    волокну изолированно, т.е. не переходя с
    одного волокна на другое и оказывают
    действие только на те клетки, окончания
    нервного волокна которого контактируют

    Последовательность процессов, приводящих к блокаде проведения нервных импульсов под влиянием местного анестетика

    1.Диффузия анестетика через оболочку нерва и
    нервную мембрану.
    2.Фиксация анестетика в зоне рецепторов в натриевом
    канале.
    3. Блокада натриевого канала и угнетение проницаемости
    мембраны для натрия.
    4.Снижение скорости и степени фазы деполяризации
    потенциала действия.
    5.Невозможность достижения порогового уровня и
    развития потенциала действия.
    6. Проводниковая блокада.

    Синапс.

    Синапс - (от греч. «соединять, связывать).
    Это понятие ввел в 1897 г. Шеррингтон

    Общий план строения синапса

    Основные свойства синапсов:

    1.Одностороннее проведение возбуждения.
    2. Задержка проведения возбуждения.
    3. Суммация и трансформация. Выделяемые
    малые дозы медиатора суммируются и
    вызывают возбуждение.
    В результате этого частота нервных
    импульсов, приходящих по аксону
    трансформируется в иную частоту.

    4. Во всех синапсах одного нейрона
    выделяется один медиатор либо
    возбуждающего либо тормозного действия.
    5.Синапсы отличаются низкой лабильностью
    и высокой чувствительностью к химическим
    веществам.

    Классификация синапсов

    По механизму:
    Химический
    Электрический
    Электро-химический
    По расположению:
    1. нервно-мышечные По знаку:
    -возбуждающие
    2. Нервно-нервные
    - аксо-соматический -тормозные
    - аксо-дендритный
    - аксо-аксональный
    - дендро-дендрические

    Механизм проведения возбуждения в синапсе.

    Последовательность действий:

    * Поступление возбуждения в виде ПД к
    окончанию нервного волокна.
    * деполяризация пресинаптической
    мембраны и высвобождение ионов Са++
    из саркоплазматического ретикулюма
    мембраны.
    *Поступление Са++ при поступлении в
    синаптическую бляшку способствует
    высвобождению медиатора из везикул.

    ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА

    нервного импульса, передача сигнала в виде волны возбуждения в пределах одного нейрона и от одной клетки к другой. П. н. и. по нервным проводникам происходит с помощью электротонических потенциалов и потенциалов действия, которые распространяются вдоль волокна в обоих направлениях, не переходя на соседние волокна (см. Биоэлектрические потенциалы, Импульс нервный). Передача межклеточных сигналов осуществляется через синапсы чаще всего с помощью медиаторов, вызывающих появление потенциалов постсинаптических. Нервные проводники можно рассматривать как кабели, обладающие относительно низким осевым сопротивлением (сопротивление аксоплазмы - ri) и более высоким сопротивлением оболочки (сопротивление мембраны - rm). Нервный импульс распространяется вдоль нервного проводника посредством прохождения тока между покоящимися и активными участками нерва (локальные токи). В проводнике по мере увеличения расстояния от места возникновения возбуждения происходит постепенное, а в случае однородной структуры проводника экспоненциальное затухание импульса, который в 2,7 раза уменьшается на расстоянии l (константа длины). Так как rm и ri находятся в обратном отношении к диаметру проводника, то затухание нервного импульса в тонких волокнах происходит раньше, чем в толстых. Несовершенство кабельных свойств нервных проводников восполняется тем, что они обладают возбудимостью. Основное условие возбуждения - наличие у нервов потенциала покоя. Если локальный ток через покоящийся участок вызовет деполяризацию мембраны, достигающую критического уровня (порога), это приведёт к возникновению распространяющегося потенциала действия (ПД). Соотношение уровня пороговой деполяризации и амплитуды ПД, обычно составляющее не менее 1: 5, обеспечивает высокую надёжность проведения: участки проводника, обладающие способностью генерировать ПД, могут отстоять друг от друга на таком расстоянии, преодолевая которое нервный импульс снижает свою амплитуду почти в 5 раз. Этот ослабленный сигнал будет снова усилен до стандартного уровня (амплитуда ПД) и сможет продолжить свой путь по нерву.

    Скорость П. н. и. зависит от быстроты, с которой мембранная ёмкость на участке впереди импульса разряжается до уровня порога генерации ПД, что, в свою очередь, определяется геометрическими особенностями нервов, изменениями их диаметра, наличием узлов ветвления. В частности, тонкие волокна обладают более высоким ri , и большей поверхностной ёмкостью, а потому скорость П. н. и. по ним ниже. В то же время толщина нервных волокон ограничивает возможности существования большого числа параллельных каналов связи. Конфликт между физическими свойствами нервных проводников и требованиями "компактности" нервной системы был разрешен появлением в ходе эволюции позвоночных т. н. мякотных (миелинизированных) волокон (см. Нервы) . Скорость П. н. и. в миелинизированных волокнах теплокровных (несмотря на их малый диаметр - 4-20 мкм) достигает 100-120 м/сек. Генерация ПД происходит только в ограниченных участках их поверхности - перехватах Ранвье, а по межперехватным участкам П. и. и. осуществляется электротонически (см. Сальтаторное проведение). Некоторые лекарственные вещества, например анестетики, сильно замедляют вплоть до полного блока П. н. и. Этим пользуются в практической медицине для обезболивания.

    Лит. см. при статьях Возбуждение, Синапсы.

    Л. Г. Магазаник.

    Большая советская энциклопедия, БСЭ. 2012

    Смотрите еще толкования, синонимы, значения слова и что такое ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА в русском языке в словарях, энциклопедиях и справочниках:

    • ПРОВЕДЕНИЕ в Энциклопедическом словаре Брокгауза и Евфрона:
      в широком смысле пользование музыкальной мыслью в сочинении, в котором она постоянно проходит в разных голосах, в настоящем виде или …
    • ПРОВЕДЕНИЕ в Энциклопедии Брокгауза и Ефрона:
      ? в широком смысле пользование музыкальной мыслью в сочинении, в котором она постоянно проходит в разных голосах, в настоящем виде …
    • ПРОВЕДЕНИЕ в Полной акцентуированной парадигме по Зализняку:
      проведе"ние, проведе"ния, проведе"ния, проведе"ний, проведе"нию, проведе"ниям, проведе"ние, проведе"ния, проведе"нием, проведе"ниями, проведе"нии, …
    • ПРОВЕДЕНИЕ в словаре Синонимов русского языка:
      выполнение, исполнение, обведение, обманывание, осуществление, оформление, постройка, провод, проводка, произведение, прокладка, прокладывание, прочерчивание, …
    • ПРОВЕДЕНИЕ в Новом толково-словообразовательном словаре русского языка Ефремовой:
      ср. Процесс действия по знач. глаг.: проводить (1*), …
    • ПРОВЕДЕНИЕ в Словаре русского языка Лопатина:
      провед`ение, -я (к …
    • ПРОВЕДЕНИЕ в Полном орфографическом словаре русского языка:
      проведение, -я (к …
    • ПРОВЕДЕНИЕ в Орфографическом словаре:
      провед`ение, -я (к …
    • ПРОВЕДЕНИЕ в Толковом словаре русского языка Ушакова:
      проведения, мн. нет, ср. Действие по глаг. провести в 1, 2, 4, 5, 6 и 7 знач. - проводить 1 …
    • ПРОВЕДЕНИЕ в Толковом словаре Ефремовой:
      проведение ср. Процесс действия по знач. глаг.: проводить (1*), …
    • ПРОВЕДЕНИЕ в Новом словаре русского языка Ефремовой:
    • ПРОВЕДЕНИЕ в Большом современном толковом словаре русского языка:
      ср. процесс действия по гл. проводить I, …
    • САЛЬТАТОРНОЕ ПРОВЕДЕНИЕ
      проведение (лат. saltatorius, от salto - скачу, прыгаю), скачкообразное проведение нервного импульса по мякотным (миелинизированным) нервам, оболочка которых обладает относительно …
    • Ацетилхолин в Справочнике лекарственных средств:
      АЦЕТИЛХОЛИН (Асеtуlchоlinum). Ацетилхолин относится к биогенным аминам - веществам, образующимся в организме. Для применения в качестве лекарственного вещества и для …
    • ЖАН БУРИДАН в Новейшем философском словаре:
      (Buridan) (ок. 1300-ок. 1358) - французский философ и логик, представитель номинализма (в варианте терминизма). С 1328 - преподаватель факультета искусств …
    • СЕБЕСТОИМОСТЬ в Словаре экономических терминов:
      - стоимостная оценка используемых в процессе производства продукции (работ, услуг) , природных ресурсов, сырья, материалов, топлива, энергии, основных фондов, трудовых …
    • РАК МОЛОЧНОЙ ЖЕЛЕЗЫ в Медицинском словаре:
    • РАК МОЛОЧНОЙ ЖЕЛЕЗЫ в Медицинском большом словаре:
      Заболеваемость раком молочной железы значительно увеличилась за последние 10 лет: заболевание возникает у 1 из 9 женщин. Наиболее частая локализация …
    • НЕРВНЫЙ ИМПУЛЬС в Большом энциклопедическом словаре:
      волна возбуждения, распространяющаяся по нервному волокну, в ответ на раздражение нейронов. Обеспечивает передачу информации от рецепторов в центральную нервную систему …
    • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Большой советской энциклопедии, БСЭ:
      нервная система, основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков; представлена у …
    • ФИНЛЯНДИЯ в Большой советской энциклопедии, БСЭ:
      (Suomi), Финляндская Республика (Suomen Tasavalta). I. Общие сведения Ф. v государство на С. Европы. Граничит с СССР на В. (длина …
    • ФИЗИОЛОГИЯ в Большой советской энциклопедии, БСЭ:
      (от греч. physis v природа и...логия) животных и человека, наука о жизнедеятельности организмов, их отдельных систем, органов и …
    • ФИЗИКА в Большой советской энциклопедии, БСЭ:
      I. Предмет и структура физики Ф. v наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства …
    • УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ в Большой советской энциклопедии, БСЭ:
      заряженных частиц - устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического …
    • ТЕРМОДИНАМИКА НЕРАВНОВЕСНЫХ ПРОЦЕССОВ в Большой советской энциклопедии, БСЭ:
      неравновесных процессов, общая теория макроскопического описания неравновесных процессов. Она называется также неравновесной термодинамикой или термодинамикой необратимых процессов. Классическая термодинамика …
    • СССР. ЭПОХА СОЦИАЛИЗМА в Большой советской энциклопедии, БСЭ:
      социализма Великая Октябрьская социалистическая революция 1917. Образование Советского социалистического государства Февральская буржуазно-демократическая революция послужила прологом Октябрьской революции. Только социалистическая революция …
    • СССР. ЛИТЕРАТУРА И ИСКУССТВО в Большой советской энциклопедии, БСЭ:
      и искусство Литература Многонациональная советская литература представляет собой качественно новый этап развития литературы. Как определённое художественное целое, объединённое единой социально-идеологической …
    • СССР. ЕСТЕСТВЕННЫЕ НАУКИ в Большой советской энциклопедии, БСЭ:
      науки Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. …
    • СОХРАНЕНИЯ ЗАКОНЫ в Большой советской энциклопедии, БСЭ:
      законы, физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом …
    • СИЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ в Большой советской энциклопедии, БСЭ:
      взаимодействия, одно из основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в., …
    • СЕЛЕКЦИЯ ИМПУЛЬСНЫХ СИГНАЛОВ в Большой советской энциклопедии, БСЭ:
      импульсных сигналов, выделение из множества электрических видеоимпульсов (сигналов) только таких, которые обладают заданными свойствами. В зависимости от того, какие свойства …
    • САДОВСКОГО ЭФФЕКТ в Большой советской энциклопедии, БСЭ:
      эффект, появление механического вращающего момента, действующего на тело, облучаемое поляризованным эллиптически или по кругу светом. Теоретически предсказан в 1898 …
    • ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ в Большой советской энциклопедии, БСЭ:
      теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов, поэтому часто …
    • НЕРВНАЯ РЕГУЛЯЦИЯ в Большой советской энциклопедии, БСЭ:
      регуляция, координирующее влияние нервной системы (НС) на клетки, ткани и органы, приводящее их деятельность в соответствие с потребностями организма и …
    • НЕОПРЕДЕЛЁННОСТЕЙ СООТНОШЕНИЕ в Большой советской энциклопедии, БСЭ:
      соотношение, принцип неопределённости, фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты …
    • НЕЛИНЕЙНАЯ ОПТИКА в Большой советской энциклопедии, БСЭ:
      оптика, раздел физической оптики, охватывающий исследование распространения мощных световых пучков в твёрдых телах, жидкостях и газах и их взаимодействие с …
    • МЮОНЫ в Большой советской энциклопедии, БСЭ:
      (старое название - m-мезоны), нестабильные элементарные частицы со спином 1/2, временем жизни 2,2×10-6 сек и массой, приблизительно в 207 раз …
    • МНОЖЕСТВЕННЫЕ ПРОЦЕССЫ в Большой советской энциклопедии, БСЭ:
      процессы, рождение большого числа вторичных сильно взаимодействующих частиц (адронов) в одном акте столкновения частиц при высокой энергии. М. …
    • МЕДИЦИНА в Большой советской энциклопедии, БСЭ:
      (латинское medicina, от medicus - врачебный, лечебный, medeor - лечу, исцеляю), система научных знаний и практических мер, объединяемых целью распознавания, …
    • МЕДИАТОРЫ в Большой советской энциклопедии, БСЭ:
      трансмиттеры (биол.), вещества, осуществляющие перенос возбуждения с нервного окончания на рабочий орган и с одной нервной клетки на другую. Предположение, …
    • ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ в Большой советской энциклопедии, БСЭ:
      излучение (действие на вещество). Высокая мощность Л. и. в сочетании с высокой направленностью позволяет получать с помощью фокусировки световые потоки …
    • ЛАЗЕР в Большой советской энциклопедии, БСЭ:
      источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных …
    • КОМПТОНА ЭФФЕКТ в Большой советской энциклопедии, БСЭ:
      эффект, комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн …
    • КИНЕТИКА ФИЗИЧЕСКАЯ в Большой советской энциклопедии, БСЭ:
      физическая, теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. …