Производная сложной функции вывод формулы. Производная сложной функции

Проще говоря, это уравнения, в которых есть хотя бы одна с переменной в знаменателе.

Например:

\(\frac{9x^2-1}{3x}\) \(=0\)
\(\frac{1}{2x}+\frac{x}{x+1}=\frac{1}{2}\)
\(\frac{6}{x+1}=\frac{x^2-5x}{x+1}\)


Пример не дробно-рациональных уравнений:

\(\frac{9x^2-1}{3}\) \(=0\)
\(\frac{x}{2}\) \(+8x^2=6\)

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.


Алгоритм решения дробно-рационального уравнения:

    Выпишите и «решите» ОДЗ.

    Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

    Запишите уравнение, не раскрывая скобок.

    Решите полученное уравнение.

    Проверьте найденные корни с ОДЗ.

    Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.


Пример . Решите дробно-рациональное уравнение \(\frac{x}{x-2} - \frac{7}{x+2}=\frac{8}{x^2-4}\)

Решение:

Ответ: \(3\).


Пример . Найдите корни дробно-рационального уравнения \(=0\)

Решение:

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\) \(=0\)

ОДЗ: \(x+2≠0⇔x≠-2\)
\(x+5≠0 ⇔x≠-5\)
\(x^2+7x+10≠0\)
\(D=49-4 \cdot 10=9\)
\(x_1≠\frac{-7+3}{2}=-2\)
\(x_2≠\frac{-7-3}{2}=-5\)

Записываем и «решаем» ОДЗ.

Раскладываем \(x^2+7x+10\) на по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\) \(=0\)

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
\(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\) \(=0\)

Сокращаем дроби

\(x(x+5)+(x+1)(x+2)-7+x=0\)

Раскрываем скобки

\(x^2+5x+x^2+3x+2-7+x=0\)


Приводим подобные слагаемые

\(2x^2+9x-5=0\)


Находим корни уравнения

\(x_1=-5;\) \(x_2=\frac{1}{2}.\)


Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Ответ: \(\frac{1}{2}\).

§ 1 Целое и дробное рациональные уравнение

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Дробные.

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Например:

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

Например:

Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

Например:

§ 2 Решение целого рационального уравнения

Рассмотрим решение целого рационального уравнения.

Например:

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

Для этого:

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

дополнительный множитель для дроби

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

которое равносильно данному уравнению

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Приведем подобные члены многочлена и получим

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

§ 3 Решение дробного рационального уравнения

Рассмотрим решение дробного рационального уравнения.

Например:

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х - 1.

Он равен их произведению (х + 7)(х - 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

равен х - 1,

дополнительный множитель для дроби

равен х+7.

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

6.Приведем подобные члены многочлена:

7.Можно обе части разделить на -1. Получим квадратное уравнение:

8.Решив его, найдем корни

Так как в уравнении

левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

Следовательно, оба корня -27 и -1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Знаменатель дроби правой части уравнения разложим на множители

Получим уравнение

Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

Им будет выражение х(х - 5).

теперь найдем область допустимых значений уравнения

Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

дополнительным множителем для дроби

будет (х - 5),

а дополнительный множитель дроби

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 - 3х + х - 5 - х - 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

будет х = -2.

§ 4 Краткие итоги урока

Важно запомнить:

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Список использованной литературы:

  1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание