Производная от корня 7 степени. Сложные производные

Вывод формулы производной степенной функции (x в степени a). Рассмотрены производные от корней из x. Формула производной степенной функции высшего порядка. Примеры вычисления производных.

Производная от x в степени a равна a , умноженному на x в степени a минус один:
(1) .

Производная от корня степени n из x в степени m равна:
(2) .

Вывод формулы производной степенной функции

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a :
(3) .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Теперь находим производную, применяя :
;
.
Здесь .

Формула (1) доказана.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4) .

Чтобы найти производную, преобразуем корень к степенной функции:
.
Сравнивая с формулой (3) мы видим, что
.
Тогда
.

По формуле (1) находим производную:
(1) ;
;
(2) .

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0 . Найдем производную функции (3) при x = 0 . Для этого воспользуемся определением производной:
.

Подставим x = 0 :
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , .
Этот результат получается и по формуле (1):
(1) .
Поэтому формула (1) справедлива и при x = 0 .

Случай x < 0

Снова рассмотрим функцию (3):
(3) .
При некоторых значениях постоянной a , она определена и при отрицательных значениях переменной x . А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n - целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x . Например, при n = 3 и m = 1 мы имеем кубический корень из x :
.
Он определен и при отрицательных значениях переменной x .

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a , для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции :

.
Здесь . Но
.
Поскольку , то
.
Тогда
.
То есть формула (1) справедлива и при :
(1) .

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3) .
Производную первого порядка мы уже нашли:
.

Вынося постоянную a за знак производной, находим производную второго порядка:
.
Аналогичным образом находим производные третьего и четвертого порядков:
;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом , , то n -я производная является постоянной:
.
Тогда все последующие производные равны нулю:
,
при .

Примеры вычисления производных

Пример

Найдите производную функции:
.

Решение

Преобразуем корни к степеням:
;
.
Тогда исходная функция приобретает вид:
.

Находим производные степеней:
;
.
Производная постоянной равна нулю:
.

Этим видео я начинаю длинную серию уроков, посвященную производным. Этот урок состоит из нескольких частей.

В первую очередь, я расскажу вам, что вообще такое производные и как их считать, но не мудреным академическим языком, а так, как я сам это понимаю и как объясняю своим ученикам. Во-вторых, мы рассмотрим простейшее правило для решения задач, в которых будем искать производные суммы, производные разности и производные степенной функции.

Мы рассмотрим более сложные комбинированные примеры, из которых вы, в частности, узнаете, что подобные задачи, содержащие корни и даже дроби, могут быть решены при использовании формулы производной степенной функции. Кроме того, конечно, будет множество задач и примеров решений самого разного уровня сложности.

Вообще, изначально я собирался записать коротенький 5-минутный ролик, но сами видите, что из этого получилось. Поэтому хватит лирики — приступаем к делу.

Что такое производная?

Итак, начнем издалека. Много лет назад, когда деревья были зеленее, а жизнь была веселее, математики задумались вот над чем: рассмотрим простую функцию, заданную своим графиком, назовем ее $y=f\left(x \right)$. Разумеется, график существует не сам по себе, поэтому нужно провести оси $x$, а также ось $y$. А теперь давайте выберем любую точку на этом графике, абсолютно любую. Абсциссу назовем ${{x}_{1}}$, ордината, как не трудно догадаться, будет $f\left({{x}_{1}} \right)$.

Рассмотрим на том же графике еще одну точку. Не важно, какую, главное, чтобы она отличалась от первоначальной. У нее, опять же, есть абсцисса, назовем ее ${{x}_{2}}$, а также ордината — $f\left({{x}_{2}} \right)$.

Итак, мы получили две точки: у них разные абсциссы и, следовательно, разные значения функции, хотя последнее — необязательно. А вот что действительно важно, так это что, что из курса планиметрии нам известно: через две точки можно провести прямую и, причем, только одну. Вот давайте ее и проведем.

А теперь проведем через самую первую из них прямую, параллельную оси абсцисс. Получим прямоугольный треугольник. Давайте его обозначим $ABC$, прямой угол $C$. У этого треугольника возникает одно очень интересное свойство: дело в том, что угол$\alpha $, на самом деле, равен углу, под которым пересекается прямая $AB$ с продолжением оси абсцисс. Судите сами:

  1. прямая $AC$параллельна оси $Ox$ по построению,
  2. прямая $AB$ пересекает $AC$ под $\alpha $,
  3. следовательно, $AB$ пересекает $Ox$под тем же самым $\alpha $.

Что мы можем сказать об $\text{ }\!\!\alpha\!\!\text{ }$? Ничего конкретного, разве что в треугольнике $ABC$отношение катета $BC$ к катету $AC$ равно тангенсу этого самого угла. Так и запишем:

Разумеется, $AC$ в данном случае легко считается:

Точно также и $BC$:

Другими словами, мы можем записать следующее:

\[\operatorname{tg}\text{ }\!\!\alpha\!\!\text{ }=\frac{f\left({{x}_{2}} \right)-f\left({{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}}\]

Теперь, когда мы все это выяснили, давайте вернемся к нашему графику и рассмотрим новую точку $B$. Сотрем старые значения и возьмем и возьмем $B$ где-нибудь поближе к ${{x}_{1}}$. Вновь обозначим ее абсциссу за ${{x}_{2}}$, а ординату — $f\left({{x}_{2}} \right)$.

Вновь рассмотрим наш маленький треугольник $ABC$и $\text{ }\!\!\alpha\!\!\text{ }$ внутри него. Совершенно очевидно, что это будет уже совсем другой угол, тангенс будет также другим потому, что длины отрезков $AC$ и $BC$ существенно изменились, а формула для тангенса угла нисколько не поменялась — это по-прежнему соотношение между изменением функции и изменением аргумента.

Наконец, продолжаем двигать $B$ все ближе к изначальной точке $A$, в результате треугольник еще уменьшится, а прямая, содержащая отрезок $AB$, все больше будет походить на касательную к графику функции.

В итоге, если продолжать сближение точек, т. е., уменьшать расстояние до нуля, то прямая $AB$, действительно, превратится в касательную к графику в данной точке, а $\text{ }\!\!\alpha\!\!\text{ }$превратится из обычного элемента треугольника в угол между касательной к графику и положительным направлением оси $Ox$.

И вот тут мы плавно переходим к определению$f$, а именно, производной функции в точке ${{x}_{1}}$ называется тангенс угла $\alpha $ между касательной к графику в точке ${{x}_{1}}$ и положительным направлением оси $Ox$:

\[{f}"\left({{x}_{1}} \right)=\operatorname{tg}\text{ }\!\!\alpha\!\!\text{ }\]

Возвращаясь к нашему графику, следует отметить, что в качестве ${{x}_{1}}$ можно выбрать любую точку на графике. Например, с тем же успехом мы могли снять штрих в точке, показанной на рисунке.

Угол между касательной и положительным направлением оси назовем $\beta $. Соответственно, $f$ в ${{x}_{2}}$ будет равна тангенсу этого угла $\beta $.

\[{f}"\left({{x}_{2}} \right)=tg\text{ }\!\!\beta\!\!\text{ }\]

В каждой точке графика будет своя касательная, а, следовательно, свое значение функции. В каждом из этих случаев помимо точки, в которой мы ищем производную разности или суммы, или производную степенной функции, необходимо взять другую точку, находящуюся на некотором расстоянии от нее, а затем устремить эту точку к исходной и, разумеется, выяснить, как в процессе такого движения будет меняться тангенс угла наклона.

Производная степенной функции

К сожалению, подобное определение нас совершено не устраивает. Все эти формулы, картинки, углы не дают нам ни малейшего представления о том, как считать реальную производную в реальных задачах. Поэтому давайте немного отвлечемся от формального определения и рассмотрим более действенные формулы и приемы, с помощью которых уже можно решать настоящие задачи.

Начнем с самых простых конструкций, а именно, функций вида $y={{x}^{n}}$, т.е. степенных функций. В этом случае мы можем записать следующее: ${y}"=n\cdot {{x}^{n-1}}$. Другими словами, степень, которая стояла в показателе, показывается в множителе спереди, а сам показатель уменьшается на единицу. Например:

\[\begin{align}& y={{x}^{2}} \\& {y}"=2\cdot {{x}^{2-1}}=2x \\\end{align}\]

А вот другой вариант:

\[\begin{align}& y={{x}^{1}} \\& {y}"={{\left(x \right)}^{\prime }}=1\cdot {{x}^{0}}=1\cdot 1=1 \\& {{\left(x \right)}^{\prime }}=1 \\\end{align}\]

Пользуясь этими простыми правилами, давайте попробуем снять штрих следующих примеров:

Итак, мы получаем:

\[{{\left({{x}^{6}} \right)}^{\prime }}=6\cdot {{x}^{5}}=6{{x}^{5}}\]

Теперь решим второе выражение:

\[\begin{align}& f\left(x \right)={{x}^{100}} \\& {{\left({{x}^{100}} \right)}^{\prime }}=100\cdot {{x}^{99}}=100{{x}^{99}} \\\end{align}\]

Разумеется, это были очень простые задачи. Однако реальные задачи более сложные и они не ограничиваются одними лишь степенями функции.

Итак, правило № 1 – если функция представлена в виде других двух, то производная этой суммы равна сумме производных:

\[{{\left(f+g \right)}^{\prime }}={f}"+{g}"\]

Аналогично, производная разности двух функций равна разности производных:

\[{{\left(f-g \right)}^{\prime }}={f}"-{g}"\]

\[{{\left({{x}^{2}}+x \right)}^{\prime }}={{\left({{x}^{2}} \right)}^{\prime }}+{{\left(x \right)}^{\prime }}=2x+1\]

Кроме того, есть еще одно важное правило: если перед некоторой $f$ стоит константа $c$, на которую эта функция умножается, то $f$ всей этой конструкции считается так:

\[{{\left(c\cdot f \right)}^{\prime }}=c\cdot {f}"\]

\[{{\left(3{{x}^{3}} \right)}^{\prime }}=3{{\left({{x}^{3}} \right)}^{\prime }}=3\cdot 3{{x}^{2}}=9{{x}^{2}}\]

Наконец, еще одно очень важное правило: в задачах часто встречается отдельное слагаемое, которое вообще не содержит $x$. Например, мы можем наблюдать это в наших сегодняшних выражениях. Производная константы, т. е., числа, никак не зависящего от $x$, всегда равна нулю, причем совершенно неважно, чему равна константа $c$:

\[{{\left(c \right)}^{\prime }}=0\]

Пример решения:

\[{{\left(1001 \right)}^{\prime }}={{\left(\frac{1}{1000} \right)}^{\prime }}=0\]

Еще раз ключевые моменты:

  1. Производная суммы двух функций всегда равна сумме производных: ${{\left(f+g \right)}^{\prime }}={f}"+{g}"$;
  2. По аналогичным причинам производная разности двух функций равна разности двух производных: ${{\left(f-g \right)}^{\prime }}={f}"-{g}"$;
  3. Если у функции присутствует множитель константа, то эту константу можно выносить за знак производной: ${{\left(c\cdot f \right)}^{\prime }}=c\cdot {f}"$;
  4. Если вся функция представляет собой константу, то ее производная всегда ноль: ${{\left(c \right)}^{\prime }}=0$.

Давайте посмотрим, как все это работает на реальных примерах. Итак:

Записываем:

\[\begin{align}& {{\left({{x}^{5}}-3{{x}^{2}}+7 \right)}^{\prime }}={{\left({{x}^{5}} \right)}^{\prime }}-{{\left(3{{x}^{2}} \right)}^{\prime }}+{7}"= \\& =5{{x}^{4}}-3{{\left({{x}^{2}} \right)}^{\prime }}+0=5{{x}^{4}}-6x \\\end{align}\]

В этом примере мы видим и производную суммы, и производную разности. Итого, производная равна $5{{x}^{4}}-6x$.

Переходим ко второй функции:

Записываем решение:

\[\begin{align}& {{\left(3{{x}^{2}}-2x+2 \right)}^{\prime }}={{\left(3{{x}^{2}} \right)}^{\prime }}-{{\left(2x \right)}^{\prime }}+{2}"= \\& =3{{\left({{x}^{2}} \right)}^{\prime }}-2{x}"+0=3\cdot 2x-2\cdot 1=6x-2 \\\end{align}\]

Вот мы и нашли ответ.

Переходим к третьей функции — она уже посерьезней:

\[\begin{align}& {{\left(2{{x}^{3}}-3{{x}^{2}}+\frac{1}{2}x-5 \right)}^{\prime }}={{\left(2{{x}^{3}} \right)}^{\prime }}-{{\left(3{{x}^{2}} \right)}^{\prime }}+{{\left(\frac{1}{2}x \right)}^{\prime }}-{5}"= \\& =2{{\left({{x}^{3}} \right)}^{\prime }}-3{{\left({{x}^{2}} \right)}^{\prime }}+\frac{1}{2}\cdot {x}"=2\cdot 3{{x}^{2}}-3\cdot 2x+\frac{1}{2}\cdot 1=6{{x}^{2}}-6x+\frac{1}{2} \\\end{align}\]

Ответ мы нашли.

Переходим к последнему выражению — самому сложному и самому длинному:

Итак, считаем:

\[\begin{align}& {{\left(6{{x}^{7}}-14{{x}^{3}}+4x+5 \right)}^{\prime }}={{\left(6{{x}^{7}} \right)}^{\prime }}-{{\left(14{{x}^{3}} \right)}^{\prime }}+{{\left(4x \right)}^{\prime }}+{5}"= \\& =6\cdot 7\cdot {{x}^{6}}-14\cdot 3{{x}^{2}}+4\cdot 1+0=42{{x}^{6}}-42{{x}^{2}}+4 \\\end{align}\]

Но на этом решение не заканчивается, потому что нас просят не просто снять штрих, а посчитать ее значение в конкретной точке, поэтому подставляем в выражение −1 вместо $x$:

\[{y}"\left(-1 \right)=42\cdot 1-42\cdot 1+4=4\]

Идем далее и переходим к еще более сложным и интересным примерам. Дело в том, что формула решения степенной производной ${{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}$ имеет еще более широкую область применения, чем обычно принято считать. С ее помощью можно решать примеры с дробями, корнями и т. д. Именно этим мы сейчас и займемся.

Для начала еще раз запишем формулу, которая поможет нам найти производную степенной функции:

А теперь внимание: до сих пор мы рассматривали в качестве $n$ лишь натуральные числа, однако ничего не мешаем рассмотреть дроби и даже отрицательные числа. Например, мы можем записать следующее:

\[\begin{align}& \sqrt{x}={{x}^{\frac{1}{2}}} \\& {{\left(\sqrt{x} \right)}^{\prime }}={{\left({{x}^{\frac{1}{2}}} \right)}^{\prime }}=\frac{1}{2}\cdot {{x}^{-\frac{1}{2}}}=\frac{1}{2}\cdot \frac{1}{\sqrt{x}}=\frac{1}{2\sqrt{x}} \\\end{align}\]

Ничего сложного, поэтому посмотрим, как эта формула поможет нам при решении более сложных задач. Итак, пример:

Записываем решение:

\[\begin{align}& \left(\sqrt{x}+\sqrt{x}+\sqrt{x} \right)={{\left(\sqrt{x} \right)}^{\prime }}+{{\left(\sqrt{x} \right)}^{\prime }}+{{\left(\sqrt{x} \right)}^{\prime }} \\& {{\left(\sqrt{x} \right)}^{\prime }}=\frac{1}{2\sqrt{x}} \\& {{\left(\sqrt{x} \right)}^{\prime }}={{\left({{x}^{\frac{1}{3}}} \right)}^{\prime }}=\frac{1}{3}\cdot {{x}^{-\frac{2}{3}}}=\frac{1}{3}\cdot \frac{1}{\sqrt{{{x}^{2}}}} \\& {{\left(\sqrt{x} \right)}^{\prime }}={{\left({{x}^{\frac{1}{4}}} \right)}^{\prime }}=\frac{1}{4}{{x}^{-\frac{3}{4}}}=\frac{1}{4}\cdot \frac{1}{\sqrt{{{x}^{3}}}} \\\end{align}\]

Возвращаемся к нашему примеру и записываем:

\[{y}"=\frac{1}{2\sqrt{x}}+\frac{1}{3\sqrt{{{x}^{2}}}}+\frac{1}{4\sqrt{{{x}^{3}}}}\]

Вот такое сложное решение.

Переходим ко второму примеру — здесь всего два слагаемых, но каждое из них содержит как классическую степень, так и корни.

Сейчас мы узнаем, как найти производную степенной функции, которая, кроме того, содержит и корень:

\[\begin{align}& {{\left({{x}^{3}}\sqrt{{{x}^{2}}}+{{x}^{7}}\sqrt{x} \right)}^{\prime }}={{\left({{x}^{3}}\cdot \sqrt{{{x}^{2}}} \right)}^{\prime }}={{\left({{x}^{3}}\cdot {{x}^{\frac{2}{3}}} \right)}^{\prime }}= \\& ={{\left({{x}^{3+\frac{2}{3}}} \right)}^{\prime }}={{\left({{x}^{\frac{11}{3}}} \right)}^{\prime }}=\frac{11}{3}\cdot {{x}^{\frac{8}{3}}}=\frac{11}{3}\cdot {{x}^{2\frac{2}{3}}}=\frac{11}{3}\cdot {{x}^{2}}\cdot \sqrt{{{x}^{2}}} \\& {{\left({{x}^{7}}\cdot \sqrt{x} \right)}^{\prime }}={{\left({{x}^{7}}\cdot {{x}^{\frac{1}{3}}} \right)}^{\prime }}={{\left({{x}^{7\frac{1}{3}}} \right)}^{\prime }}=7\frac{1}{3}\cdot {{x}^{6\frac{1}{3}}}=\frac{22}{3}\cdot {{x}^{6}}\cdot \sqrt{x} \\\end{align}\]

Оба слагаемых посчитаны, осталось записать окончательный ответ:

\[{y}"=\frac{11}{3}\cdot {{x}^{2}}\cdot \sqrt{{{x}^{2}}}+\frac{22}{3}\cdot {{x}^{6}}\cdot \sqrt{x}\]

Мы нашли ответ.

Производная дроби через степенную функцию

Но и на этом возможности формулы для решения производной степенной функции не заканчиваются. Дело в том, что с ее помощью можно считать не только примеры с корнями, но также и с дробями. Это как раз та редкая возможность, которая значительно упрощает решение таких примеров, но при этом зачастую игнорируется не только учениками, но и учителями.

Итак, сейчас мы попытаемся совместить сразу две формулы. С одной стороны, классическая производная степенной функции

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

С другой стороны мы знаем, что выражение вида $\frac{1}{{{x}^{n}}}$ представимо в виде ${{x}^{-n}}$. Следовательно,

\[\left(\frac{1}{{{x}^{n}}} \right)"={{\left({{x}^{-n}} \right)}^{\prime }}=-n\cdot {{x}^{-n-1}}=-\frac{n}{{{x}^{n+1}}}\]

\[{{\left(\frac{1}{x} \right)}^{\prime }}=\left({{x}^{-1}} \right)=-1\cdot {{x}^{-2}}=-\frac{1}{{{x}^{2}}}\]

Таким образом, производные простых дробей, где в числителе стоит константа, а в знаменателе — степень, также считаются с помощью классической формулы. Посмотрим, как это работает на практике.

Итак, первая функция:

\[{{\left(\frac{1}{{{x}^{2}}} \right)}^{\prime }}={{\left({{x}^{-2}} \right)}^{\prime }}=-2\cdot {{x}^{-3}}=-\frac{2}{{{x}^{3}}}\]

Первый пример решен, переходим ко второму:

\[\begin{align}& {{\left(\frac{7}{4{{x}^{4}}}-\frac{2}{3{{x}^{3}}}+\frac{5}{2}{{x}^{2}}+2{{x}^{3}}-3{{x}^{4}} \right)}^{\prime }}= \\& ={{\left(\frac{7}{4{{x}^{4}}} \right)}^{\prime }}-{{\left(\frac{2}{3{{x}^{3}}} \right)}^{\prime }}+{{\left(2{{x}^{3}} \right)}^{\prime }}-{{\left(3{{x}^{4}} \right)}^{\prime }} \\& {{\left(\frac{7}{4{{x}^{4}}} \right)}^{\prime }}=\frac{7}{4}{{\left(\frac{1}{{{x}^{4}}} \right)}^{\prime }}=\frac{7}{4}\cdot {{\left({{x}^{-4}} \right)}^{\prime }}=\frac{7}{4}\cdot \left(-4 \right)\cdot {{x}^{-5}}=\frac{-7}{{{x}^{5}}} \\& {{\left(\frac{2}{3{{x}^{3}}} \right)}^{\prime }}=\frac{2}{3}\cdot {{\left(\frac{1}{{{x}^{3}}} \right)}^{\prime }}=\frac{2}{3}\cdot {{\left({{x}^{-3}} \right)}^{\prime }}=\frac{2}{3}\cdot \left(-3 \right)\cdot {{x}^{-4}}=\frac{-2}{{{x}^{4}}} \\& {{\left(\frac{5}{2}{{x}^{2}} \right)}^{\prime }}=\frac{5}{2}\cdot 2x=5x \\& {{\left(2{{x}^{3}} \right)}^{\prime }}=2\cdot 3{{x}^{2}}=6{{x}^{2}} \\& {{\left(3{{x}^{4}} \right)}^{\prime }}=3\cdot 4{{x}^{3}}=12{{x}^{3}} \\\end{align}\]...

Теперь собираем все эти слагаемые в единую формулу:

\[{y}"=-\frac{7}{{{x}^{5}}}+\frac{2}{{{x}^{4}}}+5x+6{{x}^{2}}-12{{x}^{3}}\]

Мы получили ответ.

Однако прежде чем двигаться дальше, хотел бы обратить ваше внимание на форму записи самих исходных выражений: в первом выражении мы записали $f\left(x \right)=...$, во втором: $y=...$ Многие ученики теряются, когда видят разные формы записи. Чем отличаются $f\left(x \right)$ и $y$? На самом деле, ничем. Это просто разные записи с одним и тем же смыслом. Просто когда мы говорим $f\left(x \right)$, то речь идет, прежде всего, о функции, а когда речь идет об $y$, то чаще всего подразумевается график функции. В остальном же это одно и то же, т. е., производная в обоих случаях считается одинаково.

Сложные задачи с производными

В заключение хотелось бы рассмотреть пару сложных комбинированных задач, в которых используется сразу все то, что мы сегодня рассмотрели. В них нас ждут и корни, и дроби, и суммы. Однако сложными эти примеры будут лишь в рамках сегодняшнего видеоурока, потому что по-настоящему сложные функции производных будут ждать вас впереди.

Итак, заключительная часть сегодняшнего видеоурока, состоящая из двух комбинированных задач. Начнем с первой из них:

\[\begin{align}& {{\left({{x}^{3}}-\frac{1}{{{x}^{3}}}+\sqrt{x} \right)}^{\prime }}={{\left({{x}^{3}} \right)}^{\prime }}-{{\left(\frac{1}{{{x}^{3}}} \right)}^{\prime }}+\left(\sqrt{x} \right) \\& {{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}} \\& {{\left(\frac{1}{{{x}^{3}}} \right)}^{\prime }}={{\left({{x}^{-3}} \right)}^{\prime }}=-3\cdot {{x}^{-4}}=-\frac{3}{{{x}^{4}}} \\& {{\left(\sqrt{x} \right)}^{\prime }}={{\left({{x}^{\frac{1}{3}}} \right)}^{\prime }}=\frac{1}{3}\cdot \frac{1}{{{x}^{\frac{2}{3}}}}=\frac{1}{3\sqrt{{{x}^{2}}}} \\\end{align}\]

Производная функции равна:

\[{y}"=3{{x}^{2}}-\frac{3}{{{x}^{4}}}+\frac{1}{3\sqrt{{{x}^{2}}}}\]

Первый пример решен. Рассмотрим вторую задачу:

Во втором примере действуем аналогично:

\[{{\left(-\frac{2}{{{x}^{4}}}+\sqrt{x}+\frac{4}{x\sqrt{{{x}^{3}}}} \right)}^{\prime }}={{\left(-\frac{2}{{{x}^{4}}} \right)}^{\prime }}+{{\left(\sqrt{x} \right)}^{\prime }}+{{\left(\frac{4}{x\cdot \sqrt{{{x}^{3}}}} \right)}^{\prime }}\]

Посчитаем каждое слагаемое отдельно:

\[\begin{align}& {{\left(-\frac{2}{{{x}^{4}}} \right)}^{\prime }}=-2\cdot {{\left({{x}^{-4}} \right)}^{\prime }}=-2\cdot \left(-4 \right)\cdot {{x}^{-5}}=\frac{8}{{{x}^{5}}} \\& {{\left(\sqrt{x} \right)}^{\prime }}={{\left({{x}^{\frac{1}{4}}} \right)}^{\prime }}=\frac{1}{4}\cdot {{x}^{-\frac{3}{4}}}=\frac{1}{4\cdot {{x}^{\frac{3}{4}}}}=\frac{1}{4\sqrt{{{x}^{3}}}} \\& {{\left(\frac{4}{x\cdot \sqrt{{{x}^{3}}}} \right)}^{\prime }}={{\left(\frac{4}{x\cdot {{x}^{\frac{3}{4}}}} \right)}^{\prime }}={{\left(\frac{4}{{{x}^{1\frac{3}{4}}}} \right)}^{\prime }}=4\cdot {{\left({{x}^{-1\frac{3}{4}}} \right)}^{\prime }}= \\& =4\cdot \left(-1\frac{3}{4} \right)\cdot {{x}^{-2\frac{3}{4}}}=4\cdot \left(-\frac{7}{4} \right)\cdot \frac{1}{{{x}^{2\frac{3}{4}}}}=\frac{-7}{{{x}^{2}}\cdot {{x}^{\frac{3}{4}}}}=-\frac{7}{{{x}^{2}}\cdot \sqrt{{{x}^{3}}}} \\\end{align}\]

Все слагаемые посчитаны. Теперь возвращаемся к исходной формуле и складываем вместе все три слагаемых. Получаем, что окончательный ответ будет таким:

\[{y}"=\frac{8}{{{x}^{5}}}+\frac{1}{4\sqrt{{{x}^{3}}}}-\frac{7}{{{x}^{2}}\cdot \sqrt{{{x}^{3}}}}\]

И на этом все. Это был первый наш урок. В следующих уроках мы рассмотрим более сложные конструкции, а также выясним, зачем вообще нужны производные.

На котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию я буду называть внешней функцией , а функцию – внутренней (или вложенной) функцией .

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим:

Пример 1

Найти производную функции

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:

В данном примере уже из моих объяснений интуитивно понятно, что функция – это сложная функция, причем многочлен является внутренней функцией (вложением), а – внешней функцией.

Первый шаг , который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней .

В случае простых примеров вроде понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения при (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет выполнить следующее действие: , поэтому многочлен и будет внутренней функцией :

Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как мы РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. Из урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением , в данном случае:

Обратите внимание, что внутренняя функция не изменилась, её мы не трогаем .

Ну и совершенно очевидно, что

Результат применения формулы в чистовом оформлении выглядит так:

Постоянный множитель обычно выносят в начало выражения:

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Пример 2

Найти производную функции

Пример 3

Найти производную функции

Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение выражения при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание: , значит, многочлен – и есть внутренняя функция:

И, только потом выполняется возведение в степень , следовательно, степенная функция – это внешняя функция:

Согласно формуле , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения . Таким образом, результат применения правила дифференцирования сложной функции следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Пример 4

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

Пример 5

а) Найти производную функции

б) Найти производную функции

Пример 6

Найти производную функции

Здесь у нас корень, а для того, чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Пример 7

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования частного , но такое решение будет выглядеть как извращение необычно. Вот характерный пример:

Пример 8

Найти производную функции

Здесь можно использовать правило дифференцирования частного , но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция.
Используем наше правило :

Находим производную внутренней функции, косинус сбрасываем обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Пример 9

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую, вложены сразу 3, а то и 4-5 функций.

Пример 10

Найти производную функции

Разбираемся во вложениях этой функции. Пробуем вычислить выражение с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Начинаем решать

Согласно правилу сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции: Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции следующий.

При выводе самой первой формулы таблицы будем исходить из определения производнойфункции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не являетсянеопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:

Производная логарифмической функции.

Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:

Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.

Производные тригонометрических функций.

Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.

Следовательно, производная функции cos x есть –sin x .

Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).

Производные гиперболических функций.

Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Чтобы при изложении не было путаницы, давайте обозначать в нижнем индексе аргумент функции, по которому выполняется дифференцирование, то есть, - это производная функции f(x) по x .

Теперь сформулируем правило нахождения производной обратной функции.

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x) , то в точке существует конечная производная обратной функции g(y) , причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Давайте проверим справедливость этих формул.

Найдем обратную функцию для натурального логарифма (здесь y – функция, а x - аргумент). Разрешив это уравнение относительно x , получим (здесь x – функция, а y – ее аргумент). То есть, и взаимно обратные функции.

Из таблицы производных видим, что и .

Убедимся, что формулы нахождения производных обратной функции приводят нас к этим же результатам:

Определение степенно-показательной функции. Вывод формулы для вычисления ее производной. Подробно разобраны примеры вычисления производных степенно-показательных функций.

Степенно-показательная функция - это функция, имеющая вид степенной функции
y = u v ,
у которой основание u и показатель степени v являются некоторыми функциями от переменной x :
u = u(x) ; v = v(x) .
Эту функцию также называют показательно-степенной или .

Заметим, что степенно-показательную функцию можно представить в показательном виде:
.
Поэтому ее также называют сложной показательной функцией .

Вычисление с помощью логарифмической производной

Найдем производную степенно-показательной функции
(2) ,
где и есть функции от переменной .
Для этого логарифмируем уравнение (2), используя свойство логарифма :
.
Дифференцируем по переменной x :
(3) .
Применяем правила дифференцирования сложной функции и произведения :
;
.

Подставляем в (3):
.
Отсюда
.

Итак, мы нашли производную степенно-показательной функции:
(1) .
Если показатель степени являются постоянной, то . Тогда производная равна производной сложной степенной функции:
.
Если основание степени являются постоянной, то . Тогда производная равна производной сложной показательной функции:
.
Когда и являются функциями от x , то производная степенно-показательной функции равна сумме производных сложной степенной и показательной функций .

Вычисление производной приведением к сложной показательной функции

Теперь найдем производную степенно-показательной функции
(2) ,
представив ее как сложную показательную функцию:
(4) .

Дифференцируем произведение:
.
Применяем правило нахождения производной сложной функции:

.
И мы снова получили формулу (1).

Пример 1

Найти производную следующей функции:
.

Решение

Вычисляем с помощью логарифмической производной . Логарифмируем исходную функцию:
(П1.1) .

Из таблицы производных находим:
;
.
По формуле производной произведения имеем:
.
Дифференцируем (П1.1):
.
Поскольку
,
то
.

Ответ

Пример 2

Найдите производную функции
.

Решение

Логарифмируем исходную функцию:
(П2.1) .